
TUGboat, Volume 8 (1987), No. 1 

Mixing right-to-left texts with left-to-right texts 

Donald E .  Knuth and Pierre LlacKay 

was designed to produce documents that are read from left-to-right and top-to-bottom, according to 

the converltions of English and other Western languages. If such documents are turned 90". they can also 

be read from top-to-bottom and right-to-left, as in Japan. Another 90" or 180" turn yields documents that 

are readable from right-to-left and bottom-to-top, or from bottom-to-top and left-to-right, in case a need for 

such conventions ever arises. However, as it stands is not suitable for languages like Arabic or Hebrew, 

which are right-to-left and top-to-bottom. 

It would not be difficult to  use Tm for documents that are purely Arabic or purely Hebrew, by essentially 

producing the mirror image of whatever document is desired. A raster-oriented printing device could easily 

be programmed to reflect the bits from right to left as it puts them on the pages. (This is sometimes called 

"T-shirt mode", because it can be used to niake iron-on transfers that produce readable T-shirt messages. 

when English language output is transferred to cloth after being printed in mirror image.) 

Complications arise, however, when left-to-right conventions are mixed with righbto-left conventions in 

the same document. Consider an Arabic/English dictionary. or a Bible conlrnentary that quotes Hebrew. or 

a LIiddle-Eastern encyclopedia that refers to Western names in roman letters; such documents, and many 

others, must go both ways. 

The purpose of this paper is to clarify the issues involved in mixed-direction document production, from 

the standpoint of a Western author or reader or software implementor. We shall also consider changes to 

that will extend it to a bidirectional formatting system. 

1. Terminology and conventions. Let us say for convenience that an L-text is textual material that is meant 

to be read from left to right. and an R-text is textual material that is meant to be read from right to left. 

Siniilarly we might say that English and Spanish are L-languages. while Arabic and Hebrew are R-languages. 

In order to make this paper intelligible to English readers who are unfamiliar with R-languages, we 

shall use "reflected English", i.e.. deiIgn3, as an R-language. All texts in reflected English will be typeset 

in bsbnsjx3 bIo8 rr.rsboM .rs$rrqmo3 type. which is a reflected version of Computer Modern Bold 

Extended type. To translate from English to deiIgn3 and back again. one simply needs to reverse the order 

of reading. Both English and deiIgn3 are pronounced in the same way. except that deiIgrr3 should be 

spoken in a louder and/or deeper voice. so that a listener can distinguish it. 

2. The s impl~s t  case. It's not difficult to typeset single R-language words in an L-text document. T)$ will 

work fine if you never need to deal with R-texts of more than one word at a time: all you have to do is figure 

out a nlacro that will reverse isolated words. 

Let's suppose that we want to type 'the [English1 scrlpt' in order to typeset 'the deiIgn3 script' 

with T&jX. All we need is a font for dziIgn3. called xbmcl0. say, and the following macros: 

(The xbmcl0 font can be generated like cmbxl0 with the extra METAFONT statement 

extra-endchar := extra-endchar & 

"currentpicture :=currentpicture ref lectedabout ( ( .  5 [1,r1 ,0) , ( .5  [l ,rl ,I)) I' 

acidetl to the parameter file. It has the same character widths as cmbxl0.) 

3. Alternating texts. But the simple approach sketched above does not work when there are multiword R- 

text phrases, i.e., eszs~dq Jxsk-fl b~owijlurn, embedded in an L-text documen-because of the possibility 



TUGboat, Volume 8 (1987), No. 1 

of line breaks, i.e., z l s s ~ d  sniI 20 yfilidizeoq s d j  20 ssrrsmd. For example, let's consider the problem of 

typesetting the following paragraph:* 

Leonardo da Vinci made a sweeping statement i n  h i s  notebooks: 

IULet  no one who i s  not a mathematician read  my works.") 

In  f a c t ,  he s a i d  it twice,  so  he probably meant i t .  

Here are samples of the proper results, considering two different column widths: 

Leonardo da Vinci made a sweeping statement in his Leonardo da Vinci made a sweep- 

notebooks: nsi3ijsrnsdjsm s Jon zi odw sno on JsJu ing statement in his notebooks: JsJ" 

 ATOW OW ym b s s ~  In fact, he said it twice. so he probably -iJsmsdJsrn s Jon ei odw srro on 

meant it. ".zl-~ow yrn b s s ~  nsi3 In fact. he 

said it twice. so he probably meant it. 

Notice that the R-text in each line is reflected: in particular, a hyphen that has been inserted at the right of 

an R-segment will appear at the left of that segment. 

How can we get T)$ to do this? The best approach is probably to extend the driver programs that 

produce printed output from the D V I  files that T@ writes. instead of trying to do tricky things with 

macros. Then TEX itself merely needs to put special codes into the D V I  output files, in order to tell the 

" DVI-Ivan drivers what to do. 

For example, one idea that almost works is to put ' \special(R)' just before an R-text begins, and 

' \specialCL)' just after it ends. In other words, we can change the ' I ' macro in our earlier example to the 

simple form 

which does not actually reverse the characters: we can also leave the '\hyphenchar' of \revrm at its normal 

value. so that R-texts will be hyphenated. Line breaking will proceed in the normal way, and it will be the 

job of the D V I - I V a  driver program to reflect every segment that it sees between an R and an L. 

Reflecting might involve arbitrary combinations of characters, rules, accents, kerns, ek . ;  for example, 

the R-text might be in zis2ns~2, or it might even refer to m! 
4. An approach to implementation. In order to understand how D V I - I V a  programs might do the required 

tasks, we need to look into the information that TRJ puts into a D V I  file. The basic idea is that whenever 

TEX outputs an hbox or a vbox. the D V I  file gets a L p u ~ h '  command, followed by various commands to  typeset 

the box contents. followed by a 'pop' command. Therefore we can try the following strategy: 

a)  Whenever '\specialCR)' is found in the D V I  file. remember the current horizontal position ho and 

vertical position vo; also remember the current location po in the D V I  file. Set c +- 0. Then begin to 

skim the next DVI instructions instead of actually using them for typesetting; but keep updating the 

horizontal and vertical page positions as usual. 

b) When ' \specialCL)' is found in the D V I  file, stop skimming instructions. Then typeset all instructions 

between po and the current location, in mirror-reflected mode, as explained below. 

c) When 'push' occurs when skimming instructions, increase c by 1. 

d)  When 'pop' occurs when skimming instructions, there are two cases. If c > 0, decrease c by 1. (This 

'pop' matches a previously skimmed 'push'.) But if c = 0. effectively insert '\special(L}' at this point 

and ' \special(R)' just after the very next 'push'. 

The mirror-reflected mode for D V I  commands in positions po to pl in the D V I  file, beginning at (ho, vo) and 

ending at (hl ,  v l ) ,  works like this: A character of width w whose box sits on the baseline between (h, v) and 

(h i -  w, v) in normal mode should be placed so that its box sits on the baseline between (h' - w, v) and (h', u )  

in mirror mode, where h' is defined by the equation 

Similarly, a rule of width w whose lower edge runs from (h, v )  to (h  + w, v) in normal mode should run from 

(h' - w, v) to (h', v) in mirror mode. 

* After Leonardo lost the use of his right hand, he began to make lefthanded notes in mirror writing. Of 

course, he actually wrote in nsiIsjI instead of deiIgn3. 



16 TUGboat, Volume 8 (1987), No. 1 

5.  Fixing- bugs. We stated above that the approach just sketched will "almost" work. But it can fail in 

three ways. when coinbined with the full generality of TEX First, there might be material "between the 

lines" that is inserted by \vad jus t  commands: tliis material might improperly be treated as R-text. Second. 

the suggested niethanisn~ doesn't always find the correct left edge of segments that are being reflected. since 

the reflection should not always begin at  the extreme left edge of a typeset line; it should begin after the 

\ l e f t s k i p  glue and before other initial spacing due to things like accent positioning. Third. certain tricks 

that irlvolve '\unhbox' can make entire lines disappear from the D V I  file; however, this problem is riot as 

serious as the other two, because people shouldn't be playing such tricks. 

A m~ich more reliable and robust scheme can be obtained by building a specially extended version of 

TEX. which puts matching special corrimands into every line that has reflected material. It is not difficult 

to add this additional activity to W ' s  existing line-breaking mechanism; the details appear in an  appendix 

below. When this change has been made. parts (c) and (d)  of the D V I - I V a  skimming algorithm can be 

eliminat,ed, since the case c = 0 will never arise in part (d) .  

6. L-chauvinism. We have been discussing niixetl documents as if they always consist of R-texts inserted 

into L-tcxts: but people who st^ native script is right-to-left liatl~rally think of mixed documents as the 

irisertion of L-texts into R-texts. In fact. there are two ways to read every page of a document, one in which 

the eye begins to scan each line at  the left arid one iri which the eye begins to scan each line at the right. 

The Leo~lardo ilhistratiori above is an example of the first kind. and we shall call it an L-document. 

To read a given line of an L-document. yo11 start at  the left and read any L-text that you see. Whenever 

your eyes encounter ari R-character. they skin1 ahead to the end of the next R-segment (i.e.. until the next 

L-character. or until the end of the line. whichever comes first); then you read the R-segment right-to-left, 

a i d  coritiiiue as before. The rules for reading an R-documttnt are similar. but with right and left reversed. 

It's usually possible to distinguish an L-document from an R-document because of the indentat,ion on 

the first line of a paragraph andlor the blank space on the last line. For example, the R-documents that 

corresporltf to the two L-document settings of the paragraph about Leonardo look like this: 

Leoriardo d a  Vinci made a sweeping statement in his Leonardo da  Vinci made a sweep- 

n s i 3 i j s m s d i s r n  s i o n  ai o d w  s n o  o n  isJ" notebooks: J s J "  ing statement in his notebooks: 

In fact. he said it twice, so he probably ".ad-row y m  bss-r - i J s m s d i s m  s Jon zi o d w  3nO o n  

nieant it. In fact. he ".aA-row y m  bss-r ns i3  

said it twice. so he probably meant it. 

T/5-e can imagine that these R-dorun:ents were conipos~d on an R-terminal and processed by from an 

sIif h q n i  that looks like this: 

In tliis case it is the L-text. riot the R-text, that is enclosed in I 's. (The reader is urged to study this exarnplr 

carefully: there is  b o d j s m  in't!) 

A poet could presumably construct interesting poems that have both L-meanings and R-meanings. wl~eri 

read as L-documents and R-documents. 

Kotice that our exarnples from Leonardo have used boldface quotation marks (i.e.. the quotation marks 

of ds i lgn3) .  so that these niarks belong to the text being quoted. This may seem erroneous; but it is in 

fact a necessary convention in docurnent,s t,hat are meant to display no favoritisni between L-readers arid 

R-readers. because it ensures that the yuot,ation rnarks will stay with the text being reflected. (See the 

examples of contemporary typesetting a t  the end of tliis paper.) If we had put the quotation marks into 

English rather than deiIgn3,  the R-document,s illustrated above would have looked very strange indeed: 

Leonardo d a  Virici made sweeping staterrielit in his Leonardo da  Vnici made a sweep- 

n s i 3 i i s m s d j s m  s i o n  ai o d w  s n o  o n  SsJnotebooks: .' JsJ ing statement in his notebooks: .. 

" In fact, he said it twice. so he pro1mbly.aA-row y m  bss-r - i i s m s d i s r n  s i o n  zi o d w  s n o  o n  

nieant it. " In fact. he.aA-row y m  hss-r r r s i ~  

said it twice. so he probablj meant it. 



TUGboat, Volume 8 (1987), No. 1 17 

7. Multi-level mixing. The problems of mixed R- and L-typesetting go deeper than this, because there 

might be an L-text inside an R-text inside an L-text. For example, we might want to typeset a paragraph 

whose TEX source file looks like this: 

\R(Alice) s a i d ,  \R([  'You th ink  English i s  \L('English wr i t ten  backwards'); 

but t o  me, \L(English) i s  English wr i t t en  backwards. I ' m  sure \L{Knuth) 

and \LCMacKay) w i l l  both agree with me.") And she was r i g h t .  

An intelligent bidirectional reader will want this to be typeset as if it were an R-document inside an L- 
document. In other words, the eyes of such a reader will naturally scan some of the lines beginning at the 

left, and some of them beginning at the right. Here are examples of the desired output, set with two different 

line widths: 

sd1A said, ai deiIgn3 dnidf rroYU s3iIA said, 'En- ai deilgn3 Anid3 rroY" 
,sm 03 fud ;'English written backwards' English ,sm o j  frrd ;glish written backwards' 
. e b m w d ~ d  nsjji-rw dziIgn3 ei English s w e  m'I .zbuwAxd n s j j i ~ w  daiIgn3 ai 
djod Iliw MacKay bns Knuth s~r re  m'I djiw 9 ~ ~ 2 s  djod IIiw MacKay bns Knuth 
".sm djiw S S T ~  And she was right. ".sm -4nd she was right. 

(Look closely.) 

Multi-level documents are inherently ambiguous. For example, the right-hand setting abow might be 

interpreted as the result of 

. . .  \R{ . . .  I ' m  sure and \L{MacKay) w i l l  both agree with3 Knuth \R{me."l . . .  

and the left-hand setting would also result from a source file like this(!) 

\indent\R{"You th ink  English i s  \L{said,) Alice 

\LC'Englishl; but t o  me,) wr i t t en  backwards' 

\R{written backwards.) \R{\L{English) i s  English) 

w i l l  both) MacKay \RCand) Knuth \R{I 'm sure  

\LCAnd she) agree with me.") was r i g h t .  

except for slight differences in spacing due to W ' s  "spacef actor"  for punctuation. 

In general, we have \R{\L{a)\LCb)) = ba. hence any permutation of the characters on each line is 

theoretically possible. A reader has to figure out which of the different ways to parse each line makes 

most sense. Yet there is unanimous agreement in Middle Eastern countries that a mixture of L-document 

and R-document styles is preferable to  an unambiguous insistence on L-reading or R-reading throughout a 
document, because it is so natural and because the actual ambiguities arise rarely in practice. The quotation 

marks in the example above make it possible to reconstruct the invisible \R's and \L's: in this way an author 

can cooperate with a literate reader so that the meaning is clear. 

Multi-level texts arise not only when quotes are inside quotes or when R-document footnotes or illustra- 

tions are attached to L-documents; they also arise when mathematics is embedded in R-text,. For example, 
consider the mX source code 

The \R{English) version of ' t he  famous i d e n t i t y  $e-{i\pi)+l=O$ due t o  Euler '  

i s  \RC'the famous i d e n t i t y  $e-{i\pi)+l=O$ due t o  Euler ' ) .  

It should be typeset like this: 

The dziIgn3 version of 'the famous identity em + 1 = 0 due to Euler' is erroms1 sdj' 
''191~3 o j  srrb em + 1 = 0 yjiinsbi. 

An extension of I)$ called I)$-X@', described in the appendix, properly handles multi-level mixtures 

including math. as well as the simpler case of alternating R-texts and L-texts. 

8. Conclusions. When right-to-left and left-to-right texts are mixed in the same document, problems can 
arise that are more subtle than simple examples might suggest. The difficulties can be overcome by extending 

'I$J to w-m and by extending D V I  drivers to D V I - I V a  drivers. Neither of these extensions is extremely 
complex. 



TUGboat, Volume 8 (1987), No. 1 

585. The description of DVI commarids is augmented by two new ones at  the end: 

begzn-reflect 250. Begin a (possibly recursive) reflected segment. 

end-reflect 251. End a (possibly recursive) reflected segment. 

Commands 250-255 are undefined in normal DVI files, but 250 and 251 are permitted in the special 'DVI-IVa' 

files produced by this variant of 7$J. 

When a DVI-IVa driver encounters a begzn-reflect command. it should skim ahead (as previously described) 

until finding the matching end-reflect: these will be properly nested with respect to each other and with 

respect to push and pop. After skimming has located a segment of material to be reflected, that segment 

should be re-scanned and obeyed in mirror-image mode as described earlier. The reflected segment might 

recursively involve begzn-reflect lend-reflect pairs that need to be reflected again. 

586. Two new definitions are needed: 

define begin-reflect = 250 { begin a reflected segment (allowed in DVI-IVa files only) ) 
define end-reflect = 251 {end a reflected segment (allowed in DVI-IVa files only) ) 

638. .4t the beginning of ship-out, we will initialize a stack of \beginL and \beginR instructions t,hat are 

currently in force; this is called the LR stack, and it is maintained with the help of two global variables 

called LR-ptr and LR-tmp that will be defined later. The instructions inserted here (just before testing if 

tracing-output > 0) say that on the outermost level we are typesetting in left-to-right mode. The opening 

'begin'  is replaced by: 

beg in  LR-ptr + get-avail; info(LR-ptr) +- 0; { begin-L-code at outer level) 

639. At the end of ship-out, we want to clear out the LR stack. Thus, 'flush-node-list(p)' is replaced by: 

flush-node-list(p): (Flush the LR stack 1382);  

649. The hpack routine is modified to keep an LR stack as it packages a horizontal list, so that errors 

of mismatched \beginL. . . \endL and \beginR. . . \endR pairs can be detected and corrected. Changes are 

needed here a t  the beginning of the procedure and a t  the end. 

func t ion  hpack(p : pointer; w : scaled: m : smalhnumber): pointer: 

b: znteger: { badness of the new box) 

LR-ptr, LR-tmp: poznter: { for LR stack maintenance ) 
LR-problems : znteger : { counts missing begins arid ends ) 

b e g i n  LR-ptr + null: LR-problems +- 0: 

r +- get-node (box-node-szze); 

common-ending: (Finish issuing a diagnostic message for an overfull or underfull hbox 663): 

exzt: (Check for LR anomalies at the end of hpack 1387): 

hpack +- T ;  

e n d :  

877. Similarly, the post-line-break should keep an  LR stack, so that it can output \endL or \endR 

instructions a t  the ends of lines and \beginL or \beginR instructions at  the beginnings of lines. Changes 

occur at the beginning and the end of this procedure: 

p r o c e d u r e  post-line-break (final-widow-penalty : integer): 

cur-line: halfword; { the current line number being justified) 

LR,-ptr, LR-tmp: pointer; (for LR stack maintenance) 

beg in  LR-ptr +-- null: 

(Reverse the  links of the relevant passive nodes, setting cur-p to the first breakpoint 878): 



TUGboat, Volume 8 (1987). KO. 1 

p r ~ i > _ g r a f  ~f k i t - l m r  - 1.  (F111sli t h ~  LR stack 1382): 

end: 

880. Tlie new actioris to be performed when broken lines are being packaged are accomplished by three 

new steps added to this section of the program. 

( Just,ify the line eridirig at breakpoint cur -p .  and append it to the current vertical list. together with 

associated perialties and other irisertiorls 880 ) - 
( Insert LR riodes at tlir: begiriiiiiig of tlir currerit line 1383): 

( Atljiist tlie LR stack based on LR riocles in this line 138.1): 

(hIotlify the end of the line to reflect the  nature of the h r c ~ ~ k  anti tjo include \ r i g h t s k i p :  also set the 

proper 1-alue of disc-break 881 ): 
( Irisrrt LR rlocic~ at t,hr enti of the current liiie 1385 ): 
( Piit t,hr \ l e f t s k i p  glue at the left and detach this h i e  887);  

1090. M-c add ' ~ l r n o d e  + LR '  as a nrw sulxase after . c m o d e  + ex-space' here. This means that  the new 

primitive operations will 1jec:onle irista~icrs of what The B X b o o k  calls a (horizontal cornrnand). 

1196. SIat 11-in-t,ext will bc formatt,ecl left-to-riglit, bec:ailse t,wo new .append' iristructioris are inserted into 

this stv:t,ioil of thtl cock. 

( Finish rriatli in text 1196 ) 
begin ta l l -append j n e s - m a t h  ( rn , c l t h - s t~r ro1~~1d .  b e f o r e ) ) :  

( Xppericl a be@-L to tlie tail of the current list 1380): 

c:ur_rr~dist - p: cur-s ty le  t ted- . s ty le:  .~rrlist-penultzes -- ( m o d e  > 0 ) :  ml is t - to-h l i s t :  

l i n k j f a i l )  - l ir~k(terri ,p_hr.ad):  

while l ank ( ta i1 )  # nu l l  do tad t l i n k ( t a z 1 ) ;  

(-Append an e n d - L  to tllr tail of the current list 1381); 

tnil-c~ppend(71e.c~'-rnaih ( m a t h - s u r r o u n d .  cl f ter.)):  space- fac tor  + 1000:  unsur , r :  

end 

1341. Tlie r i m -  primitive operat,ions put ncw kinds of whatsit nodes into liorizontal lists. Therefore two 

atidit,ional definit,iorls arr r iedrd hrre: 

define L R - n o d e  = 1 { , s u b t g p  in wliatsits that represent \ b e g i n L .  etc. ) 
define L R _ t , y p r ( # )  - rnwrn[# i l ] . i n f  { the sub-subtype ) 

1344. Here's where the nm7 primitives get t:stablished. 

define ~ r n m e d ' i t ~ f e - c o d e  = 4 { cornrnarid nlodifier for \ i m m e d i a t e  ] 
define beyin-L-codc = 0 { corrimarici modifier for \ b e g i n L )  

define begin-R-code = 1 { corririiaiid rrioclifier for \ b e g i n R )  

define end-L-code  = 2 { conlnland riiodifit:r for \ endL  ) 
define end-R-cotlr  = 3 { con~marld riiodifier for \ e n d R )  

define be,y&LR(#j  = ( L R - t y p e ( # )  < end -L -code )  

define b e g i ~ s - L R - t y p e ( # )  = ( L R _ t y p e ( # )  - r r ~ d - L - c o d e )  

( Put each of T E X ' ~  primitives int,o the hash tablrl 2 2 6 )  +r 

p r i i n i t i ~ l e ( " b e g i n L " ,  L R .  h e g i n L c o d e ) :  

p r 7 r n i t i 7 ~  ( " b e g i n R H .  L R .  begar~-R-code): 

p r i r n ~ t z o e  ( " e n d L " .  L R .  end -L -code ) :  

p 3 r i n ~ i t l t t ~ ( " e n d R " .  L R .  end-R- cod^): 

p,rirnzta~le ( " o p e n o u t " .  rstan.sion . nprr i - rmle ) ;  



TUGboat, Volume 8 (1987), No. 1 

1346. The new primitives call for a new case of cases here. 

LR: case chr-code o f  

begin-L-code : print-esc ( " b e g i n l " ) ;  

begin-R-code: print-esc ("beginR"); 

end-L-code : print-esc ( "end l " ) ;  

o t h e r c a s e s  print-esc ("endRN) 

endcases :  

1356. We also need to be able to display the newfangled whatsits. 

LR-node: c a s e  LR-type(p) o f  

begin-L-code: pr in t -ex("  beginl"); 
begin-R-code: print-esc("beginRn); 

end-L-code: print-esc (I1endL"); 

o t h e r c a s e s  print-esc("endRM) 

e n d c a s e s ;  

1357, 1358. Copying and deleting the new nodes is easy, since they can be handled just like the \ c l o s e o u t  

nodes already present. We simply replace 'close-node' by 'close-node, LR-node' in these two sections. 

1360. We used to do-nothing here. but now we must do-something: 

{Incorporate a whatsit node into an hbox 1360) E 

if subtype(p) = LR-node t h e n  (Adjust the LR stack for the hpack routine 1386) 

This code is used in section 651. 

1366. (Output  the whatsit node p in an hlist 1366) E 

if subtype(p) # LR-node then out-what(p) 

e l se  (Output  a reflection instruction if the direction has changed 1388) 

This code is used in section 622. 

1376. Most of the changes have been saved up for the end. so that the section numbers of TEX in [ 2 ]  can 

be left unchanged. Now we come to the real guts of this extension to  mixed-direction texts. 

First, we allow the new primitives in horizontal mode, but not in math mode: 

(Cases of mazn-control that build boxes and lists 1056) +- 
hmode + LR: b e g i n  new-whatszt(LR-node. small-node-szze): LR-type(taz1) +- cur-chr; e n d :  

mmode + LR: report-zllegal-case: 

1377. A number of routines are based on a stack of one-word nodes whose info fields contain either 

begin-l-code or begin-R-code. The top of the stack is pointed to by LR-ptr. and an auxiliary variable 

LR-tmp is available for stack manipulation. 

( Global variables 13 ) +- 
LR-ptr, LR-tmp: pointer: {stack of LR codes and temp for manipulation) 

1378. (Declare functions needed for special kinds of nodes 1378) 5 

f u n c t i o n  new-LR(s : small-number): pointer: 

v a r  p: pointer; { the new node) 

b e g i n  p c get-node(smal1-node-size); +- whatsit-node: subtype(p) +- LR-node; LR-type(p) + s ;  

new-LR c p: 

e n d ;  

See also section 1379. 

This code is used in section 161. 

1379. ( Declare functions needed for special kinds of nodes 1378) + Z  

f u n c t i o n  safe-info(p : pointer): integer; 
b e g i n  if p = null then safe-info +- -1 else safe-info +-- info(p): 

e n d ;  



2 2 TUGboat, Volume 8 (1987), No. 1 

1380. (Append a hegira-L t,o the tail of the current list 1380) - 
tail-nppend j neur-LR(bcgin-L-coite))  

This code is used in section 1196. 

1381. (Append a n  end-L to the tail of t,hc, current list 1381) - 
tnzl-append ( n e w - L R ( e n d - L - c o d e ) )  

This codr is used i n  sectioii 1196. 

1382. When the stack-niariipulatiorl niacros of this sect,ion are used brlow, varia1)les L R - p t r  and  LR- t rap  

might he tlie global variables derlarrd ahow. or they might be local to hpack or post-l ine-break.  

define p u \ h - L R ( # )  - 
begin LR-trrip - g r f  ol u i l ,  ~ n f o ( L R - i m p  

L R - p t r  - LR-trnp 

end 

define pop-LR  = 
begin L R - t m p  - LR-ptr  LR-p t r  -- h i k  

end 

( Flus11 the LR itnc k 1382) - 
while L R - p t r  f nul l  do pop-LR  

T11ii codr is used in s ~ c  tlori\ &((I and 877 

1383. ( I n s c ~ t  LR r i d e s  a t  t h r  b~girl l l i~ig of the c u r r ~ n t  liric 1383) 5 

while LR-p t r  # null do 

begin LR-trnp t n e u t _ L R ( ~ 7 i f o ( L R _ p f r  )): lmX (LR- t r r ip )  + l ~ n A  ( t e m p - h e a d ) :  

l ~ n k ( t r n i p - h p a d )  L R - f n ~ p .  p o p - L R :  

end 

T l u i  code i i  ~ l i r t l  111 vxtion 8b0 

1384. ( Adjust the LR stack based on LR nodes in this line 1384) 

q + l i r~J ; ( t emp-11 f :nd ) :  

while y f cur-brenk:(c.ur-11) do 

begin if 72s-ch,ar-ri,ode(q) then 

if t y p e ( y )  = 'u;h,ut.sit-node then 

if s u b t y p e ( q )  = LR-node  then 

if b e g i n d R  ( q )  then p u s h - L R  ( q )  

else if L R - p t r  f nul l  then 

if i n f o ( L R - p t r . )  = begin-LR-t? jpe(y j  then p o p - L R :  

(1 + l i n , k jq ) :  

end 

This codp is used in section 880. 

1385. U\.t, usr tlie fact thnt q now points to tlir ilodt. wit11 \rlghtsklp g l w  

( I ~ i s e r t  LR nodes a t  tlir elid of thc current line 13%) - 
if L R - p t r  f r6d/  then 

begin .s +- t e m p - h e a d :  r +- l i n , k ( s ) ;  

while r # 11 do 

begin .s + r :  'r + h k ( s ) :  

end: 

r + L R - p t r :  

while r # nu l l  do 

begin L R - t m p  - n e l c - L R ( i / ! f o ( , r )  + en$-L-rode):  l ink  i s )  + L R - t m p :  s - L R - t m p ;  r. - l i n k j r ) :  

end: 



TUGboat, Volume 8 (1987), No. 1 

link(s) + q: 

end 

This code is used in section 880. 

1386. (Adjust the LR stack for the hpack routine 1386) .= 

if begin-LR(p) then ~ush-LR(p)  

else if safe-info(LR-ptr) = begin-LR-type(p) then pop-LR 
else begin incr(LR-problems): 

while link (q)  # p do q +- link ( q ) :  

link(q) +- link(p); free-node(p. small-node-size): p + q: 

end 

This code is used in section 1360. 

1387. (Check for LR anomalies at the end of hpack 1387) r 

if LR-ptr # null then 
begin while link(q) # null do q + link(q): 

repeat link(q) + new-LR(info(LR-ptr) + end-L-code): q t- link(q): 

LR-problems + LR-problems + 10000; pop-LR: 

until LR-ptr = null; 

end; 
if LR-problems > 0 then 

begin print-ln: print-nl( " \endL,or,\endR,problern, ( "): 
p~int-int (LR-problems div 10000); print jMurnissing ,,"): 
print-int (LR-problems mod 10000); print (",extrau): 

LR-problems +- 0; goto commo,n-ending: 

end 

This code is used in section 649. 

1388. (Output a reflection instruction if the direction has changed 1388) r 

if begin-LR(p) then 

begin if safe-info (LR-ptr ) # LR-type ( y )  then 
begin synch-h; synch-v; dvi-out (begin-reflect): 

end: 

push-LR(p): 
end 

else if safe-info(LR-ptr) = begin-LR-type(p) then 

begin pop-LR; 
if info(LR-ptr) + endLcode # LR-fype ( p )  then 

begin synch-h: synch-v; dvi-out (end-reflect); 

end: 

end 
else confusion ("LR") 

This code is used in section 1366. 

Final Important Note 

The extensions to  T)+ just described are "upward compatible" with standard TEX, in the sense that ordinary 

7$J programs will still run correctly (although more slowly) on T)+-X$I'. However. T E X - r n  must not be 

called a new version of 'lQX'3 even though it runs all programs: the reason is, of course. that TEX will 

not run all T)jX-Y&T programs. 

A name change is necessary to distinguish all programs that do not agree precisely with the real TEX 
Anybody who runs a program called 'Tm' should be able to assume that it will give identical results from 

all its implementations. 



24 TUGboat, Volume 8 (1987), No. 1 

Bibliography 

111 Doriald E. Knutll. The T~Xbook. Volurnr X of Conlputers &. Typesetting (Reading, Mass.: Addison 

Lt'esley. 1986). 

[2] Doiiald E. Knuth. TEX: The Program, Volume B of Computers & T"vpesetting (Reading. Mass.: Addison 

IVesley. 1986). 

[3] Pierre MacKay. "Typesetting problem scripts." Byte 1 1 . 2  (February 1986), 201-218. 

Examples of Typesetting Practice 

1. From Textus 5 (1966). p. 12: 4Iagnes Press. H~blevi Unibersity of Jerusalem. (Notice the  Hebrew 

quotation marks surrouriding the Hcbrew title in footnote 6.) 

ters adhered,lO and which may have been similar to that adopted, by normative 

Jewry presumably somewhat later, during the period of the Second Temple.10 

Frag. E. Yadin correctly states: "Sanders' cautious indication '103 (? 104)' can now 

be eliminated" (ib., p. 5). 

6 Sanders' editio princeps of Ps. 151 already has been discussed by various scholars. The 

present author deals with the text of Ps. 15 1, and its literary genre in: a q p n  ayiara- 
-Txinipn n7i3u;l pwh, Tarbiz 35 (1966) 214-228. 

7 See: W. Wright, "Some Apocryphal Psalms in Syriac", PSBA 9 (1887) 257-266; M. Noth, 

"Die fuenf apokryphen Psalmen", ZAW 48 (1930) 1-23. 

2. Fragnirnts from the third edition of W7illiarn Wright's classic nineteenth century grammar of Arabic. 

voliirrie 2. pages 295-297. (Notlce the page break in the rnidst of right-to-left text. and some left-to-right 

brackets.) 

a & b e  ,. , a , .  

thht has been 6rmqht  j b ~ t h  (cvercted) f i n  mankind; 391 @ 

A &> tyb? 3 4  t k  li ightness gl. the istelhct is obscured (or 

eclipsed) by obeying hut. As the above examples show, this agreement 

$1521 Sentence and  its Parts.--Concord of Y ~ e d i c n t e  R. Subject. 29'7 



TUGboat, Volume 8 (1987), No. 1 25 

3. From page 233 of the same book. Here right-reading texts are equated with = signs: the left sides of 

each equation are t o  be read first. 

* 1 0 . 9  3 O , O d  , 
&,..ll (see S 77).  Similarly, some grammarians consider u.$ l -16 B 

, - 0 4  , - . 0  r r e e  1 .  J , bE 

;*?/I - +? / I  o'w l >I>*. Here too the constructions &I 
, . 

4. From Bulletin of the Iranian hfathematical Society 8 (Tehran. 1978). p. 78L. (Left-to-right mathematics 

in right-to-left text .) 

~rjCj,&jb,2jC&~ 4 

5 .  From Introduction to Mathematics [d i j sms f smsJ  ovsM] by Abraham A. Fraenkrl, vol. 1 (Jerusalem, 
1942). p. 38. (Page numbers are '96-90' because '90' and '96' are Hebrew numbers.) 

: ;nix3 1 1  0 5 * 1  UDWn nu1 ,aP== (mod. p) : i l l lX3 

1 . 2 * 3 . . .  (p-1) E-1 (m0d.p). 

.ma = modulus . o m o  = congruens niwnn o+nn la .1 

Journal f .  d n 5v 118 n 1~:x lsee ni02 hl. HAMBURGER 1niv m m x  yrp .2 

m i ~ n  1 w n n  nx npxpn .1m2 nmn ojxa iv i l n ~ i i 5  (w-QO PP) reine u. ang. Mathematik 

6. Page 200 of the same book illustrates the difference between ellipses ' . . . '  in formulas and ellipses in 

the text. Fione of this l~ook's math-in-text is broken between lines. 


