
MACRO MADNESS
Michael Spivak

2478 Woodridge Drive,
Decatur, GA 30033

This article is an extract from the documentation
for the not-yet-completed AMS-T@C maem package.
It discusses certain tricks and pitfalls that other
macro writers might want to know about. Needless
to say, none of this trickery would have been possible
without the help of Don Knuth.

It should be mentioned that the AM-W
macro packsge initially \chcodea the symbol I
(ASCII-174) to be a letter, and dl internal AM-"I@
macros contain a I as one of their letters. At the
very end of the macro file, I is ri+\chcoded to be
of type 12, so that the AM-rn user cannot re-
define, or even use, these control sequences (the in-
put \cs l will be read as \cs I). For convenience,
we will omit the I s here, and we will use mnemonic
names for control sequences-the actual names used
by AM-'&$ are very short (at most three letters, in-
cluding any l s), in order to preserve memory space.

Please report any bugs to the abwe address as
soon as possible-before the macro package gets dis-
tributed widely!

L Branching Mechanisms
The only branching mechanism provided by '&jX

is
\if (char~)(charz)<(true text))
\else((f a l s e text))

and its relatives. Unfortunately, there are certain
peculiarities of \ i f . . . \e lse that require special
care.

(a) An \ i f . . . \else construction is processed
in W s "digestive systemn, rather than in its
"mouth". Suppose, for example, that we have two
~(~1t ro l sequences \csa#l and \csb#1#2, taking one
and two arguments, respectively, and a control se-
quence \ f lag that is sometimes dehed to be T and
sometimes defined to be F. We would like to d e h e
\cs to be \csa if \ f lag is T, and \csb if \ f lag is
F [the argument(s) for \cs will simply be whatever
cornea next in the input text]. If we try to define

then a use of \cs wil l produce .the error message

! Argument of \csa has an e x f m 3

because ll??C seee the 3 as soon as it looks for the
argument after \cea or \cab. The solution to this

TUGboat, Volume 2, No. 2

problem is to define
\def \cs€\if T\f lagC\gdef \resultC\cas))

\elsei\gdef \resul ti\csb33
\result3

A similar problem arises in the following situation.
@ (luppoa that we have two diaawt .uo file*
mfile. 1 and mfile .2, and the value of \flag is sup
posed to determine which file to use (such a scheme is
useful for saving memory space). A definition like

\def \ce<\if T\f lag<\input mfile. 1)
\elsa<\input mfile .23. . . I

gives a different error message:
! Input page ended on nesting level 1

but the basic problem (and the solution) is exactly the
same.

@@ If we make the definition

\def\If#i\then#2\else#3i\if#l
i\gdef \resultC#Z>>
\else<\gdef \result~#33?\result?

then we can safely use constructions like
\If T\ilag\then ... \else< ...)

The token \then is made part of the syntax of \Xi
so that we can have constructions like \If \cs a\cs
b\then. . . , where \cs#i is a control sequence with one
argument.

(b) Although (charl) and (charz) may be specified
by control sequences like \flag, which ex-
pands out, they cannot involve \ i f . . . \else again.
Suppose, for example, that we have already defined

\def\ab#l<\if#laiT)
\else€\if #lb€T)\else€F333

so that \ab#l is T if #I is a or b, and F otherwise. We
would now like to define \cs#l to be (true text)
if #I is a or b, and (false text) otherwise. We
cannot conveniently define

\def\cs#lC\if T\ab#l<(true text))
\elsei(f a lse text)))

If we do this, then the input \cs x will become
\ i f T\if uriT)\elseC\if xbCT)

\elseiF>)€(true text))\elsei(false text))

which causes W to try to compare T with \ i f ,
giving an error message.

Of course, the test for ti bemg a or b could be
made part of the definition of \cs, but the following
scheme is far more advantageous:

\def \ab#li\if #lai\gdef UbCT33
\else€\if #lbi\gdef MbiT33

\elsei\gdef Ub<F>3)3
\def \cs#lC\ab#l

\if TUbi(true text))
\elseC(f a lee text)))

(c) In an \ i f . . . \else construction, (charl) and
(char2) are supposed to be single chsrraters (of type

TUGboat, Volume 2, No. 2

0 to la), or defined control sequences, poeeibb with
arguments, that expand out to a character. So we
can't use an \if. . . \else conetructbn in a situation
where we don't know for sure what the next input
text will be. Suppose, for example, that \cs#1 ie
supposed to be (true text) if #I is a comma, but
(false text) otherwise. If we define

\def \cs#i(\if #I, {(true text))
\elseC(f alee text)))

there is always the possibility that our input text
will contain

\cs . . .
where . . . is a token that can't be used with \if,
or even worse, a group i . . .), which might produce
total chaos. in order to deal with this we will use
several tricks, which are also useful in other situa-
tions.

lI. Bade Kludges
Consider the definitions
\def \f alse#i(\gdef \ansiF>>
\def \trickam
\dei \trickb(B)

\def \trickc#l~\if#lA
(\gdef \result(\f alse))
\elseC\gdef \resulti\gdef \msCT>)>
\result3

\clef \empty#1#2\trickai\tr ickc)

The controi sequence \trick will be used only in
situations where the \if is safe. In fact, \trickc
will arise only from an occurrence of \empty, and
the control sequences \tricka, \trickb, \trickc
and \empty will be used only in the construction

\empty. . . \tricka\triclca\trickb
Here . . . will be some input text, with perhaps a
few special f f~S- ' l) jX 'control sequences thmwn in,
but . . . will never involve \tricka (remember that
\tricks is really \tr icka I, so it can't appear in a
user's file).

We have to consider two possibilities for . . . in
order to determine the result of this construction.
Suppose first that . . . is not empty. Then argument
#l for \empty will be the first token or group of
. . . and argument #2 will be whatever remains (if
mything). Hence

\empty. . . \tricka\tricka\trickb -+

-+ \trickc\tricka\trickb -+

-+ \false\trickb -+ \gdef \eas<F3

But suppose that . . . is empty, si, that we have

\empty\tricka\tricka\trickb

Note that argument #1 for \empty muut be non-
empty, since it is not followed by a token in the

definition of \empty. So in the pmmt cam ar-
gument #I for \empty wil l be the ht \tric&.
Consequently, the second \tr icka will play the role
of the token \tricks in the defiaitlon of \eapty
(and argument X3 wil l be empw). Thus

\empty\tricka\tricka\trickb -+

-, \trickc\trickb 4 \gdef \urs<T>

In other words,

\empty. . . \tricka\tricka\trickb
dehes \ens to be T if . . . ia empty,

There would appear to be one exception to this rule:
@rC . . . is a blank space, or a w e n e e of blank
spacw, then \ a m will still be defined to be I, since
spaces after the control sequence \ q t y are ignored.
But in practice . . . will alweys be an argument from
aome other macro, and in thin case the exception does
not arise. Suppose, for example, that we define

\dei \ t~i i \enptfl i \ trick9\tricL.\trickb3

eo that \tlJ(W will teat whether #I is empty or not.
Kf we give the input

\- 3

then the b r a c e s d beremOMdhm€ 1, sothiswillbe
translated into

\emptgti\tricka\tri&a\?Ackb

But in this situation the space indicated by u is not
ignored, so \an8 wiU be defined to be F.

We might have arranged for the r e d t of the corn-
@ bination \empty. . . \tricka\tricka\trickb simply
to be T or F, rather than defining \.nr, to be T or F. But
if we did this, a construction like

wouldn't work, because would think that we were
trying to compare T with the result of \eapty#i\tridca.

The following variant of \eapty is also useful:

Then

\empty@. . . \endd
defhee \am to be T if . . . is empty or 0,
and F otherwise. -

<B itwillbebenvenienttouae$hessme3ag\anefor
the result of several of our macroa. This won't

produce problem if we ever have to perform two t e h on
two different atgumente: we can always h a t uae \empty,
then \ le t \ i i rs tane=\ .~, then urre \..ptm, ete.

We also want to be able to check if . . . is
a eingle token or group, rather than a string of
several tokens or groupe. One idea ie ta consider
\single. . . \endd where \single#l#2\endd checks
whether #2 is empty: .

\def \single#l#2\endd
<\empty#2\tricka\tricka\trickb3

Tbis won't quite work, since . . . might be some
thing like (token)O; in this cam #2 appearing
in \emptyrt2\tricka\tricka\trickb will still be
empty, since l&JC remwes an outer set of braces
from any argument. So to be on the safe side, we
add some extraneous character after . . . and let
\slngle#l#2#3\endd check if #3 is empty:
\def \single#l#2#3\endd

(\empty#3\tri&a\tricka\trickb)

Then

w o r e using \single. . . *\endd it is esaentid
'tocheck that.. . isn't empty. Otherwise there
will be problems, because of the very considerations
that made \empty work. (An \empty check could
be incorporated into the defhition of \single, but
whenever u s e \single a separate check
has to be made anyway.)

As in the cam of \emptyl a space may legitimately
@ occw as argument il. For -p1e, if we define

\def \try#l(\eingle#l*\endd3
then \try< X3 d&es \ m e to be F. (But \-
defines \ m e to be T-the second space never even gets

read by w.1
It is now fairly easy to check whether an argu-

ment #l (which might a piori be an arbitrary token
or even a group) is a c o ~ l l ~ ~ l s . The basic idea is to
define

\def\checHl, #2\endd
i\empty#l\tricka\tricka\trickb)

and then d&e

eo that \comma<#13 will d&e \curs to be T if #I is
a comma, and F otherwise. This won't quite work
for the following reasons:

(i) If # i is O or CC33, then \comnaC#l3
is \collamuri3 or \co~maii)). This means
that the #I appearing .in \checltltl, \endd
is empty or 0, and thus the #l in
\enq,t~i\triclEe\tricko\tric~ is empty.

(ii) I f t i hagroup{, ... thrrthappeneto begin
with a comma, then \coma€#i) will define

TUGboat, Volume 2, No. 2

\me to be T, whereas we want it to be F (this,
admittedly, is a matter of taste).

So we will use \emptygp and \single to check on
these possibilities:
\def \ c ~ l i \ e m p t y g p # l \ e n d d

\ i f T\ansC\gdef \anaiF33
\elsei\aingle#l *\endd

\if F\ansO
\elseC\check#l , \endd3)3

Then
\c-C#13
defines \am to be T if #1 is , or E , 3,
and F otherwise.

(The inability to distinguish between , and i: , I is a
minor problem that seems insurmountable.)

AM$-'&$ needs many such checks, so they are
all made in terms of one generalized check. For
example, \comma is actually defined by

where \compare is defined aa
\def \compare*#l#2{\def \check##l#2#2\endd

i\empty##l\tricka\tricka\trickb3
\emptygp#2\endd
\ i f T\ansC\gdef \ans<F33
\elee{\single#2*\endd

\if F\ansO
\elsei\checlc#2#l\endd)))

The * waa made part of the syntax for \compaxe to
allaw \def \space#lC\compare*~{#133.

IU Saving Braces
We have just seen that there can sometimes be

problems when braces are removed from the argu-
ment of a control sequence. Actually, the prob-
lem can be much more critical. For example, the
&S-m control sequence \dots#l &st examines
#I to determine what sort of dote and spacing are
needed, and then produces these dote, followed by
l (and the remaining input). The removal of braces
would be a minor annoyance if it1 were something
like <+I, where the braces are meant to make the
+ into a \mathord (something that &S-= users
aren't supposed to know about anyway). But it
could be a major catastrophe if #l'were something
like (a\f rac b3. To handle such problems we define
\def \braced#li\empty

#l\tricka\triclca\trickb
\ i f T\ansC\gdef \Braced(i#l>33
\else{\single#l*\eadd

\if F\ans<\gdef \Bracedi<#l333
\elsei\gdef \BracedC#l>333

In other word8, \br.eed puts back a pair of brace8
if 01 is i 3 or a group with more than one token or

T U G W , Volume 2, No. 2 53

group in it. Thus, \braced(#l> define8 \Braced to
be #1 except when #I ia ((token)3 or (C.. .)3, in
which case the outer set of braces is remaved. So,
aside from the unavoidable {(token)) caae, \Braced
hae enough braces to give the same result ae ti.

IV. R e d o n e
There are several ways of handling recursions, all

of which are used s t some point in A&-'&$.

(a) Suppose that we want to define \qms # l ao that

\qm8 1 is?
\qms 2 is ??

\qms 3 is ???

etc.

We can d e h e
\def\qm#l<\setcounti #1

\def \s t r ing
~\ifposli\advcountl by -1

Igdef \newstringi?\string)>
\elseC\gdef \newstringC33

\newstring) %end of \def \s t r ing
\string)

This only appears to violate the rule not
to define a control sequence in terms of i t
eelf: An occurrence of \s t r ing may produce
\gdef \newstr ing(? \ string), but 'T@C will simply
record this definition, and not try to expand out the
\string that occurs in it until \newstring is ex-
panded, at which time an \ i f test is made, which
produces a new \gdef .

\newatring should be defined aa ?\s tr ing
@ rather than ss \string? to keep l)$'s internal
"input stack" from growing unboundedly.

(b) Suppose that we have some input of the form

(stringl), (strings), . . . , (string,)

with strings separated by some character, like a
comma, and we want the control sequence \operate
to perform some operation on each string. For ex-
ample, we might want to replace each (stringi) by
A(string,)Z, a0 that

\operate<(stringl), (string2), . . . ,(string,)>

will produce

Naw the baeic idea is to define

\def \op#l , #2<\lsmukeri#23
\ i f ~\rmsiA#iZ\gdef b e x t o p 0 3
\elseCA#lZ\gdef \nextop€\op233
\nextop3

\def \operate#l(\op#l , barker)

(omitting the commaa in these dehitions for the
case of no separators).

Unfortunately thia won't work, because there are
problem concerned with the r e m d of brecea.
Each time \op#l,t2 is used, argument t 2 is the
first token or group folIcnnring the comma, and if it
is a group the braces will be removed. The r e m d
of braces again cauees problems if ti is something
like (a\f rac b), and also if #2 is something like
i (a, b) 3, where the braces are meant to "hide" the
comma. We could use \braced here, but it isn't
quite foolpmfY since 12 might be a "biddenn comma
i , 3, which \braced can't distinguish from an ordi-
nary comma. Moreover, \braced can't help us with
argument #I. Although this argument is u d y
a sequence, terminated by a comma, it just might
happen to be a a l e p u p followed by a comma,
and there is no way of distinguishing between these
possibilities once argument 11 haa been read.

In the cases where AM-= uses a recursive
scheme of this eort, the particular circumstances,
or simple tricks, usually circumvent these problems.
The following definition illustrates a general echeme
that will always work:

Notice that each time \op#l, tZ\endd is used, ar-
gument ti now begins with * (which ia remuved by
\kill) , so it can't possibly be a group, And argu-
ment t 2 i~ always the remaining input, terminated
by b k e r , so it can't be a group either.

(c) A recursive procedure can be used to count the
number of commas in a string: -

A(stringl)ZA(string2)Z. . . A(string,)Z
\def \cpl#l. #2\endd(\ismarkeri#2>

(We might also want to consider the case where there \ i f T\ans(\gdei \nextcmiH
are no separators, eo that an A and a Z will be \elsei\advcountl
inserted before and after eacb token or group.) We \gdef \nextcm€\cm#2\enddH
will use the token W k e r aa a "marker" to tell us \nextem3
when our recursion is over, so we define \def \countcommas~ii\setcountl 0

Then
\countcamaosi#13
m h r r the value of \count1 be the
number of commas in X i .

The \ a d d trick is ueed to handle "hidden" commaa,
but the * trick isn't needed, aince we don't care what
\cm does to #I.

(d) If we do \couatcommas<#l3, then \ifposi will
tell w whether # l contains a t least one comma. But
it is preferable to use the following scheme, which
doesn't involve any counters, and which stops as
soon as the Arst comma is found:
\def \cm#1, #2€\ismarkerC#23

\if T\ans<\gdef \nextcmo)
\elsei\gdef \Hascolmno<T3

\gdef \nextcm##l\morkeri))
\nextcm)

\def \ h a s c o ~ l < \ g d e f \Hascomma<F)
\CHI , k k e r)

(e) Suppose we want to perform the operation in
part (b) on aome input of the form

(string~)\\(stringz)\\. . .\\(string,)
where the separator is the control sequence \\
(which is never used in isolation, and is initial@
defined by \def \\<I). We could use exactly the
same scheme, replacing \def \op#l , #2\endd by
\def\op#l\\#2\endd. But we can also take ad-
vantage of the fact that the separator is a control
sequence to obtain a definition that is both more
elegant and more efIicient:

\def \op#l\\iA\kill#lZ\\)
\def \operate#lC\def \\<\op*)

\dp*Wl\def \opi\ldll3\\

@ The \def\'op<3 needs to be replaced by
\gdef\opO if \op puts things inside braces;

in this case, the original definition of \op should be
made part of the definition of \operate.

There might appear to be poseible confusion if -me
@ (&ringJ 0onWlu \\ within a group <. . .\\. . .I.
In a$-= this occura only in eomtructionr like

<\align. . . \\ . . . \endalign)
where \\ ie temporarily re-d&ed anyway.

V. Send ing For Sfringr
W s method of determining where an argument

in a definition ends has the follawing peculiar fe
ture. Buppoee we d e h e

TUGboat, Volume 2, No. 2

givee the error measage

! Use of \cs does not netch 'its definition.

So if we want to know whether ab occurs in some
string we can't aimply replace the comma by ab in
the method of part W(d), because an a might occur
alone. Instead we have to do something like the
following:
\def \isMSl<\compare*b<#l33
\def \f i n d d i i d t 2 # 3 \ e ~ d < \ i ~ k e r < ~ 3

\ if T\ans€\gdef \nextf in&<))
\else<\isb<#23

\ i f T\ans<\gdef \Haaab<T3
\gdef \next2 indai33

\else<\gdef \nextf in&
i\findd2#3\endd3))

\nextf inda)
\def \hasaWl<\gdef\HasabCF)

\f inda#la\marker\endd)

Problems

The first formatting problem posed in this
column come from the videotaped Q$kcma Class
taught by Don Knuth last March. Solutions will be
presented in the next issue. Readers with working

eystema are encouraged to attempt ealutians
to these problems, in order to better appreciate the
probleme and their solutions.

Lyane A. Price

Problsm no. 1:

\vskip lapt
\noindent\hidei-->Allan Tealco

\vskip 2pt
\noindent Architecture Cr i t ic

To get:

-Allsn T ~ o
Architecture Critic

Then the h t argument is the d e s t (possibly
empty) token or group that is fo11ClWBd by a, not the
d e e t group that is followed by a. So the input

