14 TUGDboat, Volume 8 (1987), No. 1~

Mixing right-to-left texts with left-to-right texts
Donald E. Knuth and Pierre MacKay

TEX was designed to produce documents that are read from left-to-right and top-to-bottom, according to
the conventions of English and other Western languages. If such documents are turned 90°, they can also
be read from top-to-bottom and right-to-left, as in Japan. Another 90° or 180° turn yields documents that
are readable from right-to-left and bottom-to-top, or from bottom-to-top and left-to-right, in case a need for
such conventions ever arises. However, TRX as it stands is not suitable for languages like Arabic or Hebrew,
which are right-to-left and top-to-bottom.

It would not be difficult to use TEX for documents that are purely Arabic or purely Hebrew, by essentially
producing the mirror image of whatever document is desired. A raster-oriented printing device could easily
be programmed to reflect the bits from right to left as it puts them on the pages. {This is sometimes called
“T-shirt mode”, because it can be used to make iron-on transfers that produce readable T-shirt messages,
when English language output is transferred to cloth after being printed in mirror image.)

Complications arise, however, when left-to-right conventions are mixed with right-to-left conventions in
the same document. Consider an Arabic/English dictionary, or a Bible commentary that quotes Hebrew, or
a Middle-Eastern encyclopedia that refers to Western names in roman letters; such documents, and many
others, must go both ways.

The purpose of this paper is to clarify the issues involved in mixed-direction document production, from
the standpoint of a Western author or reader or software implementor. We shall also consider changes to
TEX that will extend it to a bidirectional formatting system.

1. Terminology and conventions. Let us say for convenience that an L-tezt is textual material that is meant
to be read from left to right, and an R-tert is textual material that is meant to be read from right to left.
Similarly we might say that English and Spanish are L-languages, while Arabic and Hebrew are R-languages.

In order to make this paper intelligible to English readers who are unfamiliar with R-languages, we
shall use “reflected English”, i.e., deilgod, as an R-language. All texts in reflected English will be typeset
in bsbooixd blod aisboM 183uqmoD type, which is a reflected version of Computer Modern Bold
Extended type. To translate from English to deailgad and back again, one simply needs to reverse the order
of reading. Both English and deilgad are pronounced in the same way, except that deilgad should be
spoken in a louder and/or deeper voice, so that a listener can distinguish it.

2. The simplest case. 1It’s not difficult to typeset single R-language words in an L-text document. TEX will
work fine if you never need to deal with R-texts of more than one word at a time; all you have to do is figure
out a macro that will reverse isolated words.

Let’s suppose that we want to type ‘the |English| script’ in order to typeset ‘the deilgad script’
with TEX. All we need is a font for detlgad, called xbmc10. say, and the following macros:

\font\revrm=xbmc10 \hyphenchar\revrm=-1

\catcode‘\|=\active

\def |#1[{{\revrm\reflect#1\empty\tcelfer}}
\def\reflect#i1#2\tcelfer{\ifx#1i\empty\else\reflect#2\tcelfer#i\fi}

(The xbmc10 font can be generated like cmbx10 with the extra METAFONT statement

extra_endchar := extra_endchar &
"currentpicture:=currentpicture reflectedabout((.5[1,r],0),(.5[1,r],)"

added to the parameter file. It has the same character widths as ecmbx10.)

3. Alternating texts. But the simple approach sketched above does not work when there are multiword R-
text phrases, i.e., 29281dq 3x93-f browisluea, embedded in an L-text document—because of the possibility

TUGDboat, Volume 8 {1987), No. 1 15

of line breaks, i.e., exso1d sail to yiilidizeoq a3 1o sewsosad. For example, let’s consider the problem of
typesetting the following paragraph:*

Leonardo da Vinci made a sweeping statement in his notebooks:

|“‘Let no one who is not a mathematician read my works.’’|

In fact, he said it twice, so he probably meant it.

Here are samples of the proper results, considering two different column widths:

Leonardo da Vinci made a sweeping statement in his Leonardo da Vinci made a sweep-
notebooks: nsisidsmmdisar s Jon ai odw a0 om 391 ing statement in his notebooks: ¥9d%

¢ ed1ow vt bsat In fact, he said it twice, so he probably -idsmodism s Jom 2i odw sao on

meant it. “.ed1ow v bss1 asip In fact, he

said it twice, so he probably meant it.
Notice that the R-text in each line is reflected; in particular, a hyphen that has been inserted at the right of
an R-segment will appear at the left of that segment.

How can we get TEX to do this? The best approach is probably to extend the driver programs that
produce printed output from the DVI files that TEX writes, instead of trying to do tricky things with TgX
macros. Then TgX itself merely needs to put special codes into the DVI output files, in order to tell the
“DVI-IVA” drivers what to do.

For example, one idea that almost works is to put ‘\special{R}’ just before an R-text begins, and
“\special{L}’ just after it ends. In other words, we can change the ‘|’ macro in our earlier example to the
simple form

\def [#1|{{\revrm\special{R}#1\special{L}}}

which does not actually reverse the characters; we can also leave the ‘\hyphenchar’ of \revrm at its normal
value, so that R-texts will be hyphenated. Line breaking will proceed in the normal way, and it will be the
job of the DVI-IVQ driver program to reflect every segment that it sees between an R and an L.

Reflecting might involve arbitrary combinations of characters, rules, accents, kerns, etc.; for example,
the R-text might be in aispmsil, or it might even refer to ZXyT!

4. An approach to implementation. In order to understand how DVI-IVQ programs might do the required
tasks, we need to look into the information that TEX puts into a DVI file. The basic idea is that whenever
TEX outputs an hbox or a vbox, the DVI file gets a ‘push’ command, followed by various commands to typeset
the box contents, followed by a ‘pop’ command. Therefore we can try the following strategy:

a) Whenever ‘\special{R}’ is found in the DVI file, remember the current horizontal position hy and
vertical position vg; also remember the current location pg in the DVI file. Set ¢ «— 0. Then begin to
skim the next DVI instructions instead of actually using them for typesetting; but keep updating the
horizontal and vertical page positions as usual.

b) When ‘\special{L} is found in the DVI file, stop skimming instructions. Then typeset all instructions
between pg and the current location, in mirror-reflected mode, as explained below.
¢} When ‘push’ occurs when skimming instructions, increase ¢ by 1.
d) When ‘pop’ occurs when skimming instructions, there are two cases. If ¢ > 0, decrease ¢ by 1. (This
‘pop’ matches a previously skimmed ‘push’.) But if ¢ = 0, effectively insert ‘\special{L} at this point
and ‘\special{R}’ just after the very next ‘push’.
The mirror-reflected mode for DVI commands in positions py to p; in the DVI file, beginning at (hg,vo) and
ending at (hy,v1), works like this: A character of width w whose box sits on the baseline between (h,v) and
(h+4 w,v) in normal mode should be placed so that its box sits on the baseline between (A’ — w, v) and (b, v)
in mirror mode, where h’ is defined by the equation

h — ho = hl - h,.

Similarly, a rule of width w whose lower edge runs from (h,v) to (A + w,v) in normal mode should run from
(R —w,v) to (A',v) in mirror mode.

* After Leonardo lost the use of his right hand, he began to make lefthanded notes in mirror writing. Of
course, he actually wrote in nsils3l instead of deilgad.

16 TUGhboat, Volume 8 (1987), No. 1

5. Fixing bugs. We stated above that the approach just sketched will “almost™ work. But it can fail in
three ways, when combined with the full generality of TgX. First, there might be material “between the
lines” that is inserted by \vadjust commands; this material might improperly be treated as R-text. Second,
the suggested mechanism doesn’t always find the correct left edge of segments that are being reflected, since
the reflection should not always begin at the extreme left edge of a typeset line; it should begin after the
\leftskip glue and before other initial spacing due to things like accent positioning. Third, certain tricks
that involve ‘\unhbox’ can make entire lines disappear from the DVI file; however, this problem is not as
serious as the other two, because people shouldn’t be playing such tricks.

A much more reliable and robust scheme can be obtained by building a specially extended version of
TEX. which puts matching special commands into every line that has reflected material. It is not difficult
to add this additional activity to TEX's existing line-breaking mechanism; the details appear in an appendix
below. When this change has been made, parts (¢) and (d) of the DVI-IVQ skimming algorithm can be
eliminated, since the case ¢ = 0 will never arise in part (d).

6. L-chauvinism. We have been discussing mixed documents as if they always consist of R-texts inserted
into L-texts: but people whose native script is right-to-left naturally think of mixed documents as the
insertion of L-texts into R-texts. In fact, there are two ways to read every page of a document, one in which
the eye begins to scan each line at the lett and one in which the eye begins to scan each line at the right.

The Leonardo illustration above is an example of the first kind, and we shall call it an L-document.
To read a given line of an L-document, you start at the left and read any L-text that you see. Whenever
your eyes encounter an R-character, they skim ahead to the end of the next R-segment (i.e., until the next
L-character, or until the end of the line, whichever comes first); then you read the R-segment right-to-left,
and continue as before. The rules for reading an R-document are similar, but with right and left reversed.

It’s usnally possible to distinguish an L-document from an R-document because of the indentation on
the first line of a paragraph and/or the blank space on the last line. For example, the R-documents that
correspond to the two L-document settings of the paragraph about Leonardo look like this:

Leonardo da Vinci made a sweeping statement in his Leonardo da Vinci made a sweep-
asidiisrmadism 8 Yo ei odw 200 on 391* notebooks: 39J* ing statement in his notebooks:
In fact, he said it twice, so he probably *“.ed1ow vt bgo1 -idsmoadism s toa 2i odw sno on
meant it. In fact, he “.exdtow vy bsot asin
said it twice, so he probably meant it.
We can imagine that these R-documents were composed on an R-terminal and processed by XHT from an
olft Juquoi that looks like this:

JoJ'’ |:edoodsdon =sid ai Faemedsde gaigesowza s obsm LoaiV sb obismosdl
v bset meioiismeddsm & Jom al odw smo om
| .3t sosem yIdsdoxq od oe .90iwd 3 bisz od ,3ost all **.aizow

In this case it is the L-text, not the R-text, that is enclosed in |'s. (The reader is urged to study this example
carefully; there s boddar in't!)

A poet could presumably construct interesting poems that have both L-meanings and R-meanings. when
read as L-documents and R-documents.

Notice that our examples from Leonardo have used boldface quotation marks (i.e., the quotation marks
of dailgad), so that these marks belong to the text being quoted. This may seem erroneous; but it is in
fact a necessary convention in documents that are meant to display no favoritism between L-readers and
R-readers, because it ensures that the quotation marks will stay with the text being reflected. (See the
examples of contemporary typesetting at the end of this paper.) If we had put the quotation marks into
English rather than deilgad, the R-documents illustrated above would have looked very strange indeed:

Leonardo da Vinci made a sweeping statement in his Leonardo da Vinci made a sweep-
asidsitsmodism s Jorr af odw 910 on Jsdnotebooks: “ dJoding staternent in his notebooks:
7 In fact, he said it twice, so he probably.2dtow v bso1 -idsmodism 8 Joa ei odw smo on
meant it. 7 In fact, he.edtow e bss1 asio
said it twice, so he probably meant it.

TUGboat, Volume 8 (1987), No. 1 17

7. Multi-level mixing. The problems of mixed R- and L-typesetting go deeper than this, because there
might be an L-text inside an R-text inside an L-text. For example, we might want to typeset a paragraph
whose TEX source file looks like this:

\R{Alice} said, \R{‘‘You think English is \L{‘English written backwards’};
but to me, \L{English} is English written backwards. I’m sure \L{Knuth}
and \L{MacKay} will both agree with me.’’} And she was right.

An intelligent bidirectional reader will want this to be typeset as if it were an R-document inside an L-
document. In other words, the eyes of such a reader will naturally scan some of the lines beginning at the
left, and some of them beginning at the right. Here are examples of the desired output, set with two different
line widths:

9oil A said, ei deailgad Aaidt voY* 90il A said, ‘En- i deilgad Aaids voY®
o o3 yud ‘English written backwards’ English (o001 03 dud ;glish written backwards’
.ebiswilosd nadditw deilgnd ei English ote m'l .ebiswaosd noiditw deilgad ai
diod lliw MacKay bas Knuth 91re oox'l diiw 99138 diod lliw MacKay bas Knuth
“.om d3iw 99138 And she was right. “.omm And she was right.

"(Look closely.)
Multi-level documents are inherently ambiguous. For example, the right-hand setting above might be
interpreted as the result of

..\R{... I'm sure and \L{MacKay} will both agree with} Knuth \R{me.’’}...

and the left-hand setting would also result from a source file like this(!)

\indent\R{‘‘You think English is \L{said,} Alice
\L{‘English}; but to me,} written backwards’
\R{written backwards.} \R{\L{English} is English}
will both} MacKay \R{and} Knuth \R{I’'m sure
\L{And she} agree with me.’’} was right.

except for slight differences in spacing due to TEX’s “spacefactor” for punctuation.

In general, we have \R{\L{a}\L{b}} = ba, hence any permutation of the characters on each line is
theoretically possible. A reader has to figure out which of the different ways to parse each line makes
most sense. Yet there is unanimous agreement in Middle Eastern countries that a mixture of L-document
and R-document styles is preferable to an unambiguous insistence on L-reading or R-reading throughout a
document, because it is so natural and because the actual ambiguities arise rarely in practice. The quotation
marks in the example above make it possible to reconstruct the invisible \R’s and \L’s; in this way an author
can cooperate with a literate reader so that the meaning is clear.

Multi-level texts arise not only when quotes are inside quotes or when R-document footnotes or illustra-
tions are attached to L-documents; they also arise when mathematics is embedded in R-text. For example,
consider the TEX source code

The \R{English} version of ‘the famous identity $e~{i\pi}+1=0$ due to Euler’
is \R{‘the famous identity $e"{i\pi}+1=0$ due to Euler’}.

It should be typeset like this:

The deilgad version of ‘the famous identity ™ + 1 = 0 due to Euler’ is ayormst adi
“19lul o3 sub €™ + 1 =0 y3isnsbi.

An extension of TgX called TeX-XHT, described in the appendix, properly handles multi-level mixtures
including math, as well as the simpler case of alternating R-texts and L-texts.

8. Conclusions. When right-to-left and left-to-right texts are mixed in the same document, problems can
arise that are more subtle than simple examples might suggest. The difficulties can be overcome by extending

TEX to TEX-XHT and by extending DVI drivers to DVI-IVQ drivers. Neither of these extensions is extremely
complex.

TUGboat, Volume 8 (1987), No. 1 19

585. The description of DVI commands is augmented by two new ones at the end:
begin_reflect 250. Begin a (possibly recursive) reflected segment.
end_reflect 251. End a (possibly recursive) reflected segment.

Commands 250-255 are undefined in normal DVI files, but 250 and 251 are permitted in the special ‘DVI-IVT
files produced by this variant of TEX.

When a DVI-IVQ driver encounters a begin_reflect command, it should skim ahead (as previously described)
until finding the matching end_reflect; these will be properly nested with respect to each other and with
respect to push and pop. After skimming has located a segment of material to be reflected, that segment
should be re-scanned and obeyed in mirror-image mode as described earlier. The reflected segment might
recursively involve begin._reflect / end_reflect pairs that need to be reflected again.

586. Two new definitions are needed:

define begin_reflect = 250 { begin a reflected segment (allowed in DVI-IVQ files only) }
define end_reflect = 251 {end a reflected segment (allowed in DVI-IVA files only) }

638. At the beginning of ship_out, we will initialize a stack of \beginL and \beginR instructions that are
currently in force; this is called the LR stack, and it is maintained with the help of two global variables
called LR_ptr and LR_tmp that will be defined later. The instructions inserted here (just before testing if
tracing_output > 0) say that on the outermost level we are typesetting in left-to-right mode. The opening
‘begin’ is replaced by:

begin LR_ptr — get_avail; info(LR_ptr) — 0; { begin_L_code at outer level }

639. At the end of ship_out, we want to clear out the LR stack. Thus, ‘flush_node_list(p)’ is replaced by:
flush_node_list(p); (Flush the LR stack 1382);

649. The hpack routine is modified to keep an LR stack as it packages a horizontal list, so that errors
of mismatched \beginL...\endL and \beginR...\endR pairs can be detected and corrected. Changes are
needed here at the beginning of the procedure and at the end.

function hpack (p : pointer; w : scaled; m : small_number): pointer;

b: integer; {badness of the new box}
LR_ptr, LR_tmp: pointer; {for LR stack maintenance }
LR_problems: integer; {counts missing begins and ends }
begin LR_ptr — null; LR_problems — 0;
r — get_node(boxr.node_size);

common_ending: (Finish issuing a diagnostic message for an overfull or underfull hbox 663);
exit: (Check for LR anomalies at the end of hpack 1387);

hpack — r;

end;

877. Similarly, the post_line_break should keep an LR stack, so that it can output \endL or \endR
instructions at the ends of lines and \beginL or \beginR instructions at the beginnings of lines. Changes
occur at the beginning and the end of this procedure:

procedure post_line_break (final_widow_penalty : integer);

cur_line: halfword; {the current line number being justified }
LR_ptr, LR_tmp: pointer; {for LR stack maintenance }
begin LR_ptr — null;
(Reverse the links of the relevant passive nodes, setting cur_p to the first breakpoint 878);

20 TUGboat, Volume 8 (1987), No. 1

prev_graf «— best_line — 1; {Flush the LR stack 1382);
end;

880. The new actions to be performed when broken lines are being packaged are accomplished by three
new steps added to this section of the program.

{ Justify the line ending at breakpoint cur.p, and append it to the current vertical list. together with

associated penalties and other insertions 880) =

{Insert LR nodes at the beginning of the current line 1383):

{ Adjust the LR stack based on LR nodes in this line 1384);

{ Modify the end of the line to reflect the nature of the break and to include \rightskip: also set the
proper value of disc_break 881);

{Insert LR nodes at the end of the current line 1385);

{Put the \leftskip glue at the left and detach this line 887);

1090. We add “vmode + LR’ as a new subcase after ‘vmode + ez_space’ here. This means that the new
primitive operations will become instances of what The TEXbook calls a (horizontal command).

1196. Math-in-text will be formatted left-to-right, because two new ‘append’ instructions are inserted into
this section of the code.

(Finish math in text 1196) =
begin tail_append (new_math{math_surround. before)):
{ Append a begin_L to the tail of the current list 1380):
cur-mlist «— p: cur_style — text_style; mlist_penaliies — (mode > 0): mlist_to_hlist;
link (tail) — link{(temp_head):
while link(tail) # null do tail — link(tail);
{ Append an end_L to the tail of the current list 1381);
tail_append (new_rath{math_surround. after)): space_factor — 1000; unsave:
end

1341. The new primitive operations put new kinds of whatsit nodes into horizontal lists. Therefore two
additional definitions are needed here:

define LR_node =4 { subtype in whatsits that represent \beginL. etc. }
define LR_type(#) = mem[# + 1l.int { the sub-subtype }

1344. Here's where the new primitives get established.

define immediate_code = 4 { command modifier for \immediate }
define begin.L_code =0 {command modifier for \beginL }
define begin_R_code =1 {command modifier for \beginR }
define end_L_code =2 {command modifier for \endL }

define end_R_code =3 {command modifier for \endR }

define begin LR (#) = (LR_type(#) < end_L_code)

define begin_LR_type(#) = (LR _type(#) — end_L_code)

{ Put each of TEX's primitives into the hash table 226) +=
primitive ("beginl", LR. begin.L_code);
primitive ("beginR”, LR, begin_R_code):
primitive ("endL". LR. end_L_code);
primitive("endR", LR, end_.R_code);
primitive ("openout”, extension, open_node);

TUGDboat, Volume 8 (1987}, No. 1 21

1346. The new primitives call for a new case of cases here.
LR: case chr_code of

begin_L_code: print_esc("beginL");

begin.R_code: print_esc("beginR");

end.L_code: print.esc("endL");

othercases print_esc("endR")

endcases;

1356. We also need to be able to display the newfangled whatsits.

LR_node: case LR_type(p) of
begin_L_code: print_esc("beginl");
begin_R_code: print_esc{"beginR");
end_L_code: print_esc("endL");
othercases print_esc("endR")
endcases;

1357, 1358. Copying and deleting the new nodes is easy, since they can be handled just like the \closeout
nodes already present. We simply replace ‘close_node’ by ‘close_node, LR_node’ in these two sections.

1360. We used to do_nothing here, but now we must do_something:

{ Incorporate a whatsit node into an hbox 1360) =
if subtype(p) = LR_node then (Adjust the LR stack for the hpack routine 1386)

This code is used in section 651.

1366. (Output the whatsit node p in an hlist 1366) =

if subtype(p) # LR_node then out_what(p)

else (Output a reflection instruction if the direction has changed 1388)
This code is used in section 622.

1376. Most of the changes have been saved up for the end, so that the section numbers of TgX in [2] can
be left unchanged. Now we come to the real guts of this extension to mixed-direction texts.
First, we allow the new primitives in horizontal mode, but not in math mode:
(Cases of main.control that build boxes and lists 1056) +=
hmode + LR: begin new.whatsit(LR_node, small_node_size); LR_type(tail) « cur_chr; end;
mmode + LR: report_illegal_case;

1377. A number of routines are based on a stack of one-word nodes whose info fields contain either
begin_L_code or begin.R_code. The top of the stack is pointed to by LR_pir, and an auxiliary variable
LR_tmp is available for stack manipulation.

{ Global variables 13) +=
LR_ptr, LR_tmp: pointer; {stack of LR codes and temp for manipulation }

1378. (Declare functions needed for special kinds of nodes 1378) =
function new_LR(s : small.number): pointer;
var p: pointer; {the new node}
begin p «— get_node(small_node_size); type(p) — whatsit_node; subtype(p) — LR.node; LR_type(p) «— s;
new.LR — p;
end;
See also section 1379.

This code is used in section 161.

1379. (Declare functions needed for special kinds of nodes 1378) +=
function safe_info(p : pointer): integer;
begin if p = null then safe_info — —1 else safe.info — info(p);
end;

22 TUGboat, Volume 8 (1987), No. 1

1380. {Append a begin_L to the tail of the current list 1380) =
tatl_append (new_L R {begin. L code))

This code is used in section 1196.

1381. (Append an end.L to the tail of the current list 1381) =
tasl_append (new_LR(end_L_code))

This code 1s used in section 1196.

1382, When the stack-manipulation macros of this section are used below, variables LR_ptr and LR_tmp
might be the global variables declared above, or they might be local to hpack or post_line_break.
define push_LE(#) =
begin LR_tmp «— get_avail; info(LR_tmp) < LR_type(#): link(LR_tmp) « LR_ptr;
LR_ptr — LR_tmp:
end
define pop_ LR =
begin LR_tmp — LR_ptr; LR_ptr « link(LR._tmp): free_avail(LR_tmp):
end
{ Flush the LR stack 1382) =
while LR _ptr # null do pop_LR

This code is used in sections 639 and 877.

1383. (Insert LR nodes at the beginning of the current line 1383) =
while LE_ptr # null do
begin LR_tmp — new LR (info(LR_ptr)): link(LR_tmp) — link{temp_head):
link (temp_head) — LR_tmp; pop_LR;
end

This code is used in section 880.

1384. { Adjust the LR stack based on LR nodes in this line 1384) =
q « link{temp_head):
while g # cur_break{cur_p) do
begin if —is.char_node(q) then
if type(q) = whatsit_node then
if subtype(q) = LR-node then
if begin_LR(q) then push_.LR(q)
else if LR _ptr # null then
if info(LR_ptr) = begin. LR type(q) then pop_LR;
q — link{q):
end

This code is used in section 880.

1385. We use the fact that ¢ now points to the node with \rightskip glue.

(Insert LR nodes at the end of the current line 1385) =
if LR _ptr # null then

begin s «— temp_head: r «— link(s);

whiie r # ¢ do
begin s « r: r « link(s):
end:

r — LR_ptr;

while » # null do
begin LR_tmp «— new LR (info(r) + end_L_code); link(s) «— LR_tmp: s — LR_tmp: r « link(r):
end;

TUGboat, Volume 8 (1987), No. 1 23

link(s) — ¢
end

This code is used in section 880.

1386. (Adjust the LR stack for the hpack routine 1386) =
if begin_LR(p) then push_LR(p)
else if safe_info(LR_ptr) = begin_LR_type(p) then pop_ LR
else begin incr(LR_problems);
while link(g) # p do g — link(q);
link(q) <« link(p); free_node(p, small_node_size); p — gq;
end

This code is used in section 1360.

1387. (Check for LR anomalies at the end of hpack 1387) =

if LR_ptr # null then
begin while link(q) # null do g — link(g):
repeat link(q) «— new_LR(info(LR_ptr) + end_L_code); q «— link(q);

LR_problems «— LR_problems + 10000; pop_LR;

until LR_ptr = null;
end;

if LR_problems > 0 then
begin print_ln; print_nl{("\endL or \endR problem, ("):
print_int (LR_problems div 10000); print (" missing,.");
print-int(LR_problems mod 10000); print("_extra");
LR_problems — 0; goto common_ending;
end

This code is used in section 649.

1388. (OQutput a reflection instruction if the direction has changed 1388) =
if begin_LR(p) then
begin if safe.info(LR_ptr) # LR_type(p) then
begin synch_h; synch.v; dvi_out(begin-reflect);
end;
push_LE(p);
end
else if safe_info(LR_ptr) = begin.LR_type(p) then
begin pop_ LR;
if info(LR_ptr) + end_L_code # LR_type(p) then
begin synch_h; synch_v; dvi_out(end_reflect);
end;
end
else confusion("LR")

This code is used in section 1366.

Final Important Note

The extensions to TEX just described are “upward compatible” with standard TgX, in the sense that ordinary
TEX programs will still run correctly (although more slowly) on TEX-XHT. However, TEX-XHT must not be
called a new version of ‘TEX’, even though it runs all TeX programs; the reason is, of course, that TEX will
not run all TEX-XHT programs.

A name change is necessary to distinguish all programs that do not agree precisely with the real TEX.
Anybody who runs a program called ‘TgX’ should be able to assume that it will give identical results from
all its implementations.

24 TUGboat, Volume 8 (1987), No. 1

Bibliography

[1] Donald E. Knuth, The TEXbook. Volume A of Computers & Typesetting (Reading, Mass.: Addison
Wesley, 1986).

[2] Donald E. Knuth, TEX: The Program, Volume B of Computers & Typesetting (Reading, Mass.: Addison
Wesley, 1986).

[3] Pierre MacKay, “Typesetting problem scripts,” Byte 11,2 (February 1986), 201-218.

Examples of Typesetting Practice

1. From Textus 5 (1966). p. 12: Magnes Press, Hebrew University of Jerusalem. (Notice the Hebrew
quotation marks surrounding the Hebrew title in footnote 6.)

ters adhered, 19 and which may have been similar to that adopted, by normative
Jewry presumably somewhat later, during the period of the Second Temple.10

Frag. E. Yadin correctly states: ‘“Sanders’ cautious indication ‘103 (? 104)’ can now
be eliminated” (ib., p. 5).

6 Sanders’ editio princeps of Ps. 151 already has been discussed by various scholars. The
present author deals with the text of Ps. 151, and its literary genre in: p=n3'n o™ nm-
~IRANIPH Navn poba, Tarbiz 35 (1966) 214-228.

7 See: W. Wright, “Some Apocryphal Psalms in Syriac”, PSBA 9 (1887) 257-266; M. Noth,
“Die fuenf apokryphen Psalmen”, ZAW 48 (1930) 1-23.

2. Fragments from the third edition of Willlam Wright's classic nineteenth century grammar of Arabic,
volume 2, pages 295-297. (Notice the page break in the midst of right-to-left text, and some left-to-right
brackets.)

Gl .0 0503

gnawed at us; u»w »)a.l M\ i _oiS ye are the best people

T) rﬂrﬁ

that has been l)mug/zt jm th (07 eated) Jor mankind ; u).M Lo (ies
,..«\,:J! b)H \.,JL:-\ “‘,a.....: Cl.o) they walked as spears wave, the

144

tops of which are bent by the passing of gentle breezes; J-u“ &L

296 Parr THIRD.—Syntaz. [§ 152

A L_g,.h égla,: J,.:.ia the brightness of the intellect is obscured (or
eclipsed) by obeying lust. As the above examples show, this agreement

§152] Sentence and its Parts—Concord of Predicate & Subject. 297

verb is placed after a collective subject (see § 148); as)...51 uﬁ) A
é)}}iﬁj 3 u.al:ﬁ but the greatest part of mankind are thankless,;

zul’/bzbfblb

s u,—-&-’m L,J).’ a part of them are afraid of men [&,é:;':i
,5,5)3 lo .J).:J! let the Turks alone ws long as they let you alone ;

EN .:,b/

16508 alkiom u’)‘ because his army had perished).

TUGhboat, Volume 8 (1987), No. 1 25

3. From page 233 of the same book. Here right-reading texts are equated with = signs; the left sides of
each equation are to be read first.

. Boo &
understood ; d}‘ﬁi 8,1.: S,'\)! d.:L..J! o,,l.a Le. uL.J! ,.Lan

 low
3! (see § 77). Similarly, some grammarians consider UJ)SJ‘ vJLo. B

“w 0 o0 2 -

—UJ).IJ‘ U\S'.,H .(.al» to\a..” .Ls.-o C.o\a..” E)K"’” e

- b d-00 ~rd 0 3.0, 0 s 0m MR

or CAL&-“ u’,.” M l&q-b-, AJJJ-—:LI.V.LJ‘ dv.a.” dl.n.) and

FRP-T

)"'\)‘ ;ﬁo).g.'\)l oL..;.H)b Here too the constructions &

4. From Bulletin of the Iranian Mathematical Society 8 (Tehran, 1978), p. 78L. (Left-to-right mathematics
in right-to-left text.)

Sate Creens ey =yl aad by ds aulS
n-1 2{n-1)(n-2) + 3{n-1)(n-2)

2m 3m2 4m3

o,

e=2.71828 LI St 1/(14) + (109, (1-2)] /a s lnd” Ly jic oS
oV 2,8 F g pyUledSy Jyoa el oS ool el by, all

5. From Introduction to Mathematics [sditsraismsd oveM] by Abraham A. Fraenkel, vol. 1 (Jerusalem,
1942), p. 38. (Page numbers are ‘96-90" because ‘90" and ‘96" are Hebrew numbers.)
7m0 5w opn LEDRT DR 31DV YD LIINMANPN AP Uwnnw
(N33 11eHY vowm NNY Le’=a (mod.p) :aMI
1:2:3+++ (p—1) =—1 (mod. p).
A ek = modulus .@knd — congruens mema ovbea @ A

Journal f.d.n Yo 116 7 7753 1886 mwa M. HAMBURGER jnap nnd¥3 1y 2
™A JPIRNN DK NFIPA 1802 NITN ORA v Anbub (96—00 Y reine u. ang. Mathematik

6. Page 200 of the same book illustrates the difference between ellipses *---" in formulas and ellipses in
the text. None of this book’s math-in-text is broken between lines.

£*p0nY PIBNR £ DR 7°FAT DX INEY WERY (3 S3NTR 00R b7 Y32
5> 52w nInp) YRR CRINI m=pip,c e rp, BT EPNDRY
MINKA IYOT DR IR3IW 93 PENO n=p, .v.. m=p, m=p, BOIIFA
ntys paab weRe BRMPR 3% XA T a=15=235 Ani1TY o2

AR D) [1] ARDRI TP YD n=p AT ANpRIT PIT 9D BTP
TP J2m3 FEPWBME. DWW 03 (1Y B0 f =1 aRwnn CThw 93
n=p KWK pYN(1,2, or , p—1) AVION TIND £ TIY 929900 5 199 /273
Yo moaw b5 g21,... ek, E P OIR (1] ARwRA YT WwRd UMP &)
STONCA 2waT BRIPI TR DR L [1] ARwRa

