50

MACRO MADNESS
Michael Spivak
2478 Woodridge Drive,
Decatur, GA 30033

This article is an extract from the documentation
for the not-yet-completed AMS-TEX maero package.
It discusses certain tricks and pitfalls that other
macro writers might want to know about. Needless
to say, none of this trickery would have been possible
without the help of Don Knuth.

It should be mentioned that the AMS-TEX
macro package initially \chcodes the symbol |
(ASCII-174) to be a letter, and all internal AMS-TEX
macros contain a | as one of their letters. At the
very end of the macro file, | is re-\chcoded to be
of type 12, so that the AMS-TEX user cannot re-
define, or even use, these control sequences (the in-
put \csl will be read as \cs |). For convenience,
we will omit the |s here, and we will use mnemonic
names for control sequences—the actual names used
by AMS-TEX are very short (at most three letters, in-
cluding any |s), in order to preserve memory space.

Please report any bugs to the above address as
soon as possible—before the macro package gets dis-
tributed widely!

L Branching Mechanisms.
The only branching mechanism provided by TgX
is
\if (char;)(char,)}{(true text)}
\else{(false text)}

and its relatives. Unfortunately, there are certain
peculiarities of \if...\else that require special
care.

(a) An \if...\else construction is processed
in TEX's “digestive system”, rather than in its
“mouth”. Suppose, for example, that we have two
control sequences \cza#1 and \csb#1#2, taking one
and two arguments, respectively, and a control se-
quence \flag that is sometimes defined to be T and
sometimes defined to be F. We would like to define
\cs to be \csa if \flag is T, and \csb if \flag is
F [the argument(s) for \cs will simply be whatever
comes next in the input text]. If we try to define

\def\cs{\if T\flag{\csa}\else{\csb}}
then a use of \cs will produce the error message
! Argument of \csa has an extrs }

because TEX sees the } as soon as it looks for the
argument after \csa or \csb. The solution to this

TUGboat, Volume 2, No. 2

problem is to define
\def\es{\if T\flag{\gdef\result{\csa}}
\else{\gdef\result{\csb}}
\result}

® A similar problem arises in the following situation.

Suppose that we have two different macro files,
nfile.1 and mfile.2, and the value of \flag is sup-
posed to determine which file to use (such a scheme is
useful for saving TEX memory space). A definition like

\def\cs{\if T\flag{\input mfile.1}
\else{\input mfile.2}...}

gives a different error message:
! Input page ended on nesting level 1
but the basic problem (and the solution) is exactly the
same.
If we make the definition

\def\If#1\then#2\else#3{\if#1
{\gdet\result{#2}}
\else{\gdef\result{#3}}\result)

then we can safely use constructions like
\If T\flag\then...\else{...}

The token \then is made part of the syntax of \If
so that we can have constructions like \If \cs a\cs
b\then. .., where \cs#1 is a control sequence with one

argument.

(b) Although (char,;) and (char,) may be specified
by control sequences like \flag, which TEX ex-
pands out, they cannot involve \if. .. \else again.
Suppose, for example, that we have already defined
\def\ab#1{\if#1a{T}
\else{\if#1b{T}\else{F}}}
so that \ab#1 is T if #1 is a or b, and F otherwise. We
would now like to define \cs#1 to be {true text)
if #1 is a or b, and (false text) otherwise. We
cannot conveniently define
\def\cs#1{\if T\ab#1{(true text)}
\else{(false text)}}

If we do this, then the input \¢s x will become
\if T\if xa{T}\else{\if xb{T}

\else{F}}{(true text)}\else{{false text)}
which causes TEX to try to compare T with \if,
giving an error message.

Of course, the test for #1 being a or b could be
made part of the definition of \cs, but the following
scheme is far more advantageous:

\def\ab#1{\if#1a{\gdef \Ab{T}}
' \else{\it#1b{\gdef\Ab{T}}
\else{\gdef\Ab{F}}}}
\def\cs#1{\ab#1
\if T\Ab{(true text)}
\else{({false text)}}
(c) In an \if...\else construction, {char,) and
(char) are supposed to be single characters (of type

TUGboat, Volume 2, No. 2

0 to 12), or defined control sequences, possibly with
arguments, that expand out to a character. So we
can’t use an \if . . . \else construction in a situation
where we don’t know for sure what the next input
text will be. Suppose, for example, that \cs#1 is
supposed to be (true text) if #1 is 8 comma, but
(false text) otherwise. If we define

\def\cs#1{\if#1, {(true text)}
\else{(false text)}}

there is always the possibility that our input text
will contain
\es ...

where ... is a token that can't be used with \1if,
or even worse, a group {. ..}, which might produce
total chaos. In order to deal with this we will use
several tricks, which are also useful in other situa-
tions.

II. Basic Kludges
Consider the definitions

\det\false#t{\gdef\ans{F}}

\def\tricka{A}

\def\trickb{B}

\def\tricke#1{\if#1A
{\gdef\result{\false}}
\else{\gdef\result{\gdef \ans{T}}}
\result}

\def\empty#i#2\tricka{\tricke}

The control sequence \trickc will be used only in
situations where the \if is safe. In fact, \tricke
will arise only from an occurrence of \empty, and
the control sequences \tricka, \trickb, \tricke
and \empty will be used only in the construction

\empty...\tricka\tricka\trickb

Here . will be some input text, with perhaps a
few special AMS-TEX control sequences thrown in,
but ... will never involve \tricka (remember that
\tricka is really \trickal, so it can’t appear in a
user’s file).

We have to consider two possibilities for ... in
order to determine the result of this construction.
Suppose first that . .. is not empty. Then argument
#1 for \empty will be the first token or group of
... and argument #2 will be whatever remains (if
anything). Hence

\empty...\tricka\tricka\trickb —

— \trickc\tricka\trickb —
— \false\trickb — \gdef\ans{F}

But suppose that ... is empty, so that we have
\empty\tricka\tricka\trickb

Note that argument #1 for \empty must be non-
empty, since it is not followed by a token in the

Then

51

definition of \empty. So in the present case ar-
gument #1 for \empty will be the first \tricka.
Consequently, the second \tricks will play the role
of the token \tricks in the definition of \empty
(and argument #2 will be empty). Thus

\empty\tricka\tricka\trickb ~»
— \trickc\trickb —» \gdef\ans{T}

In other words,

\empty...\tricka\tricka\trickb
defines \ans to be T if ... is empty,
and F otherwise.

® There would appear to be one exception to this rule:
If ... is a blank space, or a sequence of blank
spaces, then \ans will still be defined to be T, since
spaces after the control sequence \empty are ignored.
But in practice ... will always be an argument from
some other macro, and in this case the exception does
not arise. Suppose, for example, that we define

\def\try#1{\empty#1\tricka\tricka\trickb}
80 that \try{#1} will test whether #1 is empty or not.
If we give TEX the input
\tryd 3}
then the braces will be removed from { }, 50 this will be
translated into
\emptyj\tricka\tricka\trickb

But in this situation the space indicated by U is not
ignored, so \ans will be defined to be F.

® We might have arranged for the result of the com-

bination \empty. . .\tricka\tricka\trickb simply
to be T or F, rather than defining \ans to be T or F. But
if we did this, a construction like

\if T\empty#1\tricka\tricka\trickb{...}
\else{...}

wouldn't work, because TEX would think that we were
trying to compare T with the result of \empty#t\tricka.

The following variant of \empty is also useful:

\def\emptygp#1\eadd
{\empty#i\tricka\tricka\trickb}

\emptygp. . .\endd
defines \ans to be Tif ...
and F otherwise.

is empty or {3,

@ It will be convenient to use the same fiag \ans for
the result of several of our macros. This won't
produce problems if we ever have to perform two tests on
two different arguments: we can alwaye first use \eapty,
then \let\firstans=\ans, then use \esptygp, etc.

52

We aiso want to be able to check if ... is
a single token or group, rather than a string of
several tokens or groups. One ides is to consider
\single...\endd where \single#1#2\endd checks
whether #2 is empty:
\def\single#1#2\endd
{\empty#2\tricka\tricka\trickb}
This won't quite work, since ... might be some-
thing like (token){}; in thie case #2 appesring
in \empty#2\tricka\tricka\trickb will still be
empty, since TEX removes an outer set of braces
from any argument. So to be on the safe side, we
add some extraneous character after ... and let
\single#1#2#3\endd check if #3 is empty:
\def\single#1#2#3\endd
{\empty#3\tricka\tricka\trickb}

Then

\single...*\endd
defines \ans to be Tif . ..
or group, and F otherwise.

is a single token

@ Before using \single...*\endd it is essential
to check that ... isn’t empty. Otherwise there
will be problems, because of the very considerations
that made \empty work. (An \empty check could
be incorporated into the definition of \single, but
whenever AMS-TEX uses \single a separate check
has to be made anyway.)
@ As in the case of \empty, a space may legitimately
occur as argument #1. For example, if we define
\dez\try#1i{\single#1+\endd)

then \try{ X} defines \ans to be F. (But \try{ 1)}
deflnes \ans to be T—the second space never even gets

read by TEX.)

It is now fairly easy to check whether an argu-
ment #1 (which might ¢ prior: be an arbitrary token
or even a group) is a comma. The basic idea is to

define
\def\check#1, #2\endd
{\empty#1\tricka\tricka\trickb}

and then define

\def\comma#1{\check#1, \endd}
8o that \comma{#1} will define \ans to be T if #1 is
a comma, and F otherwise. This won't quite work
for the following reasons:

(i) If #1 is {3 or {{}}, then \comma{#1}
is \conma{} or \comma{{}}. This means
that the #1 appearing in \check#1,\endd
is empty or {}, and thus the #1 in
\empty#1i\tricka\tricka\trickb is empty.

(ii) If #1 is a group {, .. .} that happens to begin
with & comma, then \comma{#1} will define

TUGboat, Volume 2, No. 2

\ans to be T, whereas we want it to be F (this,
admittedly, is a matter of taste).

So we will use \emptygp and \single to check on
these possibilities:
\def\conma#1{\emptygp#1\endd
\if T\ans{\gdef\ans{F}}
\else{\single#1*\endd
\if F\ans{}
\else{\check#1, \endd}}}

Then
\comma{#1}
defines \ans to be T if #1 is , or {,},
and F otherwise.

(The inability to distinguish between , and {,} is a
minor problem that seems insurmountable.)

AMS-TEX needs many such checks, so they are
all made in terms of one generalized check. For
example, \comma is actually defined by

\def\comma#1{\compare*, {#1}}

where \compare is defined as
\def\compare*#1#2{\def\check##1#14#2\endd
{\empty##i\tricka\tricka\trickb}
\emptygp#2\endd
\if T\ans{\gdef\ans{F}}
\else{\single#2+\endd
\if F\ans{}
\else{\check#2#1\endd}}}

The * was made part of the syntax for \compare to
allow \def\space#1{\compare*j{¥1}}.

IIl. Saving Braces
We have just seen that there can sometimes be
problems when braces are removed from the argu-
ment of a control sequence. Actually, the prob-
lem can be much more critical. For example, the
AMS-TEX control sequence \dots#1 first examines
#1 to determine what sort of dots and spacing are
needed, and then produces these dots, followed by
#1 (and the remaining input). The removal of braces
would be a minor annoyance if #1 were something
like {+}, where the braces are meant to make the
+ into a \mathord (something that AMS-TEX users
aren’t supposed to know about anyway). But it
could be a major catastrophe if #1 were something
like {a\frac b}. To handle such problems we define
\def\braced#i{\empty
#1\tricka\tricka\trickb
\if T\ans{\gdef\Braced{{#1}}}
\else{\single#1+\endd
\if F\ans{\gdef\Braced{{#1}}}
\else{\gdef\Braced{#1}}}}

In other words, \braced puts back a pair of braces
if #1 is {} or a group with more than one token or

TUGboat, Volume 2, No. 2

group in it. Thus, \braced{#1} defines \Braced to
be #1 except when #1 is {(token)} or {{...}}, in
which case the outer set of braces is removed. So,
aside from the unavoidable {{token)} case, \Braced
has enough braces to give the same result as #1.

IV. Recursions
There are several ways of handling recursions, all

of which are used at some point in AMS-TEX.
(2) Suppose that we want to define \qms #1 so that

\qus 1 is ?
\qus 2 is ??
\qms 3 is ???
| \qms.:[i(')i'is ?77?777777
ete.
We can define
\det\qgms#1i{\setcountl #1
\def\string

{\itposi{\advcounti by -1
\gdef\newstring{?\string}}
\else{\gdef\newstring{}}
\newstring} Xend of \def\string
\string}
This only appears to violate the rule not
to define a control sequence in terms of it
self: An occurrence of \string may produce
\gdef\newstring{?\string}, but TEX will simply
record this definition, and not try to expand out the
\stzring that occurs in it until \newstring is ex-
panded, at which time an \if test is made, which
produces a new \gdef.

@ \newstring should be defined as ?\string
rather than as \string? to keep TEX's internal
“input stack” from growing unboundedly.

(b) Suppose that we have some input of the form

{string,),(strings), ..., (string,)
with strings separated by some character, like a
comma, and we want the control sequence \operate
to perform some operation on each string. For ex-
ample, we might want to replace each (string;) by
A{string,)Z, so that
\operate{(string;),(strings},...,(string,)}
will produce
A{string;)ZA(string;)Z. . .A(stringn)Z
(We might also want to consider the case where there
are no separators, so that an A and a Z will be
inserted before and after each token or group.) We
will use the token \marker as a “marker” to tell us
when our recursion is over, so we define

\def\1ismarker#1{\compare*\narker{#1}}

Now the basic idea is to define

\def\op#1, #2{\ismarker{#2}
\if T\ans{A#1Z\gdef\nextop{}}
\else{A#1Z\gdes\nextop{\op#2}}
\nextop}

\def\operate#1{\op#1, \marker}

(omitting the commas in these definitions for the
case of no separators).

Unfortunately this won’t work, because there are
problems concerned with the removal of braces.
Each time \op#1,#2 is used, argument #2 is the
first token or group following the comma, and if it
is a group the braces will be removed. The removal
of braces again causes problems if #1 is something
like {a\frac b}, and also if #2 is something like
{(a,b)}, where the braces are meant to “hide” the
comma. We could use \braced here, but it isn’t
quite foolproof, since #2 might be a “hidden” comma
{,}, which \braced can’t distinguish from an ordi-
nary comma. Moreover, \braced can’t help us with
argument #1. Although this argument is usually
a sequence, terminated by a comma, it just might
happen to be a single group followed by a comma,
and there is no way of distinguishing between these
possibilities once argument #1 has been read.

In the cases where AMS-TEX uses a recursive
scheme of this sort, the particular circumstances,
or simple tricks, usually circumvent these problems.
The following definition illustrates a general scheme
that will always work:

\def\kill#1{}
\def\op#1, #2\endd{\ismarker{#2}
\if T\ans{A\kill#1Z\gdef\nextop{}}
\else{A\kill#1Z\gdef\nextop
{\op+*#2\endd}}
\nextop}
\def\operate#i{\op*#1, \marker\endd}

Notice that each time \op#1,#2\endd is used, ar-
gument #1 now begins with * (which is removed by
\kill), so it can’t possibly be a group. And argu-
ment #2 is always the remaining input, terminated
by \marker, so it can’t be a group either.

(¢) A recursive procedure can be used to count the
number of cominas in a string:

\def\cni#1, #2\endd{\ismarker{#2}
\if T\ans{\gdef\nextcm{}}
\else{\advcounti
\gdef\nextcm{\cm#2\endd}}
\nextem}
\dez\countcomnas#i{\setcounti 0
\ca#1, \marker\endd}

54

Then
\countcommas{#1}
makes the value of \countl be the
number of commas in #1.

The \endd trick is used to handle “hidden” commas,
but the * trick isn’t needed, since we don’t care what
\cm does to #1.
(d) If we do \countcommas{#1}, then \ifpos1 will
tell us whether #1 contains at least one comma. But
it is preferable to use the following scheme, which
doesn’t involve any counters, and which stops as
soon a8 the first comma is found:
\def\cn#1, #2{\ismarker{#2}
\if T\ans{\gdef\nextcm{}}
\else{\gdef\Hascomma{T}
\gdef\nextcm##1\marker{}}
\nextem}
\def\hascomma#1{\gdet\Hascomma{F}
\cm#1,\marker}

(e) Suppose we want to perform the operation in
part (b) on some input of the form
(string;)\ \(strings)\\...\\(string,)

where the separator is the control sequence \\
(which is never used in isolation, and is initially
defined by \def\\{}). We could use exactly the
same scheme, replacing \def\op#1,#2\endd by
\def\op#1\\#2\endd. But we can also take ad-
vantage of the fact that the separator is a control
sequence to obtain a definition that is both more
elegant and more efficient:

\def\op#1\\ {A\kil1#1Z\\}

\def\operate#1{\def\\{\op*}

\op*#1\def\op{\kill1}\\

@ The \def\op{} needs to be replaced by
\gdef\op{} if \op puts things inside braces;

in this case, the original definition of \op shouid be

made part of the definition of \operate.

® There might appear to be possible confusion if some

(string;) contains \\ within a group {...\\...}
In AMS-TEX this occurs only in constructions like

{\align...\\...\endalign}
where \\ is temporarily re-defined anyway.

V. Searching For Strings

TEX’s method of determining where an argument
in a definition ends has the following peculiar fea-
ture. Suppose we define ‘

\det\cs#1ab#2{...}

Then the first argument is the smallest (possibly
empty) token or group that is followed by a, not the
smallest group that is followed by ab. So the input

\cs xayabe

TUGboat, Volume 2, No. 2

gives the error message
! Use of \cs does not match its definition.

So if we want to know whether ab occurs in some
string we can’t simply replace the comma by ab in
the method of part IV(d), because an & might occur
alone. Instead we have to do something like the
following:
\def\1isb#1{\comparesb{#1}}
\deZ\finda#1a#2#3\endd{\ismarker{#2}
\if T\ans{\gdef\nextfinda{}}
\else{\isb{#2}
\if T\ans{\gdef\Hasab{T}
\gdef\nextfinda{)}}
\else{\gdef\nextfinde
{\finda#2#3\endd}}}
\nextfinda}
\def\hasab#1{\gdet\Hasab{F}
\finda#ia\marker\endd}

* %2 * % & %X % ¥ ¥ x *»

Problems

* X x X X % % %X 3 x »

The first formatting problems posed in this
column come from the videotaped TEXarcana Class
taught by Don Knuth last March. Solutions will be
presented in the next issue. Readers with working
TEX systems are encouraged to attempt solutions
to these problems, in order to better appreciate the
problems and their solutions. .

Lynne A. Price

Problem no. 1:

Type:
\vskip 12pt
\noindent\hide{--}Allan Temko

\vskip 2pt
\ncindent Architecture Critic

To get:

—Allan Temko
Architecture Critic

