
We appreciate all of you who point out our errors.
Here's how to keep score: if you find six errors or more,
you're a professional; three to five errors makes you a trainee;
less than three makes you a desktop publisher.

Frank Romano
"Frank Talk",
Type World (October 24, 1986)

THE TjjX USERS GROUP NEWSLETTER
EDITOR BARBARA BEETON

VOLUME 8, NUMBER 2 JULY, 1987
PROVIDENCE RHODE ISLAND U.S.A.

TUGboat

The communications of the T@ Users Group are
published irregularly at Providence, Rhode Island,
and are distributed as a benefit of membership both
to individual and institutional members. Three
issues of TUGboat are planned for 1987.

Submissions to TUGboat are for the most part
reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting items for Vol. 8. No. 3,
is September 14, 1987; the issue will be mailed in
November.

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of
general interest, those not covered by any of the
editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton.

Contributions in camera copy form are en-
couraged, as is electronic submission of items on
magnetic tape or diskette, via electronic mail, or
transferred directly to the AMS computer; for
instructions, write or call Barbara Beeton.

TUGboat Advertising and Mailing Lists

For information about advertising rates or the
purchase of TUG mailing lists, write or call
Ray Goucher.

Other TUG Publications

TUG is interested in considering for publication
manuals or other documentation that might be
useful to the community in general. If you
have any such items or know of any that you
would like considered for publication, contact Ray

TUGboat Editorial Committee

Barbara Beeton, Editor
Helmut Jiirgensen, Associate Editor for Software
Maureen Eppstein, Associate Editor for

Applications
Laurie Mann, Associate Editor on Training issues
Georgia K.M. Tobin, Associate Editor of Font

Forum
Jackie Damrau, Associate Editor for I47&X
Patrick Ion, Associate Editor for Macros and

Problems
Alan Hoenig and Mitch Pfeffer, Associate Editors

for Typesetting on Personal Computers
See page 99 for addresses.

Goucher at the TUG office.

TUGboat. Volume 8 (1987), No. 2

Addresses

Note: Unless otherwise specified.
network addresses (shown in
typewr i ter font) are on the Arpanet

James C. Alexander
Dept of Mathematics
Univ of Maryland
College Park, MD 20742
alexQeneevax.umd.edu

Wolfgang Appelt
Gesellschaft fur Mathematik und
Datenverarbeitung
Schloss Birlinghoven - P F 1240
D-5202 Sankt Augustin 1,
Federal Republic Germany
uucp:
unido!gmdzi!zi.gmd.dbp.de!appelt

Richard L. Aurbach
Monsanto Company
800 N Lindbergh Blvd
St Louis. MO 63167
314-694-5453

Elizabeth Barnhart
National EDP Dept
TV Guide
Radnor. PA 19088
215-293-8890

Lawrence A. Beck
Grumman Data Systems
R & D, MS D12-237
Woodbury, NY 11797
516-682-8478

Barbara Beeton
American Mathematical Society
P. 0 . Box 6248
Providence. RI 02940
401-272-9500
bnbQxx.lcs.MIT.Edu,
bbQSail .Stanford.Edu

Mike Black
Kingsdown Publishing Ltd
14 Osbaldeston Rd
London N16 7DP. England
01-806 5043; Telex: 937403 ONECOM

Malcolm Brown
ACIS/IRIS
Stanford University
Cypress Hall, R m E7
Stanford, CA 94305
415-723-1055
MBB(PPortia.Stanford.Edu

Anne Briiggemann-Klein
Institut fur Informatik und Form
Beschreibungsverfahren
Postfach 6980
7500 Karlsruhe,
Federal Republic Germany
07211608-3705
CSnet: BRUEGGEMQGEFLMANY

Lance Carnes
Personal TEX

12 Madrona Avenue
Mill Valley, CA 94941
415-388-8853

ale

S. Bart Childs
Dept of Computer Science
Texas A & M University
College Station. T X 77843-3112
409-845-5470
Bitnet: BartQTAMLSR

Adrian F. Clark
Analysis Group
British Aerospace
E-Block, Manor Rd
Hatfield
Hertfordshire ALlO 9LL, England
070-72-62300 x8216

Maria Code
Data Processing Services
1371 Sydney Dr
Sunnyvale, CA 94087
408-735-8006

John M. Crawford
Computing Services Center
College of Business
Ohio State University
Columbus, OH 43210
614-292-1741
Crauford-JQOhio-State
Bitnet: TS0135QOHSTVMA

Jackie Damrau
Dept of Math & Statistics
Univ of New Mexico
Albuquerque, NM 87131
505-277-4623
Bitnet: damrauQunmb
UUCP: damrauQunmvax

Alec Dunn
School of Electrical Engineering
University of Sydney
XSW 2006: Australia
(02) 692 2014
alecd%facet.ee.su.oz@seisrno.css.

Maureen Eppstein
Administrative Publications
Stanford University
Encina Hall, Room 200
Stanford. CA 94305
415-725-1717
as,mveQForsythe.Stanford.Edu

Michael J . Ferguson
INRS - Tel6cornmunications
Universitk du Quebec
3 Place du Commerce
Verdun (H3E 1H6), Quebec Canada
514-765-7834
CSnet: mike%tel . i n r s . cdnQubc

Jim Fox
Academic Computing Center HG-45
University of Washington
3737 Brooklyn Ave NE
Seattle, WA 98105
206-543-4320
Bitnet: fox7632@uwacdc

David Fuche
1775 Newell
Palo Alto. CA 94303
415-323-9436

Richard Furuta
Department of Computer Science
Univ of Maryland
College Park, MD 20742
301-454-1461
furutaQmirnsy.umd.edu

Raymond E. Goucher
'Q,X Users Group
P. 0. Box 9506
Providence. RI 02940
401-272-9500 x232

John Stewart Gourlay
Dept of Computer & Info Science
Ohio State University
2036 Neil Ave Mall
Columbus. OH 43210
614-292-6653
GOURLAY-J%OSU-20Qohio-state

Dean Guenther
Computer Service Center
Washington Stat? University
Computer Science Building.
Room 2144
Pullman. WA 99164-1220
509-335-0411
BITnet: GuentherQWSWMI

Doug Henderson
Division of Library Automation
Univ of California, Berkeley
186 University Hail
Berkeley. CA 94720
Bitnet: dlatexQucbcmsa

Alan Hoenig
gOv 17 Bay Avenue

Huntington. NY 11743
516-385-0736

Don Hosek
Platt Campus Center
Harvey Mudd Colleqr
Claremont. CA 91711
Bitnet: dhosek@hmcvax

TUGboat, Volume 8 (1987), No. 2

Patrick D. Ion
Mathematical Reviews
416 Fourth Street
P. 0 . Box 8604
Ann Arbor, MI 48107
313-996-5273

Helmut Jiirgensen
Dept of Computer Science
Univ of Western Ontario
London N6A 5B7, Ontario, Canada
519-661-3560
Bitnet: A505QUWOCC1
UUCP:helmutQdeepthot

Alois Kabelschacht
Max-Planck-Institut fur Physik
(Werner-Heisenberg-Institut)
Foehringer Ring 6
D-8000 Munchen 40
Federal Republic Germany
(089) 31893-412

Arthur Keller
University of Texas at Austin
Department of Computer Science
Austin, TX 78712-1188
512-471-7316
ARKQSALLY.UTexas.Edu

Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305
DEKQSail.Stanford.Edu

Gerhard F. Kohlmayr
Mathmodel Press
80 Founders Rd
Glastonbury, C T 06033
203-633-5659

Gideon Koren, M.D.
Hospital for Sick Children
Toronto, Ontario M5G 1x8, Canada

Charles LeHardy
Summer Institute of Linguistics
Box 8987 CRB
Tucson, AZ 85738
602-791-2272
uucp: noao ! a z s i l

Pierre A. MacKay
Northwest Computer Support Group
University of Washington
Mail Stop DW-10
Seattle, WA 98195
206-543-6259; 545-2386
MacKaycDJune.CS.Washington.edu

Rick Mallett
Computing Services
Room 1208 Arts Tower
Carleton University
Ottawa (KlS 5B6), Ontario, Canada
613-231-7145

Robert W . McGaffey
Martin Marietta Energy Systems, Inc.
Building 9104-2
P. 0 . Box Y
Oak Ridge, T N 37831
615-574-0618
McGaffey%ORN.MFEnetQnmfecc.arpa

Laurie Mann
Stratus Computer
55 Fairbanks Boulevard
Marlboro, MA 01752
617-460-2610
uucp: harvard!anvil!es!Mann

Richard S. Palais
Department of Mathematics
Brandeis University
Waltham, MA 02154
617-647-2667

Mitch Pfeffer
Suite 90
148 Harbor View South
Lawrence, NY 11559
516-239-4110

Gil Pierson
Computer Science Bldg
Washington State University
Pullman, WA 99164

Arnold Pizer
Department of Mathematics
University of Rochester
Rochester, NY 14627
716-275-4428

Craig Platt
Dept of Math & Astronomy
Machray Hall
Univ of Manitoba
Winnipeg R3T 2N2, Manitoba. Canada
204-474-9832
CSnet: p la t txcc .uofm. cdnQubc

Pedro J. de Rezende
College of Computer Science
Northeastern University
360 Huntington Avenue
Boston, MA 02115
617-437-2078
rezendecDcorwin.ccs.northeastern.edu

Yasuki Saito
NTT Electrical Communications
Laboratories
NTT Corporation
3-9-11 Midori-cho Musashino-shi
Tokyo 180, Japan
+81 (422) 59-2537
yaski~ntt-20cDsumex-aim.stanford.edu

John Sauter
801128 Bates Road
Merrimack, N H 03054
603-881-2301
sauter%dssdev.DECcDdecwrl.DEC.COM

E. W. Sewell
3822 Hillsdale Lane
Garland, TX 75042
214-272-0515 ~3553

Barry Smith
Kellerman & Smith
534 SW Third Ave
Portland, OR 97204
503-222-4234; TLX 9102404397
Usenet: tektronix! reed! barry

Ralph Stromquist
MACC
University of Wisconsin
1210 W. Dayton Street
Madison: WI 53706
608-262-8821

Rilla Thedford
Intergraph Corporation, MS HQ013
One Madison Industrial Park
Huntsville, AL 35807
205-772-2440

Georgia K.M. Tobin
The Metafoundry
OCLC Inc., MC 485
6565 Frantz Road
Dublin, OH 43017
614-764-6087

Joey K. Tuttle
I P Sharp Associates
220 California Avenue, Suite 201
Palo Alto, CA 94306
415-327-1700

Glenn L. Vanderburg
Computing Services Center
Texas A & M University
College Station, TX 77843
409-845-8459
Bitnet: X23OGVITAMVMI

Samuel B. Whidden
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940
401-272-9500

Ken Yap
Dept of Computer Science
University of Rochester
Rochester, NY 14627
KenQRochester
Usenet: . . ! (al legra,decvax, seismo,
cmcl2,harvard,topaz)!rochester!ken

Hermann Zapf
Seitersweg 35
D-6100 Darmstadt
Federal Republic Germany

TUGboat, Volume 8 (1987), No. 2

General Delivery

From the President

Bart Childs

The last issue of TUGboat (Vol. 8, No. 1) represents
a measure of success in my mind. The number of
contributions, their content, and all other measures
of quality made it interesting and useful. I hesitate
to mention any one paper, but a number of people
have commented about their high interest on several
of the papers. Let's keep up the good work.

Several people have been spreading the good
word about 7&X in national publications. We
should publish a listing of these references soon.

Robert McGaffey's note in this issue (page 161)
on the Ideal 'IJEX Driver poses questions about
standards that we need to address soon. Don
Knuth created 'QX to be portable, but the output
drivers are of critical importance in making the
system truly portable. I hope that we can have a
significant session on this at the Seattle meeting.

Another topic that needs to be addressed is the
use of fonts and magnification. It has been an active
item in m h a x . The particular item I am most
concerned with is the extensive use of magnification
in the I4w and SL~IQX worlds. The cm family has
the needed fonts in 12 and 17 point sizes. Shouldn't
we always distribute only magnifications 0, half, 1
and 2? Maybe one or two fonts should have a lot
of magnifications for use in titles? Come to Seattle
and be ready to argue the points.

One more topic of this type is that we need to
make a concerted effort to discard the old am family
of fonts. Does anyone have a good reason to keep
them around? With the exception of the amssmc
fonts, almost all have such a simple change that it
seems past due.*

We are looking forward to meeting in the great
Northwest. Dean Guenther and Pierre MacKay are
coordinating the usual TUG sessions and the 7&X
in the humanities sessions, respectively.

* Editor's note: We are pleased to announce
that this issue of TUGboat has been set with the cm
fonts resident on the Math Society's new Autologic
APS-p5 phototypesetter. These fonts are still being
tested; however, testing should soon be complete.
and they will then be made available from Autologic
to other APS users.

Editor's note: The following item appeared in the
New England Journal of Medicine, Nov. 13, 1986,
and is reprinted with permission.

A Simple Way to Improve the Chances for
Acceptance of your Scientific Paper

To the Edztor: During the past few years we
have witnessed a revolution in the way manuscripts,
abstracts, and grant proposals are being typed.
With improved typewriters and computer programs
it is possible to produce manuscripts of typeset
quality. It is generally assumed that data should
be judged by its scientific quality and that this
judgment should not be influenced by typing style.

I challenged this premise by analyzing the rate
of acceptance of abstracts by a large national meet-
ing. Ali abstracts submitted to the 1986 annual
meeting of the American Pediatric Society and the
Society of Pediatric Research (APSISPR) appeared
in Volume 20, No. 4 (Part 2) (April 1986) of Pedz-
atrzc Research. Contrary to the practice of many
other meetings, this volume also includes all the
abstracts that were not accepted for presentation,
and accepted papers are identified by symbols.

Abstracts were defined as "regularly typed" or
"typeset printed." Each abstract was categorized
as accepted if chosen for presentation or rejected.

A total of 1965 abstracts were evaluated. Ex-
cluded were 47 abstracts assigned for joint internal
medicine-pediatric presentation, because the ma-
jority of them were submitted to the American
Federation for Clinical Research, and there was no
indication of their rejection rate; only those that
had been accepted appeared in the APS/SPR book
of abstracts.

Of the 1918 evaluable abstracts, 1706 were
regularly typed and 212 were "typeset." The
acceptance rate was significantly higher for the
"typeset" abstracts: 107 of 212 (51.4 percent) vs.
747 of 1706 (44 percent) (P < 0.05).

Eighty-eight investigators submitted five or
more abstracts to the meeting. Here, too. there
was a higher rate of acceptance for the "typeset"
abstracts (62 of 107; 57.9 percent) as compared
with the regularly typed abstracts (184 of 451; 40.8
percent) (P = 0.002).

One may argue that investigators who can
afford the new equipment for printing abstracts
have more money and can afford better research,
and therefore that their abstracts are accepted at

01986 New England Journal of Medicine, re-
printed with permission.

102 TUGboat, Volume 8 (1987), No. 2

higher rates. To explore this possibility, I analyzed
data on the 15 investigators who submitted five
or more abstracts each and who used both typing
methods. In this subgroup, 19 of 55 regularly typed
abstracts were accepted (34.5 percent), whereas 31
of 53 of the "typeset" abstracts were accepted (58.5
percent) (P = 0.015).

These results demonstrate that the new "type-
set" appearance of data increases the chance of
acceptance. It may mean that "typeset" print-
ing may cause the data to look more impressive.
Alternatively, it may mean that the new printing
makes it easier for reviewers to read the data and
to appreciate its meaning.

Most important, it means that this technologi-
cal innovation reduces the chance of success of those
not currently using it.

GIDEON KOREN, M.D.
Hospital for Sick Children

Toronto, ON M5G 1x8, Canada

Portuguese Hyphenation Table for 'l&X
Pedro J. de Rezende
Northeastern University

I have compiled a Portuguese hyphenation table for
m. It turns out to be a rather short table (com-
pared to the one for English) because Portuguese
has very concise rules for hyphenation. I'd like to
make this table public and freely distributed. Even
included in the distribution tapes. I have exten-
sively tested it (with patgen) and haven't found any
erroneous hyphenation. It does miss some hyphens
but they are very, very few. It certainly does not
hyphenate a word beyond an accent or a cedilla, but
that's the way TEX handles hyphenation of words
with intervening macros (see Appendix H of The
W b o o k) .

Editor's note: Arrangements are being made to
include the Portuguese hyphenation table in the
standard distribution. Hyphenation tables for lan-
guages other than English are frequently requested
on m h a x ; anyone who knows of the existence of
such tables is asked to send the relevant information
to Barbara Beeton, so that a list can be compiled
for the next issue of TUGboat.

Software

Tlb: a Reference Setting Package, Update

J. C. Alexander
University of Maryland

A (Hopefully) Final Extension
of Multilingual

There have been a number of minor bug fixes and Michael J. Ferguson
some refining of features of the bibliography INRS-T616communications
setter %b (see TUGboat vol. 7, no. 3, for an article Montrkal, Canada
about %b). Its version number has been incre-
mented. Those people who asked to be put on my
mailing list have been sent all the changes. How-
ever, I know from mail that there are a number of
other users, presumably people who picked it up via
anonymous ftp. Those people might want to check
the file CHANGES and/or READ. ME via anonymous ftp
from eneevax : pub/t ib . Incidentally, I appreciate
the kind comments and suggestions people have
made. It seems Tlb is proving to be a useful adjunct
to m.

This note reports the, hopefully, final extension
to m that allows for multilingual hyphenation
reported in July 1985 (Vol. 6, No. 2, pp. 57-58)
and March 1986 (Vol. 7, No. 1, page 16) of
TUGboat. The key feature of the extension is that
it accommodates standard 'l&X fonts, including
words with accented letters. For details of the
features the reader should refer to the July 1985
TUGboat. This note reports some recent extensions
to accommodate certain typographical and input
conventions in non-English text. These extensions
are as follows:

TUGboat, Volume 8 (1987), No. 2 103

0 will now hyphenate words that have an
explicit \d iscret ionary. Each part of the
word including the discretionary is treated
as a separate word for hyphenation purposes.
This allows for the hyphenation of words such
as "Wechselstromwecker" where the "ck" is
represented by \discretionary(k-3Ik)Cck).
The hyphens then given by \showhyphens are
"Wech-sel-stromwek-kern .
The discretionary hyphen approach also allows
for the suppression of an unwanted ligature.
This can be done by inserting a discretionary
hyphen in the appropriate place. Thus the
unwanted ligature in "auffrischen" is defeated
with the insertion of \- after the first "f" to
give "auffrischen". Note that the solution to
exercise 5.1 in early editions of the TfjXbook is
incorrect as it will not survive a second pass of
a paragraph. The second hyphen after the "i"
remains with the extension.

The extension is invoked by making the in-
teger parameter \dischyph non-zero. Thus
\dischyph=l will allow, on a paragraph-by-
paragraph basis, hyphenation of words that
have an embedded \discret ionary. Note that
by using an empty discretionary, a break is
allowed without inserting a hyphen character.

Two new integer parameters, \starthyph and
\stophyph, have been defined. These allow
the number of characters at the beginning and
end of words that suppress hyphenation to be
modified. The defaults are 2 and 3 respectively
as in standard m. The minimum length of
a word to be hyphenated is the sum of these
two values. If necessary, a third independent
integer parameter that specifies the minimum
length of a hyphenated word could be added.

In order to handle special keyboards with ex-
tended characters encoded outside the standard
ASCII set, all characters with codes outside this
set have been declared permanently active.
This means that both the single character
and the single character command may be
separately defined. This would allow special
discretionary sequences for various languages
to be input easily.

This extensicn has been in use on the VT-
200 series of terminals by Digital and will
work equally well for IBM-PCs. Since this
modification takes effect at m ' s mouth, the
extended characters never make it "inside".
This means that they should not be used

in definitions. For example if ii is one of
these extended characters, then the definition
\Hiihn((text)) actually defines \H and not the
entire \Hiihn. Interestingly enough, TEX will
not complain. It just sticks the rest into the
parameter argument.

Hopefully these extensions will be suitable for
most other languages - either independently or to-
gether - assuming that the appropriate patterns
and exceptions exist.

Report on m: A Japanese

Yasuki Saito
NTT Electrical Communications Laboratories
Japan

This is a short report of the current status of
Japanese m, called m. I do not try to give
a detailed description of every nook and cranny.
Instead, I will concentrate on giving the overview
of what I have done to make T&$ typeset Japanese
text as well as English.

Example

First of all, look at the example input file and
the corresponding output generated by $QX in
Appendix 1. (The input file listing was generated
using the J U W verbatim mode.) It is an excerpt
from a famous textbook on analysis written by Teiji
Takagi. is an upward compatible extension of
?jEX and everything in is at your disposal. So
you will find familiar control sequences in the input
file. The only difference is of course that there are
lots of Japanese characters in it! Actually, from
the user's point of view, the fact that he can enter
Japanese characters into the input file is the main
difference although he must learn a few new control
sequences to select fonts and to control spacing.

Two major problems

Many people think that it is difficult to make
Japanese m, but it is not so. There were two
problems to be solved in making m. One was to
make m ' s input mouth a little bit wider so that it
can swallow Japanese characters. The second, and
more serious problem, was to prepare the fonts for
more than 6000 Japanese characters.

TUGboat, Volume 8 (1987). No. 2

Knuth suggests a way to extend w to oriental
languages in "'I&$: The Program". page 57. His
suggestion is to extend the data structure for a
character so that w can handle more fonts each
having more characters in it. I chose not to
extend the data structure nor the font file format
for various reasons. A GF file with information
for 6000 Japanese characters in it is just too
large to maintain. Another reason is that if you
stick to the original data structure you can make
modifications minimum. And with the ordinary
font file format you can use various utility programs
without modification.

Thus I divided Japanese characters into 33
subfonts each having at most 256 characters.
can handle maximum of 256 fonts at a time, and
reserving 33 fonts for a single Japanese font may
seem to be extravagant. However in actual use, one
rarely uses all 6000 characters. A statistic says that
the most frequent 2000 characters will cover 99% of
ordinary Japanese text, so the actual requirements
are much less than 33 subfonts.

Once decided on the font configuration, it is
straightforward to modify w. w ' s input mouth
is extended to eat Japanese characters and send an
appropriate (subfont, character number) pair to its
stomach. After that, doesn't notice that it is
actually handling Japanese characters!

As for the preparation of Japanese fonts, I
didn't use METAFONT. Considering the amount
of effort Knuth has spent to generate Computer
Modern Typefaces, it would be a five- to ten-year
project to devise a good METAFONT definition for
all the Japanese characters. Although it will be
necessary in the future, I am just content with
available dot fonts for the time being and generated
necessary font files from them directly.

Japanese character set

Before explaining the division of the Japanese
character set into subfonts, it is necessary to
explain what we have first. JIS (Japanese In-
dustry Standard) C-6226 defines a "Code of the
Japanese Graphic Character Set for Information In-
terchange". Here in Japan, we usually use this code
(referred to as "JIS code" for short) to represent
Japanese characters. It contains 6877 characters
in total and uses two 7-bit bytes to represent a
single character. These two bytes are called "ku"
and "ten" in Japanese or simply "first byte" and
"second byte". These bytes are taken from the
non-control character part of the ASCII character
set. Thus you can use ASCII control characters
such as Tab, Carriage Return and Line Feed within

a sequence of two-byte codes. See the table in
Appendix 2 (This table is typeset by m). In
this 94 by 94 table, each Japanese character is
positioned at the intersection point of first byte row
and second byte column. Each byte is represented
by corresponding ASCII character in the outermost
column and row. Hexadecimal representation of
each byte and "ku", "ten" numbers are added for
convenience. All characters are grouped into natu-
ral categories
refer to a set
byte):

1-ku & 2-ku
3- ku
4-ku
5-ku

6-ku
7-ku
8-ku

16, ..., 47-ku

48, ..., 84-ku

Here the
levels is very

as follows (we use the word "ku" to
of characters having the same first

symbols
numerals & roman alphabets
hiragana (phonetic symbols)
katakana (phonetic symbols used to
represent foreign words)
greek alphabets
russian alphabets
line segments
2965 first level kanji ordered accord-
ing to their representative reading
3388 second level kanji ordered by
radicals and number of strokes

separat,ion of the kanji set into two
important. The first level contains

most frequently used kanji while the second level
kanji are rarely used. A normal Japanese sentence
consists of kanji, hiragana, katakana and some
punctuation symbols. But you can freely mix
foreign alphabets within a Japanese sentence, and
we do write such a mixture from time to time. so
various foreign alphabets are also included in this
table.

There are several ways to represent a file with
both ASCII and JIS characters in it. If your
machine uses an 8-bit byte to represent an ASCII
character, simply turning the most significant bit
on for all two-byte codes enables you to distinguish
ASCII and JIS code easily. This is used in VAX
Kanji Code. Some Japanese word processors use
so called Shift JIS code which also uses two 8-bit
bytes. However the most widely used internal
representation is to use escape sequences. JIS
codes are simply represented by a sequence of two
7-bit bytes and a sequence of them are sandwiched
between three-byte escape sequences ("<esc>$Qn or
' L<e~~>$B ' l to start and "<esc> (J" or "<esc> (B" to
end.)

These various formats are easily interchange-
able. So assumes that its input file is a
sequence of 7-bit ASCII codes with JIS code parts
surrounded by escape sequences.

TUGboat, Volume 8 (1987), No. 2

Division into subfonts

The Japanese character set described in the previous
section is divided into the following 33 subfonts.
This division naturally corresponds to the categories
mentioned above. The control sequence name for
each subfont is used to refer to the individual
characters in each subfont. Usually a user is not
aware of the existence of subfonts, but if he wishes,
he can specify. say. the second character in 4-ku. by
"{\ jh i ra \char2In.

\ ~ S Y
\ jroma
\ j h i r a
\ j ka ta
\ jgreek
\ j r uss ian
\ j keisen
\ ja , ..., \ j l
\jm, \ j z

1-ku & 2-ku (symbols)
3-ku (numerals & roman alphabets)
4-ku (hiragana)
5- ku (kat akana)
6-ku (greek alphabets)
7-ku (russian alphabets)
8-ku (line segments)
16-ku,.. .,47-ku (first level kanji)
48-ku ,..., 84-ku (second level kanji)

In each subfont, a character code corresponds
to "ten" number except in kanji subfonts. 26
kanji subfonts (\ j a, \ jb ,..., \ jz) all have 256 kanji
characters in them except \ j 1 and \ j z . Kanji in
each level are densely packed into 256 character
positions of each subfont in their order. So the
last subfont in level 1 (\ j l) has only 49 (=
2965 - 256 x 11) kanji and the last one in level 2
(\ j z) has only 60 (= 3388 - 256 x 13). Appendix 3
shows the font tables for several subfonts generated
by $QX and the ordinary t es t f on t . tex . Note
that these control sequences are generic, i.e. these
subfont selectors are assigned the actual subfont
by a single control sequence defined in j p l a i n . t e x
(plain file for m, see below).

Font selection

provides several different fonts for Japanese
and j p l a i n . t e x defines useful font selectors which
switch all the necessary subfonts at once. For exam-
ple, a default font is selected by a following control
sequence (\ j s t d) in j p l a i n . t ex (This definition is
simplified a little):

\ font\djsystd=dnpjsy38
\ font \d jh i rastd=dnpjh i ra38
\ font \d j k a t astd=dnp jkat a38
\ font \d j astd=dnp j ka38
\ j f ont \d j bstd=dnpjkb38 dnpjka38
\ j f ont \d j cstd=dnpjkc38 dnpjka38

\def \ j s td{ \ le t \ jsy=\d jsystd
\ l e t \ j h i r a= \d j h i r as td
\ l e t \ j kata=\dj katastd
\ l e t \ j a=\d jastd \ le t \ j b= \d jbs td

\ le t \ j k= \d jks td \ l e t \ j l = \ d j l s t d
\baselineskip=18pt
\ j intercharskip=O.Opt plus0.08pt
\ jspaceskip=9.l542pt %38dots on 300dpi
\jasciikanjiskip=l.66667pt
plus0.83333pt minus0.55556pt)

Note that only 15 subfonts (corresponding to
\ j s y , \ j h i r a , \ jkata, \ j a , ..., \ j l) are preloaded
and switched by this command. Users must specify
each subfont separately if they want t,o use foreign
alphabets or level 2 kanji. However it is much
better to use m y ' s fonts for roman, greek and even
russian alphabets in normal application. So we
encourage people to use w ' s fonts instead of JIS
foreign alphabets. \ jsmal l used in the example
input file of Appendix 1 is another example of a
font selector.

The control sequence \ j f ont is introduced to
save ~ T m ' s memory space for font information.
Most kanji subfonts have identical TFM file and the
use of this command:

\jfont\fontname=fontfilel f o n t f i l e 2

enables to load f o n t f i l e l as \fontname using
the already loaded font information for f ontf i l e2 .
Thus it does not consume any font space at all.

Modification to w ' s input mouth

Now we can state the task of m ' s input mouth
clearly. Treat every character in the input file as

does except for JIS codes surrounded by escape
sequences. For those two-byte codes. deceive
as if it has seen the corresponding subfont selector
and an appropriate \char command. For example,
if you have the following line in the input file:

. . . <esc>$@$3$1$0FIK\81G9!#<esc>(J . . .
it should be seen as if they were:

. . . {\ j hira\charl9\char76\char47)%
{\ji\charlll){\jk\char37){\jd\char59)%
{\ jhira\char39\char25}C\jsy\3). . .

(Try to decipher it using the font table in Ap-
pendix 2.) There is a little lie in this description.
jl&X performs two other things to ensure the
proper treatment of Japanese text. First, it inserts . . .

\ j f on t \d j kstd=dnpj kk38 dnpj ka38 \ j i n te rcharsk ip between every pair of Japanese

\ font \d j ls td=dnpjk l38 characters. Secondly, it inserts \ j asc i i kan j i s k i p
between an ASCII character and a Japanese one.

106 TUGboat, Volume 8 (1987), No. 2

For the normal setting of these glues in jp la in . tex,
see the excerpt in the previous section.

The first glue ensures that Japanese sentences
can break at any point except "Kinsoku Shori"
explained below. And if it is necessary, this glue
can stretch a bit to enable right justification. The
second glue puts an appropriate amount of space
between an English word and a Japanese character.

The internal data structure for tokens is also
extended, but I do not describe it here.

Kinsoku Shori

Normal Japanese sentences can break at any point
as I stated above. But there are exceptions. These
exceptions are called "Kinsoku" in Japanese and
the proper treatment of "Kinsoku" is "Kinsoku
Shori". Certain characters cannot appear at the
beginning of a line (such as close parenthesis and
comma) and certain other characters (such as open
parenthesis) cannot happen at the end of a line.
These conditions are naturally met in m if you
write these characters next to or just before the
neighboring character without inserting space. But
in m, glues are put into every gap between
Japanese characters so you need to get rid of this
extra glue between a "Kinsoku" character and its
neighbor.

Spacing

Although the number of characters are many. the
saving feature of Japanese characters is that they
all have the same width and height. There is no
kerning, no ligatures, so typesetting is simpler than
English in a sense. But there are a few characters
you must pay attention to. They are punctuation
marks such as period and comma. We have
Japanese period "maru" (1-ku 3-ten) and Japanese
comma (1-ku 4-ten). For these characters rn
provides "Japanese space factor code" (j sf code)
whose function is similar to that of sfcode in w.
Whenever encounters a Japanese character,
this js f code is used instead of sf code.

Carriage return is treated a little bit differently
in m . Single carriage return in JIS characters is
not equivalent to space. So no extra glue is inserted
there. But two or more consecutive carriage returns
has the same effect of ending a paragraph as in m.
ASCII space cannot appear among JIS characters
but Tab can appear because it is one of the control
characters. This Tab is simply dropped by JQX.
To put it in another words, single carriage return,
tab or nothing between Japanese characters are
all converted to \ j in tercharsk ip by except
Kinsoku Shori.

JIS space (1-ku 1-ten, two byte code is "!!") is
treated as a normal Japanese character (although it
is invisible), so it gives you exactly one character-
wide space on output.

Generation of font files from dot fonts

For m and device drivers to work, we need two
kinds of font files: GF files and TFM files. I
generated them from dot fonts by a simple LISP
program.

For the first few months, I tried to gather as
many Japanese fonts in dot format as possible to
enhance m ' s Japanese fonts. There were not
many. but I have found two 24-dot fonts and two
32-dot fonts. One of the 24-dot fonts is part of
the JIS standard for dot printers and one can freely
copy and distribute it. In the beginning, there was
no other way, so I mechanically generated 36, 48
and 72-dot fonts from this JIS 24-dot font to satisfy
the need for larger fonts.

But recently we started collaboration with
DNP (Dai Wippon Printing Co., one of the biggest
printing companies in Japan), and they provide us
with fonts of various sizes. We found out that a
38-dot font goes well with m ' s standard 10 point
font, so we are preparing the fonts (both Mincho
style and Gothic style) with the following dot sizes:

These are for the 300 dpi printers, so if you change
the resolution you need different sizes as well.

Another important factor when generating
Japanese fonts from dot fonts is where to draw the
baseline. If you put a box surrounding a Japanese
character just on the baseline, non-uppercase ASCII
characters look sunk under the baseline. It is diffi-
cult to find the optimal point, but we experimentally
settled on the following solution. Place the baseline
one sixth of the box height above the bottom edge
of the box.

TUGboat, Volume 8 (1987), No. 2 107

Modification to device drivers

As I stated earlier, I tried to make the necessary
modification as small as possible. But you need
some modification to the device drivers if you want
to run the whole system efficiently.

For example, we are now using DEC2065 and
IMAGEN 8/300 and 3320 printers. A device driver
for this combination is known as DVIIMP. This
program loads all the information for a font when
it first encounters a new font. And this becomes a
great overhead if you use it on dvi files generated
by m. Japanese kanji are grouped into subfonts
only by code order and there is no "working set"
property ("use of one character in a font implies
the use of other characters in the same font for
a while") among them. So I modified this device
driver to load the font information of each character
one by one.

On UNIX machines (we use SUN-2 and SUN-
3). there is no device driver which directly uses
the GF file and most of them use old PXL files.
So Japanese fonts are converted to extended PXL
format (extended because it contains more than 128
characters, but the basic structure is the same). and
device drivers are modified to accept this extended
PXL formats.

I made a similar modification to the previewer
in X-window system (xdvi) and it is running on our
s u x s .

Restrictions

jl$J is quite general and can be used as widely as
itself. But there are still minor restrictions.

a You cannot use Japanese characters directly in
math mode. But you can always escape to
horizontal mode using \hbox. so this is not a
real restriction.
You cannot use Japanese characters in control
sequence names. But no one has ever wanted
to do that until now.
The number of Japanese fonts usable in a job is
limited. This limit is 17, because one Japanese
font preloaded by normally consists of 15
subfonts and allows a maximum of 256
fonts. If you use other fonts of TEX or level 2
kanji or JIS foreign alphabets besides normally
loaded Japanese fonts, you must be content
with fewer Japanese fonts. But for ordinary
purposes. this number is just enough. If you
try to typeset a really big dictionary. you may
reach this limit. But well before that you will
face the following restriction.

The IMAGEN print server we are using allows
only 3072 different characters per job. and only
653302 bytes for font information per job. This
is a real restriction for Japanese Tm. For
example, Appendix 1 (only 4 pages!) cannot be
output at once and you need to separate it into
individual pages.

A bit of history

There have been several attempts to use T&X to
format Japanese text. The first and pioneering work
was done by Fujita [I]. It was based on m 7 8 .
The modification of SAIL code together with the
improvements on output device was carried out to
make a usable system. I heard that it is still running
at his lab, but now it is obsolete.

Another one was reported by Sagashima and
Kawabata [2] at the second Japanese T&X Users
Group meeting. (For information on the Japanese
'l$X TJsers Group. see TUGboat vo1.7. no.3, p.192.)
They preprocess a file containing Japanese text to
feed it into W ' s mouth. I got hints from their
work. so this preprocess is similar to m ' s input
processing, but they literally converted Japanese
characters to font selector and \ char pair producing
an expanded intermediate file. They pointed out
various problems: inability to use more than two
Japanese fonts (they have been working with PXL
font files). incompatibility with T#'s magnification
sequence, to name a few.

After hearing their talk. I quickly realized that
you can dispense with the preprocessor if you use
the macro facility of TEX. So the first version
of was realized as a macro package without
changing TEX itself [3]. Although the quality of
fonts was not so good in the beginning. people were
amazed by the fact that TQX can typeset Japanese
with only about 500 lines of macros! I did the first
version just to see the feasibility of using T&X for
Japanese, but people around us started to use JTEX
as a daily tool and lots of them complained about
its inefficiency and poor font quality.

To improve the efficiency I internalized what
the macro does by modifying itself. The
number of changes required is not so great (about
40 change items are added to the change file)
and the result is superb! The current version
of processes a file with Japanese as fast as
original my. Also IPW, AM-mY etc. have
been extended just by preloading l p l a l n . t e x and
amstex. t e x into mX.

To improve the font quality. we have just
started collaboration with DNP (Dai Nippon Print-
ing Co.). They have their own high quality font in

TUGboat, Volume 8 (1987), No. 2

vector format, and. they kindly provide us with dot
format versions of various sizes. An example output
in Appendix 1 and sample font tables in Appendix
3 use these fonts from DNP.

Availability

jT@ is public domain software. It now works
on DEC2065 under TOPS-20 version 6.1 and on
various UNIX 4.2bsd systems. Several universities
have began to use it on their UNIX machines. If
you have a running TfjX with a decent device driver,
jT@ should work too without trouble. (You may
need to modify your driver a bit.)

Font files generated from the JIS 24-dot font
are also public and can be obtained from the author.

Several modified utility programs such as a
previewer are also available.

Future work

What is necessary for using 'I$$ to typeset Japanese
is almost completed with m. But there remain
many things to be done if you consider w as a
total typesetting system.

Some Japanese texts are written up to down.
And we need to support that. But this is
rather simple. Just rotate the font 90 degrees
counterclockwise and adjust the centerline of
each character if necessary.
We need to build a collection of macro packages
to facilitate the use of in various applica-
tions. Locally various forms are converted to

format, and several Japanese academic
societies show interest in using J~$J for the
publication of their journals. You may see the
emergence of J M S - r n in the near future.. . .
I t may be necessary to enlarge the number of
Japanese fonts usable in one document. This
is not so difficult. I could have done so if I
wished. and I am ready to do so if there are
sufficient demands.
Enhancement of Japanese fonts is really needed.
To define all Japanese characters in META-
FONT is a great challenge. And in the long
run, someone or a group of people. preferably
consisting of both font designers and computer

Acknowledgement

My thanks go to many people. Mr. Enari and
Mr. Ishii of DNP for providing us with the good dot
fonts in various sizes, Prof. Samuel for helping me to
modify DVIIMP and giving me useful information
on IMAGEN printers. Mr. Amamiya and Mr. Goto
who provided the machine environment in which
I can work, and many colleagues who used and
criticized and found bugs in early versions of ,=.

Finally I want to mention that without ''W:
The program" my endeavor to extend to
Japanese typesetting would have taken more time
than I could afford. It has been both fun and
exciting to read through the book seeking the best
solution for the problem. So my thanks also go to
Prof. Knuth.

References

[I] Hiroshi FLJITA: "Technical document type-
setting system: w' (in Japanese), Infor-
mation Processing, vo1.25. no.8, pp.848-853
(Aug. 1984).

[2] Masaaki NAGASHIMA and Youichi KAWA-
BATA: "Printing Japanese language using
W" (in Japanese), handout of the 2nd
Japanese Users Group meeting (Jul. 1986).

[3] Yasuki SAITO: "Japanese TEX" (in Japanese),
Working Group on Japanese Document Pro-
cessing 10-3. IPJSS (Jan. 1987).

-

scientists, must do it.

TUGboat, Volume 8 (1987), No. 2

Appendix 1 Sample Input file and O l ~ t p u t generted by JTEX

110 TUGboat, Volume 8 (1987). No. 2

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

114

JIS Code Table (bottom right quarter)

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

Appendix 3 Sa inp le Font Tnhle for severa l subfouts

Test of ilnpjlilra.3S on 51ay 16, l!,S7 at 1254

116

Test of dripjka3S on May 16, 1987 at 1253

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2 117

Multiple Changefiles:
The Adventure Continues

E. W. (Wayne) Sewell
Software Engineering Specialist

The subject of multiple changefiles for the same WEB
program has appeared several times in recent issues
of TUGboat (Appelt and Korn, Vol 7, #l. and
Guntermann and Rulling. Vol 7. #3). Even though
the general TUG readership may be tiring of this
subject, it is still a valid concern for anyone actively
involved in WEB programming. This article describes
yet another approach to the subject. embodied in a
program called WEBMERGE.

A perfect example of the use of a program
such as WEBMERGE is the Modula-2 WEB system
described elsewhere in this issue (page 118). MWEB
was implemented as a pair of changefiles applied
to TANGLE and WEAVE. containing the modifications
to allow WEB to work with the language Modula-2.
However. virtually every implementation of a WEB
program written for portability requires a changefile
to tailor the program to the target system. These
two sets of changes are independent and (hopefully)
mutually exclusive. since the MWEB changes have to
do with the program logic and the implementation
changes deal primarily with the interface to the
operating environment, but both must be applied
to the same WEB source file. TANGLE and WEAVE,
the WEB processors, expect only one changefile
containing all of the changes to be incorporated.
WEBMERGE can combine the two sets of changefiles
into single files acceptable to the two programs.

Another valid use of WEBMERGE is in changes
to be permanently applied to the main WEB file
of a program, such as the updates to META-
FONTware made by Tom Rokicki in the October
1986 TUGboat. These changefiles were not intended
to be used as input to TANGLE and WEAVE, but were
printed as if they were changefiles to guide the
installer in making the changes directly to the WEB
files with a text editor. WEBMERGE could have been
used to process them like any other changefile to
create a new WEB file.

The implementation of WEBMERGE is conceptu-
ally closer to the stand-alone TIE program described
by Guntermann and Rulling than to the modifica-
tions Appelt and Korn made directly to TANGLE and
WEAVE. Virtually all of Guntermann and Rulling's
article applies equally well to WEBMERGE. Both pro-
grams apply multiple changefiles to a WEB file and
generate either a new WEB or a composite changefile
containing the combined changes.

The basic difference between TIE and WEB-
MERGE is in how the multiple changefiles relate to
each other. The operation of the two programs
should be pretty much the same when there is no
change conflict (the case where more than one of
the changefiles tries to modify the same lines of
code), but the programs oyra te very differently
when conflicts occur. In the sequential approach
taken by Guntermann and Rulling, "the addition of
changefile f,+l behaves as if the changefiles fl to
f, had been merged into the WEB program before".
The problem I see with this approach (assuming I
am understanding it correctly) is that it requires
the changefiles to be aware of the existence of each
other. In other words, if changefiles f l and f:!

modify the same parts of a program. file fa must
be written to modify fl rather than the WEB file
itself. This precludes using fi without fl. If
the changes made by the two changefiles are truly
independent. then it should be possible to handle
them independently as well. It might be desir-
able to apply f:! with a different f l or by itself.
To reuse the MWEB example from above, change-
files WEAVE. VAX and MWEAVE . CH exist, both based
on WEAVE. WEB. Applying MWEAVE . CH to WEAVE. WEB
produces the generic version of MWEAVE (Modula-2
WEAVE). Applying WEAVE. VAX to WEAVE. WEB results
in the VAX-specific version of regular WEAVE. Merg-
ing WEAVE. VAX and MWEAVE . CH together results in
MWEAVE.VAX, which can then be used to create the
VLX version of MWEAVE. Either of these changefiles
can be used alone or with the other with no mod-
ifications. Also, MWEAVE.CH can be merged with
a completely different implementation changefile to
produce MWEAVE for another environment, without
changing either file.

In contrast to TIE, WEBMERGE applies all of the
changefiles to the original WEB file in parallel. If a
conflict occurs, one of the changefiles is selected to
apply that change. and the others are flushed (in
this case. "flushing" a changefile means discarding
the current change section for that file and moving
ahead to the next one). A warning message is
sent to the screen identifying which two files had
a conflict. which file was flushed. and the source
line on which the conflict occurred. Both the line
number and the contents of the line are displayed
so it is easy to determine exactly where the conflict
occurred. Which file is used and which ones ar?
flushed depends on how the conflict occurs. Two
rules apply: a changefile with a matching operation
already in progress has precedence over any others
which match later lines; if no change is currently in
progress and more than one file matches on the same

118 TUGboat, Volume 8 (1987), No. 2

line of the WEB file, the higher priority changefile is
used. Priority refers to position wit,hin the list of
changefiles (f l would have a higher priority than
f2).

Conflicts when merging changefiles are in-
evitable. While significant conflicts are not very
likely, since the changes being merged are normally
for different purposes and modify different portions
of the code, conflicts of a trivial nature occur of-
ten. For instance: many WEB programs follow the
example of Stanford and output a "banner line" to
the terminal to identify the program and its version
level! as in:

Qd banner=='This is WEAVE,
Version X.X'

Nearly all changefiles modify this line to reflect
what change they are making to the program, such
as :

Qd banner=='This is WEAVE
with hyperspace option, . . . '

Qd banner=='This is MWEAVE,
Modula-2 WEAVE, . . . '

for modifications to the logic of the program itself
or

Qd banner=='This is WEAVE,
VAX/VMS Version . . . '

Qd banner=='This is WEAVE,
Microsoft Pascal Version . . . '

for the various implementation changefiles. How-
ever, when multiple changefiles are being merged.
the banner line of none of them is correct, since
the version of the program actually executing is a
combination of the two:

Qd banner=='This is MWEAVE,
VAX/VMS Version . . . '

The \title command in the '%mbo" portion
of a WEB program falls in the same category as the
banner line, since it is also a target common to
many changefiles.

The solution to this problem is to create a
third changefile containing nothing but conflict
resolutions. Its change sections would consist only
of the composite banner line and title. It should
be placed first in the list, so that its changes
will override all of the others. Since the conflicts
it addresses are expected, the warning messages
can be ignored. (It goes without saying that any
unexpected conflicts which surface must be analyzed
to insure that they don't change the logic of the
program to an uncompilable or unexecutable state.)

If the sequential approach of TIE is truly
needed, the case where one changefile needs to be
fully applied before the second one is applied to the

result of the first. this can be accomplished serially
by using WEBMERGE to create an intermediate WEB
file and then applying the second changefile to it.
Of course. this does require additional steps, but
that's what batch files and command procedures
are for.

Hopefully, WEBMERGE should be available from
Stanford on the regular distribution tape by the
time this reaches print. The WEB files and the VAX
implementation files should be available from Stan-
ford and additionally from Kellerman and Smith.
For the people who have absolutely no way of
reading a magnetic tape. the IBM PC version is
available from me on PC floppies for a handling
fee. Additionally, the original TANGLE and WEAVE,
the MWEB system described elsewhere in this issue,
and several of the Tm and METAFONT utility
programs (sometimes referred to as myware and
METAFONTware) are also available on floppy. All of
these have change files targeted for Microsoft Pascal
running under MS-DOS on the IBM PC. which is
my development system. As far as other target
computers are concerned. WEBMERGE was cannibal-
ized from TANGLE. so it should be possible to adapt
the current implementation-specific changefile for
TANGLE without too much difficulty. If you have
TANGLE running, you should have no trouble with
WEBMERGE.

How to MANGLE Your Software:
The WEB System for Modula-2

E. W. (Wayne) Sewell
Software Engineering Specialist

Standard Pascal is an incomplete language from a
real-world production software point of view. This
is not surprising, since the language was originally
designed by Kiklaus Wirth as a tool for teaching
structured programming, and was never intended
for development of production code. The only
reason for the widespread use of Pascal is that
the various implementors extended the language
tremendously when they developed their compilers.
VAX Pascal is a good example of a full-featured
production compiler. Its many extensions to Pascal
allow sophisticated systems to be developed with
it. Virtually every implementation of Pascal has
to extend it in some way, since standard Pascal
(as described in Jensen & Wirth) is absolutely

TUGboat, Volume 8 (1987), No. 2 119

unusable. and IS0 Pascal is not much better. While
the extensions make Pascal a viable language,
portability suffers because each of the implementors
extended the language a different way, resulting
in a Babel of dialects that is surpassed only by
the BASIC language. Porting a program from one
Pascal to another is a major effort, even on the
same machine. Typical of the problems encountered
is the case statement. The action to be performed
if none of the cases match is not defined in standard
Pascal. Since this is a major hole in the language,
most implementations try to fill it. Some provide
an else or otherwise clause, others use labels (such
as others: or otherwise:). Whatever mechanism a
compiler uses, it is different from what every other
compiler uses.

The WEB system tries to counteract the porta-
bility problem by using macros for constructs that
should have been addressed in the language and
then redefining the macros in the implementation-
specific change files to generate the correct code.
allowing the generic WEB file to remain constant for
all implementations. While this makes it possible
to write portable Pascal programs, it would still
be much less work if the language itself were more
standardized.

While WEB does a tremendous job of overcoming
the deficiencies of Pascal, there are limits to what
can be accomplished. For instance, Pascal does not
support separate compilation. A Pascal program
is a monolithic block which must be compiled as
a unit. Include files, which allow a program to
be broken up into more than one source file, do
not change this fact because the program is still
logically one large block and must be compiled as
such. Variables not local to a procedure are global
to the entire program and are therefore available
for accidental modification. Unrelated parts of the
program can interact in unexpected ways, especially
if the same variable names are used in more than one
place. For example, forgetting to declare a variable
which should be defined local to a procedure will
be detected immediately by the compiler unless a
variable of a compatible type with the same name
is declared globally. The result is that the wrong
variable. one unrelated to the procedure, will be
modified. Errors of this nature can be very difficult
to find. The WEB system can help detect this type
of error (if the programmer happens to notice the
inconsistencies in the cross-reference listing), but
will not prevent it from happening.

The language Modula-2 was designed by Wirth
to be the successor to Pascal. Unlike the original
Pascal, it was designed to be used for developing

real software. Most of the problems with Pascal are
corrected by Modula-2, including the case problem
mentioned above. The syntax is more straightfor-
ward, with less likelihood of ambiguities. The most
important contribution of Modula-2 is that embod-
ied in the name-the module concept. Modula-2
makes it possible to break up a large program-
ming project into smaller independent pieces, called
modules, each logically isolated from the others via
the software engineering principle of znformatzon
hzdzng.

The Modula-2 language is much more stan-
dardized than Pascal. Since the language is so
much more powerful, there is less need to extend
it. Input and output, the bane of portability, are
completely removed from the language definition
itself and are instead banished to library procedures
that are more-or-less standardized.

While Modula-2 fixes most of the problems of
Pascal and nearly all of the differences between
Modula-2 and Pascal are improvements, a couple
of the features of the language are steps backward,
in my opinion. Case-sensitivity is one of the non-
enhancements. In a Modula-2 program, junk. Junk,
and JUNK would be considered three different
variables. The reason for this change from Pascal.
if any, is not obvious. I have never heard a
reasonable explanation for it. Equally annoying, all
of the Modula-2 reserved words are required to be
in uppercase. This one almost makes sense, since
having the reserved words stand out in this way
would make a regular ASCII listing more readable.
However, I don't feel that this slight benefit is
worth the extra effort involved in writing a program.
Using a powerful editor with macro and/or template
capability which can fill in the reserved words on
behalf of the programmer would make this less
painful. but not necessarily enjoyable. I don't wish
to give the impression that I am down on Modula-2
because of these issues. It is still my language
of choice because the tremendous advantages it
provides greatly outweigh the irritations.

MWEB is a version of the WEB system which has
been customized for the language Modula-2. Many
of the deficiencies of Pascal that are repaired by the
WEB system are unnecessary in MWEB, since Modula-2
fixes most of them in the language definition itself.
Some examples are the else clause on a case
statement, the standard procedure to increment a
variable (INC), and the loop, exi t , and re tu rn
instructions. To counteract the new problems
introduced by the language, I designed MWEB to
fix Modula-2 in the same way that Modula-2 and
standard WEB fix Pascal. The effort expended by

TUGboat! Volume 8 (1987), No. 2

MWEB in this effort is small compared to the lengths
necessary to bring Pascal to a usable state. The
result of the merger of Modula-2 and MWEB is a
programming system that has the advantages of
both and few of the disadvantages.

The transformation from WEB to MWEB was com-
paratively easy -Pascal and Modula-2 are so much
alike to begin with, at least syntactically. In fact.
Modula-2 is actually less complicated than Pascal
and has a cleaner syntax with fewer ambiguities.

MANGLE and MWEAVE were created by modifying
their regular WEB counterparts with a standard
change file. I wanted to minimize the modifications
to the code, limiting them to those absolutely
necessary to process Modula-2.

Very few modifications were required to trans-
form TANGLE into MANGLE. Many more changes had
to be made to WEAVE to support Modula-2. since
WEAVE has to know enough about the language to
format it properly. Some changes could have been
made with the built-in mechanisms of WEB, such as
the formatting command

format module - program

which creates a new reserved word module and
causes it to be formatted as if it were program.
The problem of this approach is that it has to be
duplicated in every source file, putting the burden
of implementing MWEB on the user rather than on the
developer (myself). I decided to add the Modula-2
reserved words into the internal tables. Several
new reserved words were added (re tu rn . exi t , by.
impor t . etc.) and others not needed for Modula-2
were dropped (goto. label, downto. file, and
others).

The following issues surfaced during the imple-
mentation of MWEB:

9 Identzfier length. The size of an identifier had to
be increased. The TANGLE limit was insufficient.
since some of the standard Modula-2 library
modules had identifiers far longer, and the
truncated identifiers would not match. Unlike
Pascal. Modula-2 does not specify a maximum
identifier length; all characters in an identifier
are considered significant. However, since
it is difficult to use x as a constant in a
computer program. I just picked a number out
of my hat - 31 characters maximum length. 20
for unambiguous length. It can be changed
if needed. The length of reserved words
also had to be increased so that words such
as definit ion and implementat ion could be
accommodated.

Comments. All code related to comments
had to be changed. While Pascal can have
comments delimited by either (* *) or C 1,
Modula-2 uses only the former, since the braces
are used elsewhere in the language definition
(as set delimiters). Fortunately, this is a
common and well-documented modification to
TANGLE, since some of the more primitive Pascal
systems have the same restriction. On the
other hand, Nodula-2 allows nested comments.
so the comment-handling code in MANGLE could
be simplified (the comment delimiters for the
inner nest levels no longer have to be converted
to [1 for the program to compile). The
metaconlrnent delimiters are still @(and a):
although they are converted to (* *) when
output.
Case sensitivity. The automatic forcing of ev-
erything to uppercase by MANGLE was a poten-
tial problem, since Modula-2 is case-sensitive.
This mechanism could not be disabled. be-
cause the Modula-2 reserved words do have to
be uppercase and MANGLE cannot differentiate
reserved words from any other identifiers. I
considered giving MANGLE a reserved word ta-
ble like that of MWEAVE. but that was a more
radical change to the code of TANGLE than
I had planned. I finally decided this was a
non-problem, since all occurrences of an iden-
tifier, definition and references alike, are forced
to uppercase on an equal basis. If definition
modules. implementation modules. and client
modules are all MANGLED, all inst,ances of the
identifier will still match. This automatic forc-
ing to uppercase removes the requirement in
Modula-2 of reserved words being in uppercase
in the source. As described above, the upper-
case words are for readability, but the bold font
used by MWEB is much more readable. Leaving
MANGLE'S uppercase mechanism intact disables
the ability of Modula-2 to have multiple identi-
fiers in a program differing only in case, (junk,
Junk, and JUNK), but I consider this a poor
practice anyway. (I will stop just short of say-
ing that anyone who does it deserves whatever
happens to them.) The only real problem with
the uppercase characters occurs with imported
modules which were not generated with the
MWEB system (such as the library modules sup-
plied with the compiler). For identifiers such as
these, which must contain lower or mixed case.
the WEB command to Lipass through" Pascal

TUGboat, Volume 8 (1987); No. 2 121

code without modification (@=verbatzm text@>) Other special characters. Modula-2 adds some
must be used. For example: new special characters to optionally replace to-

f rom @= InOut @> import \\ @= W r i t e s t r i n g @>

Some predefined identifiers are all uppercase to
begin with. such as the primary library module
SYSTEM or the increment instruction INC.
These can be left alone.
Vertzcal bar character. The vertical bar char-
acter (I) had to be specially handled, since it
is used by both Modula-2 and WEB for different
purposes. WEB uses it to delimit Pascal code
embedded within code, such as

The va lue of Igood-stuf f1
shou ld be ou tpu t on ly i f
Ibu f fe r_ index<=471,
o the rw ise . . .

while Modula-2 uses it to mark the end of
the statement sequence following a case label
(except for the last one), as in

c a s e junk of
I : r := 10 ;

m : = 6 0 1
2 : k := 7 1
3: m := 6
end ;

A true conflict between the two usages is un-
likely. because Pascal code within code
usually consists of short expressions or simple
variable names rather than compound state-
ments such as case. MWEAVE has been modified
to identify the usage of the vertical bar by
context. It will use the Modula-2 version in
the code part of a section and the WEB version
within code (including module names and
comments in the code section). If for some
reason a case statement is needed within
code, two adjacent bar characters (I I) are
used to represent the Modula-2 case separator
and are compressed by MWEAVE into an internal
character which is output as the regular vertical
bar character.
Underlzne character. The usage of the uuder-
line character in identifiers. absent from the
Modula-2 language definition as it is from stan-
dard Pascal. is provided by MWEB. I agree with
Donald Knuth that
identifiersseveral-wordslong are much more
readable than IdentifiersSeveralWordsLong,
which is Wirth's approach. MANGLE removes
the underlines before passing the program to
the compiler, like TANGLE does.

. kens which require a two-character combination
or a reserved word in Pascal (# for <>, - for
not, and & for and). Modifying MANGLE and
MWEAVE to handle & and - was no problem, but
is already used by the WEB system for macro
parameters. For example. the two definitions

@d tes t (#)==m[# l <> x[j+#I
@d tes t (#)==m[# l # x [j+# l

are logically equivalent from a Modula-2 stand-
point, but the output generated by the regular
TANGLE and WEAVE for the second would not be
what the programmer expected. The parsers
of the two programs would not be able to dif-
ferentiate between the middle #. which means
#. and those in the array index expressions,
which are intended to be replaced by the macro
parameter. To resolve this ambiguity. MANGLE
and MWEAVE have been modified to accept the
Modula-2 version of # anywhere in a WEB pro-
gram except within a macro definition, where #

will continue to represent the parameter.
Of course. the old Pascal symbols still work.
These new symbols, and the modifications to
handle them, are largely irrelevant when the
WEB system is being used. because MWEAVE will
convert them to #, 1, and A anyway.
Quotes. Modula-2 allows strings to be delimited
by either single or double quotes (' or "). While
this is a definite improvement. it does conflict
with WEB. in which single quotes delimit regular
strings, while double quotes identify strings
destined for the "string pool", a special WEB
mechanism whereby the strings so designated
are written to a separate text file to be read
at run-time. Rather than disable the string
pool. I reluctantly decided that the user would
just have to continue using single quotes as in
Pascal.
The macro package. Surprisingly few modifica-
tions were required to the WEB macro package.
WEBMAC .TEX. In fact, I decided not to modify
it at all. A new file, MWEBMAC .TEX. inputs the
original WEBMAC . TEX, then redefines one macro
and adds one new one. The comment macro
\C{. . . I was redefined to generate (* *) in-
stead of {). and \VB was added to generate
the vertical bar character. Not counting blank
lines. MWEBMAC. TEX is only five lines long.

The sample program provided with this article.
SCANTEX, actually perfornls a useful function. It
scans a file generated by WEAVE (or MWEAVE. of

TUGboat, Volume 8 (1987), No. 2

course) and copies only the sections which have been
modified by a change file to a new 7QX file, resulting
in an abbreviated program listing containing only
the changes. The unchanged sections are not copied,
nor are the cross-references, the section names, or
the title page, which includes the table of contents.
Typically, a WEB program running on a wide range
of machines (such as itself) has a great number
of change files applied to it. For the most part,
the main portion of the program is identical in
all implementations and certain sections, containing
"system dependencies", are different for each one.
Since WEAVE generates a complete listing every
time it is run, and a program the size of WEAVE
or TANGLE runs to about a hundred pages (and
that is small compared to 7QX or METAFONT),
a lot of paper is consumed printing several large
listings that are essentially the same. Since writing
SCANTEX, I have adopted the practice of printing
one full listing generated from the pure WEB source
(the way it comes from Stanford, with no change
files applied), followed by an abbreviated listing
generated by SCANTEX for each change file applied
to that program. (In fact, in some cases I print
only the changed sections, referring to published
versions of the pure WEB source rather than printing
it myself. In the case of m, I refer to the book
m: The Program; most of the other Stanford-
developed programs also exist as bound documents
(available from Maria Code).

Experienced WEB users may wonder why I went
to the trouble of writing a program to duplicate a
function already provided by the WEB system itself,
since the suppression of unchanged sections can be
accomplished by placing

into the limbo section of the WEB file. The reasons
were:

SCANTEX does not print the index. Since the
index contains entries for the full listing rather
than just the abbreviated one, a program the
size of 7&,X can have an index that is much
longer than the rest of the listing.
Since SCANTEX is an external program, neither
the WEB file nor the changefile need be modified
to turn suppression on or off.
If the TEX file is to be saved, the reduced
version generated by SCANTEX takes up much
less disk space.

4. I was unaware that the builtin mechanism
existed when I wrote SCANTEX (the real reason).
Since it is buried deep in Appendix G of the
WEB manual, it is easy to miss.

As can be seen from the SCANTEX listing, MWEB
is not that different; on first glance, it could be
mistaken for standard WEB. Closer inspection would
reveal the differences in reserved words, in com-
ments, and in compound statements. Note the use
of the elsif statement. The boxes around words such
as "Writestring" are an unforeseen side effect of
use of the "pass through" WEB command described
above to keep selected words from being forced
to uppercase. While startling, it does point out
which identifiers require special treatment. I highly
recommend using the approach taken in SCANTEX:
define simple macros equivalent to each of these ex-
ternal identifiers and use the macro everywhere else
in the program, including the import statement.
This isolates the boxes to the section containing the
definitions rather than sprinkling them throughout
the program.

Hopefully, MANGLE, MWEAVE, MWEBMAC . TEX,
SCANTEX, and a few other sample MWEB programs
should be available from Stanford on the regular
distribution tape by the time this reaches print. The
WEB files and the VAX implementation files should
be available from Stanford and additionally from
Kellerman and Smith. For people who have abso-
lutely no way of reading a magnetic tape, the IBM
PC version is available from me on PC floppies for a
handling fee. Additionally, the original TANGLE and
WEAVE, the WEBMERGE program described elsewhere
in this issue (page 117), and several of the TEX and
METAFONT utility programs (sometimes referred to
as m w a r e and M E T A F O N T W ~ ~ ~) are also available
on floppy. All of these have change files targeted
for Microsoft Pascal running under MS-DOS on the
IBM PC, which is my development system. As far
as other target computers are concerned, MANGLE
and MWEAVE are implemented as standard change
files applied to TANGLE and WEAVE, so they can
be merged with the current implementation-specific
change files. WEBMERGE can be used for this purpose.
If you have TANGLE and WEAVE running, you should
have no trouble with MANGLE and MWEAVE.

TUGboat, Volume 8 (1987) , No. 2

The SCANTEX Processor

Version 1.0

1. Introduction. This program takes a TEX file
generated by WEAVE and strips out the sections which
have not been changed, outputting the changed
sections to a second, greatly reduced B X file. The
index. section names, and table of contents are
dropped as well.

The program uses a few features of the Modula-2
compiler used in its development (Logitech hlS-
DO§) that may need to be changed in other instal-
lations. System-dependent portions of SCANTEX can
be identified by looking at the entries for 'system
dependencies' in the index below.

The "banner line" defined here should be changed
whenever SCANTEX is modified.

define
banner =
~Th~su~suSCANTEX,uVers~onU1.Oo

2. The program begins with a fairly normal
header, made up of pieces that will mostly be
filled in later. The T&X input comes from file
TeX-file and the new output goes to file
out.. TeX-file . Unlike Pascal, Modula-2 does not
require the constant. type. and variable sections to
be placed here in the program header in a rigidly
specified order. but we will do it anyway. since WEB
makes it so easy.

module scan-TeX: (Import List 4)

const (Constants in the outer block 5)
type (Types in the outer block 6)
var (Globals in the outer block 7)

3. This procedure initializes the module.

procedure init ial ize;
var (Local variables for initialization 15)
begin

(Set initial values 8)
(Initialize the file system 1 6) ;

end init ial ize;

4. A few macro definitions for low-level output
instructions are introduced here. All of the terminal-
oriented commands in the remainder of the module
will be stated in terms of simple primitives. The
boxes signify words that must not be forced to
uppercase when the program is MANGLED, since
Modula-2 is case-sensitive.

define pr-char = -1 (* library
procedure to output a character *)

define pr-string = I uw r i t es t r i ngu] (* library
procedure to output a string *)

define rd-string - I , ~ e a d ~ t r i n ~ , 1 (* library
procedure to input a string *)

define pr-card - j,WriteCard, /
(* library procedure to output a
cardinal number *)

define new-line - /,WriteLn,/ (* a new line *)
define print-string (#) = pr-string (#) (* put a

given string to the terminal *)
define read-strzng(#) = rd-strzng(#) (* read a

given string frorn the terminal *)
define prznt-cardznal(#) = pr-card (#, 1) (- put

a given cardinal to the terminal. in
decimal notation. using only as many
digit positions as necessary *)

define prznt-ln(#) = pr-strzng(#); new-lzne:
(*put a given string to the terminal,
followed by a new line *)

define prznt-char (#) r ~ r - c h a r (#) (r put a
given character to the terminal *)

i I m ~ o r t List 4) =
\ A

frorn .InOut,l import
pr-strzng , rd-strzng , pr-char . pr-card . new-lzne :

See also sections 10 and 11
This code is used in section 2.

5 . Let's define a few constants.

(Constants in the outer block 5) E

buf-szze = 1000:
(* maximum length of input line *)

file-name-len = 200: (* length of a file name *)
This code is used in section 2

6. A global variable called hzstory will contain
one of four values at the end of every run:
spotless means that no unusual messages were
printed: harmless-message means that a message
of possible interest was printed but no real errors
were detected: error-message means that at least
one error was found: fatal-message means that
the program terminated abnormally. The value
of hzstory does not influence the behavior of the
program: it is simply computed for the convenience
of systems that might want to use such information.

We don't really have to worry about errors too
much in this particular program because the input
is machine-generated (by WEAVE). The error likeliest
to occur is failure during file opens.

124 TUGboat, Volume 8 (1987), No. 2

de f i ne mark-harmless -
i f history = spotless t h e n

history +- harmless-message;
end ;

d e f i n e mark-error history t error-message
de f i ne mark-fatal - history t fatal-message
de f i ne err-print (#) print-ln (#) ; mark-error ;

(Types in the outer block 6) r
error-level = (spotless. harmless-message,

error-message , fatal-message):
This code is used in section 2.

7. (Globals in the outer block 7) -
history: error-level; (* how bad was this run? *)
See also sections 1 2 and 18.

This code is used in section 2.

8. (Set initial values 8) -
history +- spotless;

See also section 17.

This code is used in section 3.

9. Some implementations may wish to pass the
value of the history variable to the operating system
so that it can be used to govern whether or not
other programs are started. The doscall procedure
passes a program status value back to DOS. We use
fatal-error to terminate the program abnormally.

de f i ne print-fatal-message z
print-string (- (That,was,a,f a t a l , ');

print-ln (- e r r o r , ,myuf r i e n d . ')
de f i ne fataLerror(#) mark-fatal; print-ln(#);

print-fatal-message: doscall("4C, history);

(Terminate program, converting history to program
exit status 9) -

doscall("4C, history);
This code is used in section 24.

10. If we are going to use doscall from the
Logitech library we have to import it from the
module system.

(Import List 4) +-
f r o m system i m p o r t doscall;

11. Fi le Hand l i ng . Here we define the symbols
for use with file handling.

de f ine lookup =: /uLookupu/
(* library procedure to open a file *)

def ine close - /,Closeul
(* library procedure to close a file *)

def ine failure (#) (#. # [donel)
(* last file operation sucessful ? *)

def ine abort-if-open-error (#) =:
i f failure (#) then

print-string ('unable,to,openu *):
fatal-ermr (filename):

end ;
def ine open-input-file (#) r lookup (#. filename,

false); abort-if-open-error (#)
def ine open-output-file (#) G lookup (#> filename:

true): abort-zf-open-error (#)
def ine close-file (#) G close (#);
def ine end-ile - reof
def ine null-char - /unul,/
define end-of-he(#) (ch = eol)
de f ine end-of-file(#) z (#.endfi le) - .
def ine read-char / u ~ e a d ~ h a r , 1
def ine wrzte-char E / u ~ r i t e ~ h a r u]
de f ine znput-char (#) - read-char (#. ch);
de f ine output-char (#) = write-char (#, ch)
de f ine read-ln (#)

wh i l e end-of-line (#) d o
input-char (#);

end ;
def ine write-ln (#) write-char (#, eol);
de f ine text-file r /,File,/

(I n l ~ o r t List 4) +- , A

f r o m [, ~ i l e ~ ~ s t e m , / i m ~ o r t lookup, -1.
read-char. write-char, text-file, close;

f r o m ascii i m p o r t eol, null-char;

12. Input goes into an array called buffer.

(Globals in the outer block 7) +-
buffer: a r r a y [O . . buf-size] o f char;
TeX-file, out-TeX-file: text-file;

13. The input-ln procedure brings the next line
of input from the specified file into the buffer array
and returns the value true, unless the file has
already been entirely read. in which case it returns
false. Under normal conditions, we will never
reach true end of file, for reasons discussed in later
sections, but we will handle it anyway. Trailing
blanks are ignored and the global variable limit is
set to the length of the line. The value of limit
must be strictly less than buf-size.

TUGboat, Volume 8 (1987): No. 2 125

procedure input-ln(var f : text-file): boolean;
(* inputs a line or returns false *)

var final-limit: [0 . . buf-size];
(* limit without trailing blanks *)

ch: char; (* current input character *)
line-pres : boolean;

(* temporary result of procedure *)
begin

limit +- 0; final-limit +- 0;
i f end-of-file (f) t hen

line-pres +- false
else

input-char (f);
while 7 end-of-line (f) do

i f ch = null-char t h e n
return false

end ;
buffer [limit] +- ch: inc (l imit);
i f buffer[limit - 11 # -,' t h e n

finaLlimit +- limit
end :
i f limit = buf-size t h e n

read-ln (f) ; dec (l imit):
err-print (* ! ,Inputuline,tooUlong~);
return true;

end ;
input-char (f);

end ;
read-ln (f) ; limit +- finaLlimit ;
line-pres + true;

end :
return line-pres;

end input-ln;

14. The output-ln procedure writes the next line
of output from the buffer array to the specified file.

procedure output-ln(var f : text-file);
(*outputs a line *)

var ch: char; (* current output character *)
temp: [O . . buf-size]:

begin
i f limit > 0 t h e n

for temp +- 0 t o limit - 1 do
ch +- buffer [temp]; output-char (f) ;

end ;
end ;
write-ln (f);

end output-ln;

15. We define filename local to the initalization
procedure because it is used only during file open.

(Local variables for initialization 15) =
filename: array [O . . file-name-len - 11 o f char;
This code is used in section 3.

16. In this section we open both of the files.

define next-file (#) 7 filename [O] + -u - :
print-ln (#): read-string (filename):
new-line; print-ln (filename); new-line:

(Initialize the file system 16) =
next-file(-TeX,f i l e : *);
open-input-file (TeX-file);
next-file(*outputuTeXuf i l e : *) ;
open-output-file (out-TeX$le);

This code is used in section 3.

17. Here we initialize most of the variables. The
output-enabled flag is initialized to true so that the
lines in the header of the WEAVE-generated TEX file,
known as "limbo text", are picked up in addition to
the changed sections.

(Set initial values 8) +=
TeX-lane t 0; out-TeX-lzne t 0; lzmzt +- 0:
bufler[O] t O u - ; znput-has-ended + false;
output-enabled +- true:

18. (Globals in the outer block 7) +e
TeX-line : cardinal; (* the number of the current

line in the main file *)
out-TeX-line: cardinal; (* the number of the line

in the output ?r(file *)
limit: [O . . buf-size]; (* the last character position

occupied in the buffer *)
input-has-ended: boolean;

(*there is no more input *)
output-enabled: boolean:

(* we are copying input lines to output *)

19. Main Input Loop. This is the main pro-
cessing loop of SCANTEX. We simply read lines until
end of file. The get-line procedure will determine
the setting of the output-enabled flag. If set, we
copy the line to the output file.

(Read the input 19) -
while input-has-ended do

get-line;
i f output-enabled t h e n

output-ln (out- TeX-file): inc(out-TeX-line);
end ;

end ;
This code is used in section 24.

20. The get-line procedure is called to read in
the next line and scan it. We will output an "I'm
alive!" dot to the terminal every 100 input lines
and a new line every 2000.

126 TUGboat, Volume 8 (1987) , KO. 2

procedure get-l ine: (* inputs the next line *)
var keep-looking : boolean ; temp- index : cardinal:
begin

input-has-ended +- l i n p u t - l n (T e X - f i l e) :
if input-has-ended then

output-enabled +-false; return ;
else

i n c (TeX- l i ne) ;
if (TeX- l i ne mod 100) = 0 then

print-char (* . -);
if (TeX-l ine mod 2000) = 0 then

new-l ine;
end ;

end :
(Scan the line 21);
bu f fe r [l im i t] t ' ; ;

end ;
end get-l ine;

21. In this section we determine whether the
current line is the beginning of a section ('\M'
or '\N' at beginning of line. followed immediately
by a section number) and. if so, whether the
section has been modified (' *. ' following the
number). We update the output-enabled flag
according. Additionally, the index section (' \ lnx3)
is considered end of file. If it is detected. we set
the flag znput-has-ended to terminate the program
and set output-enabled to false to keep the \ m x
command from being copied to the output file.

define numerzc-dzgzt-at (#) = ((bu f fe r [#] 5 - 9 *)
A (bu f fe r [#] > - O -))

define thzrd-char-matches (#) -
(bu f fe r [temp-zndex + 21 = #)

define second-char-matches (#) -
(bu f fe r [temp-zndex + 1] = #) A
thzrd-char-matches

define char-matches (#) - (bu f fe r [temp-zndex] =

#)
define three-chars-match(#) = char -matches(#)

A second-char-matches
(Scan the line 21) E

temp-zndex + 1:
if (lzmzt > 3) A (buf fer [O] = - \ *) then

if (char -matches (O M *) V char-matches (* N *)) A
numerzc-dzgzt-at (2) then

(Search for ' * . '; set output-enabled if
found 22):

elsif th ree-chars-match(* l *) (* n *) (* x *) then
output-enabled t false;
znput-has-ended t t r ue .

end :
end :

This code is used in section 20

22. Starting at the first digit of the section
number. search for .* .'. which indicates that this
is a changed section. Discontinue the search if
' *. 'is found or the current position is no longer a
numeric digit. which means we have moved past the
section number without finding it.

(Search for . * . '; set output-enabled if found 22)
output-enabled + false: keep-lookzng + t r ue .
temp-zndex t 3;
while (?output-enabled) A keep-lookmg do

output-enabled +-

three-chars-match(*\ *)(.* *) (- . *) ;
keep-lookzng +- numerzc-dzgzt-at (t emp-zndex) :
znc (t rmp-zndex) :

end :

T h ~ s code is used in s e ~ t ~ o n 21

23. The command to generate the table of
contents (' \con') is nornlally the last line in a
Tm file generated by WEAVE. Part of its function
is to terminate gracefully by generating a
'\bye' command or equivalent after generating
the contents. Since we are dropping the ,\con'
command. we must issue the '\bye' command
directly, just before closing the input and output
files.

(Add '\bye' conimarid to end of output and close
both files 23) -

buffer [0] + *\.: b u f f e r [l] +- * b 0 :
buffer [2] t ' y - ; buf ler [3] + * e -: lzmzt + 4:
output-ln(out-TeX-file): z n c (o u t - T e X - h e) ;
close-file (TeX-fi le): close-file (ou t -TeX- f i le) :

Thls code 1s used 111 section 23

24. Main Program. This is the main program.

begin
prznt-ln (b a n n e r) : mztzalzze;
(Read the input 1 9) ;

(Add '\bye' cornnland to end of output and
close both files 23) :

(Print statistics about line counts 2 6) ;

(Print the job hzstory 2 5) :

(Terminate program. converting h ~ s t o r y to
program exit status 9) :

end scan- T e X .

25. Here we simply report the history to the user.

(Print the job history 25) -
case h,istory of
spotless: p r i n t - h (* (No,er rorsuwereuf o u n d .) *)

T U G b o a t , V o l u m e 8 (1987), KO. 2

print- ln (~~a rn ing~message~above?) *) 1
error-message :

~ r i n t _ s t r i n ~ (* (Pardonume, ,bu tu IU th inku Iu *);
print- ln ('spotted,something,wrong .) -) I

fatal-message: print-fatal-message
end ; (* t he re are n o other cases *)
This code is used in section 24.

26. (P r i n t statist ics about l ine counts 2 6)

new-l ine; print- ln (' L i n e u c o u n t u s t a t i s t i c s : -) ;
print-cardinal (TeX-l ine);
print- ln (* , l i nesu in , i npu tuTeXu f i l e -1;
print-cardinal (out -TeX- l ine) ;
print-ln(~,lines,in,outputuTeXuf i l e *) ;

This code is used in section 24.

27. Index.

abort-if-open-error : 11.
asci i : 11.
banner : 1, 24.
boolean: 13, 18. 20.
buf-size: 5. 12, 13, 14, 18.
bu f fe r : 12. 13, 14, 17, 20. 21. 23.
cardinal: 18, 20.
c h : 11, 13, 14.
char : 12, 13, 14, 15.
char-matches: 21.
close: 11.
close-file: ll, 23.
dec: 13.
doscall : 9, 10.
end-file: 11.
end-of-file: 11: 13.
end-of-l ine: 11. 13.
eol : jJ.
err-pr int : 6, 13.
error-level: 6, 7.
error-message: 6, 25.
f : 13, 14.
fai lure: 11.
fa lse: 11, 13, 17, 20, 21, 22.
fatal-error: 9. 11.
fata l -message: 6, 25.
f i le-name-len: 5, 15.
f i lename: 11, l5, 16.
F i l e s y s t e m : 11.
final-limit : 13.
get-l ine: 19, 20.
harmless-message: 6, 25.
his tory : 6, 7, 8, 9, 25.
i n c : 13, 19, 20, 22, 23.
in i t ia l ize: 3, 24.
I nOu t : 4.

I n p u t l i n e t o o l o n g : 13.
input-char: 11, 13.
input-has-ended: 17, 18. 19, 20, 21.
input- ln: 13. 20.
keep-looking : 20, 22.
l im i t : 13, 14, 17, 18, 20. 21, 23.
l ine-pres: 13.
Logitech: 1, 10.
lookup: 11.
mark-error : 6.
mark-fatal : 6, 9.
mark-harmless : 6.
Modula-2: 1, 2. 4.
MS-DOS: 1, 9. 10.
new-l ine: 4, 16. 20, 26.
next-file: a.
null-char: ll, 13.
numeric-digit-at: 21. 22.
open-input-file : 11, 16.
open-output-file: 11. 16.
out-TeX-fi le: 2: 12. 16. 19, 23.
o u t - T e X l i n e : 17, 18. 19, 23, 26.
output-char: 11. 14.
output-enabled: 17, u, 19, 20, 21, 22.
output-ln: U. 19, 23.
pr-card: 4.
pr-char: 4.
pr-str ing: 4.
print-cardinal: 4, 26.
print-char: 4. 20.
print-fatal-message: 9. 25.
print- ln: 4. 6, 9, 16, 24, 25, 26.
print-str ing: 4. 9. 11, 25.
rd-string : 4.
read-char : 11.
read-ln: 11. 13.
read-string: 4, 16.
scan-TeX: 2. 24.
second-char-matches: 21.
spotless: 6. 8 , 25.
system: 10.
s y s t e m dependencies: 1. 2. 4. 9. 10. 11, 13.
t e m p : g.
temp-index: 20, 21, 22.
TeX-fi le: 2. 12. 16. 20, 23.
TeX-l ine: 17, 18: 20, 26.
text-file: ll? 12, 13, 14.
third-char-matches: 21.
three-chars-match: 2 l , 22.
t rue : 11: 13. 17. 21, 22.
Unab le t o o p e n . . . : 11.
wri te-char: 11.
write-ln: 11. 14.

TUGboat. Volume 8 (1987), No. 2

(Add ' \bye3 command to end of output and
close both files 2 3) Used in section 24.

(Constants in the outer block 5) Used in

section 2.

(Globals in the outer block 7 ; 12, 1 8) Used in

section 2.

(Import List 4; 10; 11) Used in section 2.

(Initialize the file system 1 6) Used in section 3.
(Local variables for initialization 15) Used in

section 3.

(Print statistics about line counts 2 6) Used in

section 24.

(Print the job history 25) Used in section 24.

(Read the input 19) Used in section 24.

(Scan the line 21) Used in section 20.

(Search for ' * .'; set output-enabled if
found 22) Used in section 21.

(Set initial values 8: 1 7) Used in section 3.

(Terminate program: converting history to
program exit status 9) Used in section 24.

(Types in the outer block 6) Used in section 2.

Fonts

Blacker Thoughts

John S. Gourlay
Ohio State University

Like many owners of write-white laser printers, I
found a few months ago that the "cm" series of
Computer Modern fonts. as distributed. is unaccept-
ably faint on my Xerox 2700. I began my search for
more suitable METAFONT parameter settings with
the "conjectural" settings for QMS printers, which
share the same print engine as the 2700. I was
immediately disappointed. however. Printed, the
new bitmaps were acceptably black. but they didn't
look anything like the Computer Modern in Corn-
puter Modern Typefaces, and not even very much
like the original bitmaps printed on a write-black
Canon engine.

Laser printers work by producing patterns of
electric charge on a piece of paper. The charge
attracts particles of black .'toner," which eventually
forms a permanent printed image. Write-black laser
printers start with an uncharged piece of paper and
in effect use a laser to place spots of charge on

the paper. Write-white laser printers start with a
fully charged piece of paper and then use a laser to
remove the charge in places where the final image
should remain white. In both cases the round
spot produced by the laser is slightly larger than
a pixel so that no gaps are left between spots in
solid regions of black or white. For this reason,
lines drawn on a write-black laser printer tend to be
slightly thicker than one would expect given their
width in pixels, and lines drawn on a write-white
printer tend to be slightly thinner (the "white lines"
are thicker).

The plain base file of METAFONT anticipates
this kind of systematic difference between printers
by providing a parameter called blacker whose
value can be added to the thickness of pen strokes
to compensate for any thinning inherent in the
printing process. After some experimentation with
various settings of blacker I decided empirically
that the higher I made the value of blacker the
smaller I found such lowercase letters as o and e
to become. Also decreasing were the sizes of the
bowls of such letters as p and b. the widths of m.
n. and the lower part of h. The overall impression
was that the "x-height" of the font was decreasing
as blacker increased. At the conjectured setting of
blacker = .75, the effect was great enough to make
the font look entirely different and much less legible
than the model in Computer Modern Typefaces.

Once I saw the problem it wasn't hard to see
why it was happening. Looking at the METAFONT
code for the roman lowercase o, one can see that
it is drawn with a variable-width pen moving along
a path through four points at the character's top,
left. bottom. and right. Concentrating on point 1.
the top point of the o. the relevant METAFONT

statements are

penposl (vazr. 90);

and
y l , = h + vround 1.500:

The first says that the pen at point 1 has a nib of
width vazr and it is held vertically with the "right"
edge of the nib at the top. The second says that
the right (or top) edge of the pen should be at a
distance h + vround 1.500 from the baseline. The
parameter blacker figures into this because the pen
width. vazr. increases as blacker increases. Since
the location of the top edge is fixed, an increase in
blacker causes the whole pen to move down, and
all the extra width appears at the bottom edge of
the pen stroke. The same thing happens at the
sides and bottom of the o. so the overall effect of an

TUGboat, Volume 8 (1987), No. 2 129

increase in blacker is a decrease in the diameter of challenge for the next generation of METRFONT
the path forming the o. designers.

An increase in blacker should cause the pen
width to increase. but it should not cause the
pen's path to change. The extra width should be
distributed equally on both sides of the stroke on
the assumption that the printer will erode both
sides of the stroke equally. Unfortunately, I do
not see any easy way to modify the METRFONT
code to make it behave this way. The best results
would be obtained by moving all the points that
are positioned relative to a pen edge outward by
.5blacker. For example, we could change the second
statement above to

yl, - .5blacker = h + vround 1.500;

This would require an enormous amount of error
prone work. however. because every point in the
full set of Computer Modern fonts would have
to be studied and a large proportion changed.
A more tractable approach would be to remove all
references to blacker in the definitions of pen widths
and to modify such commands as penst roke and
fil ldraw s t r oke to broaden their strokes by blacker
automatically. This would limit the number of
changes that would have to be made to the code.
but it would have the disadvantage of nullifying the
carefully planned rounding of pen widths. perhaps
ruining the fonts in other ways.

Not wishing to tackle either of these projects
immediately. I decided to live within the limits of
the existing parameters. After many experiments I
arrived at a conlpromise set of parameters:

blacker := .6:

fillan := -.3;

o-correctzon := .6;
At this value of blacker, most of the characters
keep their original sizes. but it is not quite enough
to compensate for the thinning inherent in the
printer. The rather extreme setting of jillzn. which
thickens diagonals. seems to correct the remaining
faint spots. (At one point I tried to use o-correctzon
to enlarge the shrunken bowls of blacker = .75.
but with hindsight I should have known better.
The results were not the kind of thing that I
would take outside the privacy of my own home.)
There are still some ugly features in the resulting
fonts, particularly 3n inconsistency in the weights
of characters. Kevertheless, I feel that this set
of parameters is considerably better than the ones
that result from the "conjectural" parameters. and
also better than the "am" fonts they replace. There
is room for improvement. however, as well as a

Copies of these fonts ready for downloading
to the Xerox 2700 can be obtained from me or
preferably from

Margot Nelligan
Xerox Printing Systems Division
880 Apollo Street
El Segundo, CA 90245.

Upda ted Compu te r Mode rn Fonts
for t h e LN03

John Saut,er

Included with TUGboat volume 8 number 1 was
the usual errata sheet for the TJ$ programs and
documentation. Among the corrections to Com-
puters and Typesetting, volume E. were changes to
the parameters. The effect of these changes is to
change the shapes of some of the Computer Modern
characters.

I have been making available "alternative"
versions of the Computer Modern parameter files
since TUGboat volume 7 number 4, so these changes
to volume E make my files obsolete. Fortunately,
the files are easily fixed. Anyone who got a tape
from me not marked METRFONT version 1.3 (or
later) please make the following changes. I have
taken some liberties with the spacing in order to fit
the corrections into TUGboat's columns. You can
use whatever spacing you wish when you change
the files. except that a comment that starts with %
must end on the same line as the %.

In COMPUTE-CMR.MF, starting at line 128, change
four lines from

%elseif design-size < 12:
((design-size*l5)+150)

else: ((0.020812520812*
design-size*design-size) +

(14.5421245421*design-size) +
(152.49750249))fi)/360pt#;

to
elseif design-size < 40:

((-0.23934398934*design-size*
design-size) +

(20.265567765*design-size) +
(121.278721278))
else: (548.951048934)fi)/360pt#;

130 TUGboat, Volume 8 (1987), No. 2

Replace line 167, which looks like this:
else: ((design-size*9.4696969696)+

236.36363637)fi)/36Opt#;
with these four lines:

elseif design-size < 30:
((-0.4995004995*design-size*
design-size) +

(25.989010989*design_size) +
(110.059940059))
else: (440.179820179)fi)/360pt#;

At line 173. change these three lines
else: ((0.020812520812*design-size*

design-size) +
(14.5421245421*design_size) +
(222.49750249))fi)/36Opt#;

to the following four lines:
elseif design-size < 45:

((-0.23934398934*design-size*
design-size) +

(20.265567765*design_size) +
(191.278721278))
else: (618.557692303)fi)/360pt#;

Lastly; change five lines starting at line 269 from
serif-drop#:=

% vertical drop of sloped serifs
(17.28 pt looks strange)

(if design-size < 12: (design_size*4)
else: ((design-size*design_size*

2.62445887445) -
(design-size * 53.738095238) +
314.935064935)fi)/36Opt#;

to
serif-drop#:=

% vertical drop of sloped serifs
(if design-size < 12: (design-size*4)
else: ((design-size*design_size*

0.0228937728937) +
(design-size * 3.49633699633) +
2.74725274725)fi)/36Opt#;

In COMPUTE-CMSS.MF there is only one change:
replace three lines starting at line 47 with two lines.
The original lines look like this:

(if design-size < 8:
((design-size*235)+10)

elseif design-size < 9:
((design_size*470) -1870)

elseif design-size < 10: (2360)
and the new lines look like this:

(if design-size < 9:
((design_size*230)+50)

elseif design-size < 10:
((design-size*240)-40)

These changes affect only the Computer modern
Roman font at 17 point and the Computer Modern
Sans-serif and Slanted Sans-serif fonts at 9 point. so
only the CMR17, CMSS9 and CMSSI9 fonts need
to be recompiled.

The errata sheet in TUGboat volume 8 num-
ber 1 also contained some changes to METAFONT,
turning METAFONT version 1.0 into METAFONT
version 1.3. At the time I wrote this article I had
not yet finished testing all of the Computer Modern
fonts with the LN03. but from what I have seen so
far METAFONT version 1.3 produces slightly thinner
diagonal lines than version 1.0 in some cases, which
seems to improve the appearance of the Computer
Modern fonts on the LN03.

It is still my intention to put these alternative
parameter files on the Stanford tape, along with the
pixel and G F files for the LN03. I have recently
gotten an encouraging message from David Fuchs,
but at the time I wrote this I was still not certain
that I would be successful. Therefore, I renew my
offer to send anyone running VAX/VMS who has an
LN03 and the Stanford tape a VMS Backup copy
of everything necessary to print documents using
the Computer Modern fonts on the DEC LN03:
command files, alternative parameter files, and the
resulting .TFM and pixel files for the DEC LN03.
If you write me I'll send you a magnetic tape by
return mail. If you can't read 6250 BPI tapes
be sure to let me know, since that is my default
density: it lets me use a smaller tape.

If I succeed in getting these files onto the
Stanford tape I'll write another TUGboat article
withdrawing this offer; to avoid hassle for the
community I'll fill requests until that article is
published.

TUGboat, Volume 8 (1987), No. 2 131

MFtool : A Descr ipt ion of a METAFONT

Script-Dr iven Processing Facility

John M. Crawford
Ohio State University

I thought I might take a moment to describe some
of the elements of an environment I've hacked
together which helps me in generating fonts using
METAFONT. I wanted to develop a mechanism
which would allow me to generate new fonts with
METAFONT. on demand, without much overhead
on my part. What I've come up with is a file-
driven facility which allows me to generate fonts
from a set of what I'll call script files. Using
the command procedure language available with
my operating system (Primos). I've put together
this processing facility which provides the ability
to make repeated invocations of METRFONT while
varying specified elements for each call. Perhaps
a similar solution could be designed for any given
operating environment. Particular elements of this
system were added as individual needs arose. so the
system design is not necessarily very elegant.

A major element of this scripting file definition
describes the font and magnifications desired. This
information is provided as a text prefix of the font to
be generated. followed (optionally) by the magstep
at which the font is to be generated. Multiple
requests for a font at various magsteps can be
scripted by specifying magsteps within parentheses.
A file might then contain

{ t fm loaded by plain TeX 3
cmrlO (0 0.5 1 2 3 4 5)
cmrl2 (0 0.5 1 2)
cmr17 (0 0.5 I 2)

This example would invoke METAFONT fifteen
times. We also see an example of a comment.
Comments may be indicated in two ways: Text
preceded by a left curly bracket is discarded. If any
given line of text has a space in column 1, then that
line is also treated as a comment and ignored.

This system also allows one to select specific
base files. or include METRFONT specifications to
be fed to METAFONT. For example,

spec:\mode=qms
base : &cm

could be specified: this must be done before the fonts
are chosen. I've also included labels and an .'ignore
until label" goto facility. Additionally, to improve
checkpointing of output, text can be displayed in
screen traffic. with a "type" directive. With these
elements, I've been able to build specification files
and font family files which allow me to generate
various sets of METAFONT fonts quickly.

As an example, I wanted to generate the META-
FONT logo font for use with a personal computer
preview package, mainly as a test. I chose to
create a new base file. which specified some new
mode-def's I wanted to try. After creating with
INIMF a base file called JMC (my initials) containing
three specifications for preview fonts, I ran a file
similar to the following:

base : &jmc
spec:\mode=prevlew
logo10 (0 0.5 1 2)
spec:\mode=prevleww
logo10 (0 0.5 1 2)
spec:\mode=prev~ewww
logo10 (0 0 . 5 1 2)

With that, I'd generated the GF files and TFM file
which I'd need to later use the LOGO font on the PC.

In actuality, I can specify several script files
to process. I generally divide files into FONT. BASE
and SPEC script files. This allows greater flexibility
when building a script for a new run. By extending
and modifying this basic font generation scheme.
I've been able to build various sets of fonts easily.

TUGboat, Volume 8 (1987), No. 2

Update: METAFONT mode-def Settings
for Various TEX Output Devices

Barbara Beeton

An earlier article by this title appeared in TUGboat
Vol. 8, No. 1, page 33. Almost immediately. cor-
rections and new information started arriving. The
present iteration attempts to correct the errors of
the previous article and present additional informa-
tion now available. If interest warrants, this may
become an "annual" column.

As Neenie Billawala has explained (TUGboat
Vol. 8, No. 1: pages 29-32), the marking character-
istics of different print engines must be taken into
account in order to assure legible. attractive out-
put. For the Computer Modern family. this is done
by tuning several parameters built into the METR-
FONT design. The settings for all printers used at
Stanford appear in the file WAITS.MF. Other set-
tings are frequently requested and (less frequently)
communicated in QXhax or Laser-Lovers.

Here is a typical mode-def setting, adapted
from PLAIN. MF (The METRFONTbook, page 270)
for 200 dpi devices (such as the Xerox XGP, the
original output device): it has been augmented
by the parameter aspect-ratio (required for non-
square rasters; the default value is given).
mode-def lowres =

proofing:=O; % not making proofs
fontmaking:=l; % we are making a font
tracingtitles:=O; % don't show titles
pixels-per_inch:=200;
blacker:=.65; % make pens a bit blacker
fillin:=.2; % adjust for diagonal fillin
odcorrection:=.4; % less overshoot
aspect-ratio:=l/l; % vertical/horizontal
enddef ;

For all font "production", typical settings are
proofing = 0 and fontmaking = 1. tracingtitles is
usually set to 0 for low-resolution fonts (400 dpi or
less) and to 1 for higher-resolution fonts, to reassure
one that the computer is still in operation and to
indicate how far it has progressed during a long
job. The standard proof settings can be found in
PLAIN. MF as already noted.

For more guidance, see Adapting to local con-
ditions, The METRFONTbook, page 278.

Stan Osborne has observed in w h a x that
"Anyone interested in understanding these param-
eters should read The METRFONTbook and exper-
iment by setting sentences and paragraphs with
many sizes of their new fonts. The look. blackness,
readability, feel, taste, etc., of the variations of new
fonts should be compared with the samples found
in the cmr book." This excellent advice should not
be ignored.

The table on the next page contains a sum-
mary of the relevant settings gleaned from available
sources. Most of the print engines cited in the
table are listed below. along with an indication of
whether they are write-black (wb) or write-white
(ww). if known. and the names of some of the
output devices into which they have been built.
Canon CX (wb)

Canon LBP-10
Canon (wb)
Ricoh 4080 (ww)
Ricoh LP4120 (ww)
Ricoh 4150 (ww)
Xerox XP-12 (ww)

Xerox XP-24 (ww)

Apple Laserwriter, Cordata.
HP LaserJet, Imagen 81300.
QMS and Talaris 8 ppm printers
Imagen 101240
Imagen 3320. Imagen 7320
DEC LN03: TI OmniLaser 2115
H P 2688A. Imagen 121300
Talaris 1500
DEC LNO1. QbIS 1200.
Talaris 1200. Xerox 2700
Imagen 241300, QMS 2400.
Talaris 2400. Xerox 3700

As always. additions and corrections to this list are
solicited.

A late note from John Lavagnino of Brandeis
University warns against assuming that "improved"
models of printers, or even printers from different
nanufacturers based on the same print engine, will
produce equivalent output:

We have discovered that the LNO3 and the
LN03-Plus don't print the same way: a font
that looks fine on the LY03 will look lighter
on the LN03-Plus. In fact it isn't necessary
to download fonts to observe this: even the
internal fonts look different.

We've been badgering DEC about this for
some time. and they have finally agreed that
this is the case. The current story is that they
'.made the pixels smaller" on the LNO3-Plus.
"to make it look more like a typewriter."

Be aware, then. that a good mode-def
for one will only be a poor approximation for
the other.

Consider yourselves warned.

TUGboat, Volume 8 (1987), No. 2

Typical mode-def parameter settings for CM fonts

Source of information pixels-per-inch
PLAIN. MF

proof 2601.72
lowres 200

WAITS. MF
dover (Xerox Dover) 384
imagen (Canon CX) 300
4mS (Xerox XP-12E) 300
aPS (APS-Micro5) 722.909
c r s (Alphatype CRS) 4000+4000/3
boise (HP 2680-4) 180
DD (DataDisc terminal) 70
canon (Canon LBP-10) 240
newDD (DataDisc terminal) 70
C g (Compugraphic 8600) 1301.5
epson 240

Charles Karney, m h a x 86#4, Oct 86 [Note 11
4mS (Xerox XP-12E) 300

John Gourlay, May 87 [Note 2: page 1281
xeroxxxvi i (Xerox XP-12) 300

Charles LaBrec, m h a x 86#6. Oct 86 [Note 31
de c l n (Ricoh 4080) 300

Stan Osborne. Apr 87 [Note 41
dec ln (Ricoh 4080) 300

Janene Winter; May 87 [Note 5: page 1781
ibm (IBM 3820) (ww) 240
ibm-a (IBM 3812) (ww) 240
ibm-b (IBM 3800) (ww) 240
ibm- c (IBM 4250) (ww) 600
sherpa (IBM 6670) (wb) 240

blacker

0
.65

1.2
0

.75*

.2

.4

.55
0

.2
0

.2
0

.8

.6

.9

.2

.65

.4

.2

.05
1

Matthias Feyerabend. GSI. Darmstadt. May 87 [Note 61
ibmlaser (IBM 3820) 240 .3
bensmall (Benson 9211) 200 - .5
bensmall [alternate settings 200 0

for problem fonts]
benbig (Benson 9436) 254 -.8
benbig [alternate settings 254 -.l

for problem fonts]

o-correction aspect-ratio

* A note in WAITS .MF states that these settings are conjectural.

TUGboat, Volume 8 (1987), No. 2

Notes:
1. Charles Karney states, ". . . I haven't fully ex-

plored the parameter space. If anyone knows
of a better (or 'authorized') solution, I'd ap-
preciate hearing about it."

[Karney%ppc. MFEnetQLLL-MFE . Arpa]
2. John Gourlay has diagnosed an unexpected

modification to the pen path as blacker in-
creases. causing the diameter of such letters as
"0" to decrease; the details are discussed in
his article on page 128. The parameter values
given here are a compromise. allowing most
characters to keep their original sizes. although
the value of blacker "is not quite enough to
compensate for the thinning inherent in the
printer." There is still "an inconsistency in the
weights of characters. Nevertheless, [Gourlay]
feeljs] that this set of parameters is consider-
ably better than the ones that result from the
'conjectural' parameters. and also better than
the 'am' fonts they replace."

Gourlay.Ohio-Stateacsnet-relay
3. Charles LaBrec's comments: "I have twiddled

the parameters a bit. and this seems to produce
good 12 point cm fonts. I am a bit unsure
because changing blacker, fillzn. or o-correctzon
seem to make no difference for quite a large
range of values. I can't remember exactly.
but you will get the same results as [these]
for .4 < blacker < .9. -.8 < fillzn < -. I . and
0 < o-correctzon < .7. But this probably makes
a good starting point."

[crlanewton .physics .purdue. edu]
[Edztor's note: The value given in TUGboat
8#1 for dec ln fillzn should have been -.2, not
+.2.]

4. Stan Osborne: "The decln mode [Mr. LaBrec]
suggested did not fillin correctly and was too
black for the smaller point sizes. His choice
of settings produces small sized fonts that are
much blacker than the small cmr's found in
the cmr book (Vol E). . . . I found the]above]
values of blacker and fillin to produce readable
small fonts for an LN03.. . . These values were
not carefully tested for larger point sizes. (I
stopped experimenting when I got something I
liked and I had verified that larger sizes were
also usable.) [. . . ! ucbvax! dual ! dbi ! stan]

5. Janene Winter has found these settings "to be
optimal for the IBM printers". This informa-
tion was transmitted by Dean Guenther along
with his site report (page 178).

6. Matthias Feyerabend: "Fonts tested are CMR5,
CMR10, CMR12 and CMSSI17 for a full range
of settings for blacker and fillin."

TUGboat, Volume 8 (1987): No. 2

Fonts for Digital Halftones

Donald E. Knuth
Stanford University

Small pictures can be "typeset" on raster devices in a way that simulates the screens used to print fine books
on photography. The purpose of this note is to discuss some experiments in which METRFONT has created
fonts from which halftones can be generated easily on laser printers. High levels of quality are not possible
at low resolution, and large pictures will overflow TEX'S memory at high resolution; yet these fonts have
proved to he useful in several applications, and their design involves a number of interesting issues.

I began this investigation several years ago when about a dozen of Stanford's grad students were working
on a project to create "high-tech self-portraits" [see Ranisey Haddad and Donald E. Knuth, "A programming
and problem-solving seminar." Stanford Co~nputer Science Report 1055 (Stanford, California. June 1985).
pp. 88-1031. The students were manipulating digitized graphic images in many ingenious ways. but Stanford
had no output devices by which the computed images could be converted to hardcopy. Therefore I decided
to c r ~ a t e ;1 font by which halftones could be produced using m.

Such a font is necessarily device-dependent. For example. a laser printer with 300 pixels per inch cannot
mimic the behavior of another with 240 pixels per inch, if we are trying to control the patterns of pixels.
I decided to use our 300-per-inch Imagen laserprinter because it gave better control over pixel quality than
any other machine we had.

It seemed best at first to design a font whose '.characters" were tiny 8 x 8 squares of pixels. The idea
was to have 65 characters for 65 different levels of brightness: For 0 5 k 5 64 there would be one character
with exactly k black pixels arid 64 - k white pixels.

Indeed. it seemed best to find some permutation p of the 61 pixels in an 8 x 8 square so that the black
pixels of character k would be po, p l My first instinct was to try to keep positions po. p l . p2. . . .
as far apart from each other as possible. So my first METAFONT proRrarn painted pixels black by ordering
the positions as follows:

[This is essentially the "ordered dither" rnatrix of B. E. Bayer: see the survey paper by Jarvis. Judice. and
Ninke in Computer Graphics and Image Processing 5 (1976). 22-27.]

It turns out to be easy to create such a font with METAFONT:

% halftone font with 65 levels of gray, characters "0" (white) to "p" (black)

pair p[1; % the pixels in order (first pO becomes black, then pl, etc.)
pair dC1; d[O]=(O,O); d[ll=(l,l); d[2]=(0,1); d[3]=(1,0); % dither control
def wrap(expr z) =(xpart z mod 8 , ypart z mod 8) enddef ;
for i=O upto 3: for j=O upto 3: for k=O upto 3:
p [16i+4j+k] =wrap(4d[k]+2d[j] +d[i]+(2,2)) ; endf or endf or endfor

w#: =8/pt; % that's 8 pixels
font-quad:=w#; designsize:=8w#;

picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 64:
beginchar(i+ASCII"O",w#,w#,O); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-11; f i
prevchar:=currentpicture; endchar;
endf or

136 TUGboat, Volume 8 (1987): No. 2

This file was called dt .mf: I used it to make a font callcd 'dt300' by applying METAFONT in the usual way
to the following file dt300 .mf:

% Halftone font for Imagen, dithered
mode-setup;
if (pixels-per_inch<>300) or (rnagol):

errmessage "Sorry, this font is only for resolution 300";
errmessage "Abort the run now or you'll clobber the TFM file";
forever: endfor

else: input dt f i
end.

(The purpose of dt300 .mf is to enforce the device-dependence of this font.)
I t 's fairly easy to typeset pictures with dt300 if you input the following macro file hf 65. tex in a T@

document:

\font\halftone=dt300 % for halftones on the Imagen 300
\chardef\other=12

\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone
\catcode'\\=\other \catcode'\-=\other \catcode'\-=\other
\catcode ' \ .=\active \starthalftone}

(\catcode'\.=\active \catcodeC\/=O \catcodeC\\=\other
/gdef/starthalftone#l\endhalftone{/let.=/endhalftoneline

/beginhalftoneline#l/endhalftone))
\def\beginhalftoneline{\hbox\bgroup\ignorespaces}
\def\endhalftoneline{\egroup\beginhalftoneline}
\def\endhaiftone{\egroup\setbox0=\lastbox\unskip\egroup}

Example of use:
\beginhalf tone
chars for top line of picture.
chars for second line of picture.
. . .
chars for bottom line of picture.
\endhalf t one

(These macros are a bit tricky because ' \ ' is one of the legal characters in dt300; we must make backslashes
revert temporarily to the status of ordinary symbols.)

Unfortunately, the results with dt300 weren't very good. For example, here are three typical pictures,
shown full size as they came off the machine:*

The squareness of the pixels is much too prominent.

* Asterisks are used throughout this paper to denote places where output from the 300-pixels-per-inch
Imagen printer has been pasted in. Elsewhere, the typesetting is by an APS Micro-5, which has a resolution
of about 723 pixels per inch.

TUGboat, Volume 8 (1987), No. 2 137

Moreover. the laser printer does strange things when it is given pixel patterns like those in dt300:"

Although character k has more black pixels than character k -1. the characters do not increase their darkness
monotonically! Character 6 seems darker than character 7 ; this is an optical illusion. Character 32 is darker
than many of the characters that follow, and in this case the effect is not illusory: Exaniirlation with a
magnifying glass shows that the machine deposits its toner in a very curious fashion.

Another defect of this approach is that most of the characters are quite dark: 50% density is reached
already at about character number 16. Hence dt300 overemphasizes light tones.

My next attempt was to look at halftone pictures in books and newspapers, in order to discover the
secret of their success. Aha! These were done by making bigger and bigger black dots: in other words. the
order of pixels po, pl was designed to keep black pixels close together instead of far apart. Also. the
dots usually appear in a grid that has been rotated 45". since human eyes don't notice the dottiness at this
angle as much as they do when a grid is rectilinear. Therefore I decided to blacken pixels in the following
order:

/63j

Here I decided not to stick to an 8 x 8 square: this nonsyuare set of pixel positions still "tiles" the plane in
Esclier-like fashion. if we replicate it at 8-pixel intervals. The characters are considered to be 8 pixels wide
and 8 pixels tall. as before, but they are no longer confined to an 8 x 8 bounding box. The reference point
is the lower left corner of position 24.

The matrix above is actually better than the one I first came up with. but I've forgotten what that one
was. John Hobby took a look at mine and suggested this alternative. because he warit,ed the pattern of black
pixels in character k to be essentially the same as the pattern of white pixels in character 64-k . (Commercial
halftone schemes start with small black dots on a white background: then the dots grow until they form a
checkerboard of black and white: then the white dot,s begin to shrink into their black background.) The
matrix above has this symmetry property, because the sum of the entries in positions (i , j) and (i . j + 4)
is 63 for all i and j : if you consider "wraparound" by computing indices modulo 8.

John and I used this new ordering of pixel positions to make a font called dot300, analogous to dt300.
It has the following gra,y levels:*

Now we have a pleasantly uniform gradation, except for an inevitable anonialy between characters 62 and 63.
The density reaches 50% somewhere around character rlurnber 45, and we can compensate for this by
preprocessing the data to be printed.

TUGboat; Volume 8 (1987), No. 2

The three images that were displayed m-it11 dt300 above look lilie this when dot300 is used:*

My students were able to use dot300 succ:essfully, so I stopped working on halftones and resumed 1111

norrnal activities.
However. I realized later that dot300 can easily be irnprovcd. because each of its characters is niade up

of two dots that are about the same size. There's no reason why the dots of a halftone image need to be
paired up in such a, way. With just a hit more work. we can typwet each dot indeperidrntly!

Thus. I niade a font hf 300 with just 33 characters (riot 65 as before). using the matrix

to control the order in w!iich pixels are blackened. (This matrix corresponds to just one of the two dots in
the larger matrix above.) The c1~;iractrrs are still regarded as 8 pixels wide. but they are now only 4 pixels
tall. U-hen a picture is typeset. t h ~ odd-riunibered rows art' to be offset horizontally by 4 pixels.

Here is the METAFONT file hf .mf that was used to generate the single-dot font:

% halftone font with 33 levels of gray, characters "0" (white) to "P" (black)

pair p[]; % the pixels in order (first pO becomes black, then p1, etc.)
pO=(l,l); p4=(2,0); p8=(1,0); p12=(0,0);
p16=(3,-1) ; p20=(2,-1) ; p24=(1,-1); p28=(2,-2);
transform r ; r=identity rotatedaround ((1.5,1.5),90);

for i=O step 4 until 28:
p [i+ll =p [il transformed r ;
p [i+31 =p [i+l] transformed r ;
p [i+2] =p Ci+31 transf ormed r ;
endf or

w#:=8/pt; % that's 8 pixels
font-quad:=w#; designsize:=8w#;

picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 32:
beginchar(i+ASCII"O",w#,.5~#:0); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-11; fi
pre7~char:=currentpicture; endchar;
endf or

TUGboat, Volume 8 (1987), No. 2

(There's also a file hf300 .mf, ar~alogous to the file dt300 .mf above.)
Here's how the three example images look when they're rendered by font hf 3OO:*

They are sornewhat blurry because they were generated second-hand from data intended for square pixels:
sharper results are possible if the data is expressly prepared for a 45" grid. For example. here is a sharper
Mona Lisa, and an image whose dots were conlputed directly by mathematical formulas:*

The T@ macros hf 65. tex shown above rriust be replaced by another set hf 33. tex when independent
dots are used:

\font\halftone=hf300 % for halftones on the Imagen 300, each dot independent
\chardef\other=12

\newif\ifshifted
\def\shift{\moveright.5em}
\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone

\catcode'\.=\active\shiftedtrue\shift\hbox\bgroup}
{\catcode' \.=\active \gdef . {\egroup

\if~hifted\shiftedfalse\else\shiftedtrue\shift\fi\hbox\bgrou~\ignorespaces}~
\def\endhalftone{\egroup\setbox0=\lastbox\egroup}

% Example of use:
% \beginhalftone
% chars for top halfline of picture. (shifted right 4 pixels)
% chars for second halfline of picture. (not shifted right)
% chars for third halfline of picture. (shifted right 4 pixels)
% . . .
% chars for bottom halfline of picture. (possibly shifted right)
% \endhalftone

These rnacros are much simpler than those of hf65, because the 33 ASCII characters "0" to "P" have no
special meaning to plain TE,X.

140 TUGboat, Volume 8 (1987). No. 2

We can also create an analogous font hf723 for the high-resolution APS. in which case the pictures
come out looking like this:

The same TEX macros were used. but font \half tone was defined to be hf 723 inst,ead of hf 300. Now the
pictures are smaller, because the font characters are still 8 pixels wide, and the pixels have gotten smaller.
At this resolution the halftones look 9eal." except that they are too dark. This problem can be fixed by
adjusting the densities in a preprocessing program. Also. small deficiencies in the APS's analog-to-digital
conversion hardware become apparent when such tiny charact,ers are typeset.

What resolution is needed? It is traditional to measure the quality of a halftone screen by counting
the number of dots per inch in the corresporlrling inr rotated grid. and it's easy t,o do this with a magnifying
glass. The photographs in a newspaper like the International Herald Tribune use a 72-line screen. rotatled
45': this is approximately the resolution 5 0 4 that we would obtain with the hf400 font on a laser printer
with 400 dots per inch. (The 300-per-inch font hf300 gives a rotated screen with only 37.5fi 53 dots
per inch.) The photographs on the book jacket of Computers & Typesetting have a 133-line screen. again
rotated 35'; this is almost identical to the resolution of hf723. But this is not the upper limit: A book that
reproduces photographs with exceptionally high quality, such as Portraits of Success by Carolyn Caddes
(Portola Valley: Tioga Press, 1986), has a screen of about 270 lines per inch. in this case rotated 30'.

Let's turn now to another problern: Suppose we have an image for which we want to obt,ain the best
possible representation on a laser printer of medium resolution, because we will be using that image many
t,imes-for example, in a letterhead. In such cases it is clearly desirable to create a special font for that
image alone: instead of using a general-purpose font for halftones. we'll want to control every pixel. The
desired image can then be typeset from a special-purpose font of "characters" that represent rectangular
subsections of the whole.

The examples above were produced on an Imagen printer as 64 lines of 55 columns per line, with 8 pixels
in each line and each column. To get an equivalent picture with every pixel selected individually, we can
make a font that has. say, 80 characters. each 64 pixels tall and 44 pixels wide. By typesetting eight rows of
ten characters each, we'll have the desired image. For example. t,lle following picture was done in that way:*

TEX will typeset such an image if we say \monalisa after making the following definitions:

\f ont\mona=mona300 [hf , dekl

TUGboat, Volume 8 (1987), No. 2

And once we have the individual pieces. we can combine them to get unusual effects:*

The font mona300 shown above was generated from a file mona.mf that began like this:

row(1); cols(1,5,9,13,15,17,21,24,30,32,39,46,56,62,70,
78,86,95,103,110,118,120,127,135,142,151,159,167,175,183,
191,198,207,215,223,230,238,246,254,263,271,279,287,295,302,
311,318,328,334,342,350,358,366,367,375,382,383,390,392,398,
400,405,408,414,416,421,424,430,432,439);

row(2); cols(4,7,12,20,23,28,30,37,38,40,45,48,53,6~,64,

. . . and so on. until 312 rows had been specified. Thr pararrleter file mona300 .mf was

% Mona Llsa for Imagen 300
mode-setup;
if (pixels-per_inch<>300) or (mag<>l) : . . . (error messages as before)
else: input picfont
width:=44; height:=64; m:=8; n:=10; filename:="monat';
do-it; fi

and the driver file picf ont .mf was

def do-it=
for j=O upto n-I: jj:=width*j; jjj:=jj+width; jjjj:=j;
scant okens (I1 input "&filename) ; endf or enddef ;

string filename ;

def row(expr x) =

cc:=(x-1)div height; rr:=height-1-((x-1)mod height);
if rr=height-1: beginchar(cc*n+jjjj,width/pt,height/pt,O; fi enddef;

def cols(text t) =

for tt:=t: exitif tt>=jjj; if tt>=jj:
addto currentpicture also unitpixel shifted (tt,rr); fi endfor

if rr=O: xoffset:=-jj; endchar; fi enddef;

This is not very efficient. but it's interesting and it seems to work.

142 TUGboat, Volume 8 (1987), No. 2

Ken Knowlton and Leon Harrnon have shown that surprising effects are possible once a picture has been
digitized [see Computer Graphics and Image Processing 1 (1972). 1-20]. Contiiiuing this tradition. I found
that it's fun to combine the TJ$ macros above with new fonts that frankly acknowledge their digital nature.
One needn't always try to compete with conirnercial halftone screens!

For example, we can use hf 65 tex with a 'negdot' font that makes negative images out of square dots:

The METRFONT file negdot .mf that generated this font is quite simple:

% negative pseudo-halftone font with 65 sizes of square dots
mode-setup;
w#:=2.5pt#; font-quad:=w#; designsize:=Bw#;

for i=O upto 64:
begin~har(i+ASCII"O~,w#,w#,O);
r#:=sqrt(.gw#*(i-i/80)); define-pixels(r);
fill unitsquare scaled r shifted(.5w,.5h);
endchar ;
endf or

end.

Cnlike the previous fonts we have considered, this one is device-ir1depr:ndent.
It's even possible to perceive images when each character of t,he halftone font has exactly the same

number of black pixels. Here. for example. is what happens when the three images above are typeset with
a font in which each character consists of a vertical line and a horizont,al line: the lines move up arid to the
right as the pixel g;,ts darker, but they retain a uriiforni thickness. U'e percctiw lighter and darker features
only because adjacent lines get closer together or further apart.

TUGboat. Volume 8 (1987), No. 2

The METAFONT file lines .mf for this device-independent font is:

% pseudo-halftone font with 65 lines that move right and up
mode-setup; q:=savepen;
w#:=2.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 64: beginchar(i+ASCII"O",w#,w#,O); pickup q;

draw (O,h*i/64)--(w,h*i/64); draw(w*i/64,0)--(w*i/64,h); endchar;
endfor end.

Yet another possibility is the font produced by angles .mf: here each character is a single line of radius
2.5 pt that rotates from horizontal to vertical as thr density iricreases:

% pseudo-halftone font with 65 radii that move counterclockwise
mode-setup; q:=savepen;
w#:=2.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 64: begin~har(i+ASCII"O~,w#,w#,O); pickup q;

draw ((0,O)--(w,O)) rotated (90*i/64); endchar;
endfor end.

The images are still anlazinglv easy to identify:

(We can think of a large array of dials whose hands record the local light levels.) It is amusing to view these
images by tilting t,he page up until vow eyes are almost parallel to the paper.

As a final example, let's consider a 33-cliaracter font that's designed t,o br used with hf 33. tex instead
of hf65. tex. Readers who like puzzles are invited to try to guess what t,his METAFONT code will do, before
looking at the image of Mona Lisa that was typeset with tlw corresporlding font. [Hint: The name of the
METAFONT file is hex. mf .]

% pseudo-halftone font with 33 more-or-less hexagonal patterns
mode-setup; q:=savepen;
w#:=7.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 32: beginchar(i+ASCII"O",w#,.5w#,0); pickup q;

alpha:=.5-i/72; z0=(.5w,.5h);
zl=alpha[(5/6w, .5h) ,z0] ; z2=alpha [(2/3w, - .5h) , zO] ;
zO=.5[z2,z5]=.5[z3,z6]=.5[zl,z4] ; x2=x6; y5=y6;
draw zl--22; draw .5 [zl,z21--20;
draw 23--24; draw . 5 [z3,z41--20;
draw 25--26 ; draw .5 [z5,26] --z0 ; endchar ;
endf or

end.

The answer to this puzzle can be seen in the illustration a t the very end of this paper (following the
appendices).

TUGboat, Volume 8 (1987), No. 2

Appendix 1: Source data for the examples

The examples in this paper are niostly derived from the basic pixel values shown below. This data uses a
corivention takrri from the book Digital Image Processirlg by Rafael C. Gorlzalez and Paul Wintz (Xddison-
Wesley. 1977): The 32 characters 0123456789ABCDEFGHIJKLMNOPQRSTUV represent densities from 1.0 down

(Lisa) (Lincoln)
FFHHIJKKJ J JKLKKLLLKLLLLLMLLLLMMMLLLLLLMLKJ J J J J JIIIHHGHH .
IIIIJKKKKJJJKLMLMMMLMNNOMLJHGFGIKMMMMMMLKKJJKJJIJIJJHJJ.

TUGboat, Volume 8 (1987)' No. 2

to 0.0 (i.e., ' 0 ' is black and 'V' is white). The Lisa data was digitized by a T V camera in Stanford's robotics
lab. The Lincoln and Liberty data come mostly from Appendix B in the Gonzales-Wintz book, although I
decided to change several dozen of the pixel values found there.

(Liberty)
QQRRRQPPRQQQQQQQQPPPPOPOOMM. VVVVVVVVVJABVVV.
QKJONMPQRQQQQQQQPQPPPPOOOON. VVVVVVVVPB760VV.
966989EKPQQQQQRQQQPPQPOONNN. VVVVVVVVGHEDAEVVV.
66689877AMPRQQRRQPPPPOONMNM. VVVVVVVKL97ADTVVV.
6669999898HORQRQQPPQOCONOMM. VVVVVVVC55656FVVV.
66678898878BQRRRQQQPOPOOPNM. VVVVVVV4457765VVV.
666769998887GRRRQPOOPPOOONM. VVVVVVV35CB974VVV.
5667667788778IRQPPOPPPOONOL. VVVVVVV44JIB55VVV.
F6676777677779IQQ00PONOOOOM. VVVVVVVQHEDG8VV.
VKA767778777679PQPPOOMMMMML. VVVVVVVVE7CHSVV.
VVTKC7676667677IPPOOPNMMMNL. VVVVVVVV9LDDAVV.
VVWQHD77668787AOPOPNONNNML. VVVVVVVVNMCCAVVVVVVVVHVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV.
VVVVVURG77787F87KONNNNNLMML. VVVVVVVVU99ABTVVVVVVVVNVVVVMVVVVVVVVVVVVVVVVVVVVVVVVVVV.
VVVVVVVSAE777EE6AOONNNMMMMM. VVVVVVVVM86ADCVVVVVVVV9VVVVBVVVVVIVVVVVVVVVVVVVVVVVVVVV.
VVVVVVWHD968EK77KONMMLLLLL. VVVVVVVVV5L8DDVVVVVVVVVAVVV9VVVVGVVVVVVVVVVVVVVVVVVVVVV.
UVWUUTTTG89GLKB6IMMMLLLLLK. VVVVVVVVVQV9EEVVVVVVVVV8TVV9VVVJLVVVVVVVVVVVVVVVVVVV.
TUWUUTTSSPKNNLJ6FMLKLJLLKK. VVVVVVVVVVVBDEFVVVVVVVVS8MJ9VVNBVVVVVVVVVVVVVVVVVV.
TTTTSSSSSRRQOOLH89NLKKJKKKL. VVVVVVVVVVVCEFBVVQHQVVVK78978M8VVVVUQOVVVVVVVVVVUVWTU.
TTTTSSRRRSTRPPLH97MKJKIKKKL. VVVVVVVVVVVDEDAIVVVG9LN7BRRL97AVVSLCRVVVVVVVVVUTWTTU.
QTTTTSRRRSTRQOMH77KJKJJJKJJ. VVVVVVVVVVVDCDBBVVVVVC8JBDCCDA7QEAIVVVVVVVVVVWTTTSTT.
9EHORRQRRTSRSSOG67LJJKJJJJL. VVVVVVVVVVVD9DABMVVVVVNAPHEB9DA9ETVVVVVVVVVmTSSSSST.
6555BKORPSPONJIE76IKJKJKJKK. V V V V V V V V V V V I 9 A B A 8 V V V V U 8 L Q A H D C B D 8 K V V U V U V U T T S S R S S R S .
55456BKQLMG89B8769IKKLKKLKL. VVVVVVVVVVUVAB9B8VVTPA59KNNFCBA99VUUTTTTTTTTTTTTTSSSSSRS.
F6467BMRI76566566CJKMLLKKLJ. VVVVWVVVWVA79BBSO8BG5EAOJDBABA8UTTSSTSSSTSSSSSRRRRRRR.
74458LOQI55775559BKLLLLLKLK. V ~ L 9 A A 9 8 P U U U 5 H F H F D B A B B B T S S R R S S S S S S S S R R R R R Q Q R .
B97EINLQR9897555DLLLLLLLLLK. ~TUTTTTTA8C977USJ5CEBCA997CCTSRRQRQRRRQRRRRQQPPPQQ.

Q R Q Q ~ Q R R R R R R Q ~ ~ H I ~ L L P L N P N K M M ~ E ~ B F ~ K O L ~ B B F L ~ ~ 2432IK J JIIH.
RRQQQQRRRQRRQQMI3MHOODSPMKLJ6L62FIIPL4DCDF311113AJJIIHI.
QRQQQQQRQRRQRQQ7FK0QHQSOMLK6MKG24CDNLGEAI75011232JJIIII.
RQQPQQQQQRRQRQH5MEPPMQQMJDBEOLE93BJLLJ6BC65000111JJIHHH.
QQQPQQPQPQRQQQAMEOPIQOM8GLKONM9G4AAINK31861OOOOO1KJIIII.

TUGboat, Volume 8 (1987), No. 2

Appendix 2: 65-level data for typesetting
The 32-level data in Appendix 1 was converted to 65-level data by a co
simpler than) the program in Appendix 3. In this case the representation
'p' means black. The 65 codes follow standard ASCII order: 0123456789 :

(Lisa)
MMIHFDBADDDA?BA???B?????=????===??????=?BDDDDDDFFFIHKIH.
FFFFDBABADDDB?=?===?=;;8=?DIKMKFB======?BADDADDFDFDDHDD.
DDFFDB???BDA====?;:;8888ITY[lA[[[RD;8;8;=?BA??BABBABD?B.
FDDD?====???===;:89877?T[YY]̂ ll̂ ']]-']]p8768:===;;======?==.
BDA?=;:;:======. . 98766AYe [TY [I -1 ' ' ' ' - W85468;:;8:7888;=:;.
=??===;:;;:;8;:;87668Y[RH?FMT[--'-"bT656788889776688=;.
=?@=:=;8888888887646MY?33125;K['bbbbbbK33456666645777:;.
?B==887778779877655?[D2000012;0['bbbbb]9433535335646688.
??=8776666677678536VY710000026I['bbdbbbM355443435534477.
?BA876443567647753B]V510000137DT]bbeded-;=7686654534355.
FMK;75685455656639VbK3100001258DO[bdeddbRK?AB8=85324344.
RPOI?=ADA65533424C"?31000012257F[eddedeXTMPFABF6232434.
VROMKKHKKKC843226RbbD365116DB??IT-dededd-[TKKMFO=422224.
WTTMRTRVTRIM6443=[b'VPKM640TIR[][[bdeded'[YVPMPVI623233.
TVTTWTT[WTK077A;?-bbIDFM64T?8RRF=Wbddded'l [YVVYY0722245.
WYWY [YY] YVRVFOWTH] e-6367251658858Vedggddbe [YWY [YT=23356.
[[[I] ['I [- [' - [Y]Y-db710115:21016F]edededb[[[Y []I [M66677.
IU(I [-] (CC-U(‘~ bbb?10115:3112?TbdeddedbTTPQRRRRPHAADF.
'bb" [[-I ' -'bbbbdbbbK21418D5129M [edggggdebb'l [[VRPMPVY.

'bbbb'] ' ' ' 'bbbdededY ; 43@Y [826DT^dedgf dedbbbb' 'b'] 1 [Y [.
b'bbbbb'bb'-bdeddede]~846Q~D~=I~]edggggfeb'bbbbbbb'] [[.
' bbb'bbdbbbbededdddbI8=8HTO=8HY'ddgfgggdb'"] [- ' .
' bbbbbdedebbbdbbedeed [? 3 7 1 ~ 1 ~ ~ ~ - b d e ~ ~ f gf eb1'-'- ' - ' ' 'bb' .
bbbbededdb " " '1 bdddeb [; l29DMW' bdedgf g g g b '1 [-bb ' -b " - .
bdbbdededeb' - ' ' [bededde [96AR] 'bdeddgggf gdb-1 [I ' ' ' ' ' - .
bedbbdddedb"]YT]gdggddd'Yl'bbbddedgfggded] "I'bbbb'b" .
dbebb'L"][YTVWV[ggggdedd']bbbbbb'bdggggde"']-bbbbbbb'.
eddb'] -1 [[WVWVWY [bgdgggde [KY] "^Y [bggf gf g d -1 [I 1 " " 11 1 .
bb '] - [[[[[YVVW [[I bgf gf ded] ; DPVVVPR] gggggggb' [[[YVY [TTRY .

'1 [YV [' ' ' ' [[I ['bdggggddbY=8AIIFFHWdgf gdf ggdede] ' bRHRV [.
' ' [- [[- ' - [dbbbbdeggf ggdaM8768887; =Mbggddggf eddebbbVIT [Y .
'b'] [I '1 -1 bbbe'bdgf ggbRA6224553447Dl ddeggf gdbCYOMKKMY [[.
bb] [[[YVY'bbbd'bdgggdM721111221247Fbeddggggggd'MDITRTWY.
" [[Y [WT] 'bb'd'bggf g] 8212111112248D'dgdgf gfggdbYRMKMMOM.
[' [TRTRV[' ' ' ' ' (dggdbM4110012111239Kbdgdggdbdggd'YVOITIM.
1 '1 RKKORW] ' [I bggf d [T?1100011111358Mbdeddb-1 bdggd' [RHDA; .
'b] - [RIMT [I -bgf gg'I=2lOOOOOOOll248O 'db [TPORIbggf gdb [WVT.
[']]][VPTRV'gfggdV721201110001215:T '̂[TIKV'egfgggdb"'Y.
]'[Y[[WVVPTggggfbW610011100000113;M[YRYbdggfggfgggd"~~.
[[WTTROMMWdgf gf e '1 ~61131100000115FT] bgf gggf ggggf gggb] -1 .
WRTVWVWY]ggggggb][[YPD?4100001370Y'gggggfgggfgfggfgd[[Y.
VTW [VYY] ef gf gf d' [^ '1 [I YVPIB= ; ; FV- ' dgf gf gdgf gggggf ggdb- [.
YTRTRROYggggggb " -b ' ' [Y [YX [[[[I -dbgiiggdeggf gf gf ggggd ' 1 .
1 YVWVWV-f gf gf gbbbbdeb] [I [[- 'b' ' dggf igf gdddbbdedggf gf el [.
-1 [I [[bgiiiggbdededd' -1 'bbbbbdggf ggggggb' 'beddef gggd' V.
[[[[[['gfgiiifedgddedbbbbdebdegfgggfgfgdb"bdeggggdggdc.
TRTTRTbgiiiiigdggdggdedededdefgggfgggigdb1bbdgfgfgddgd'.
PMMPMTdiiiiiiggfgggfgggfgdedggfgggiifigdb'bdgiigggdegdt.
TTTRT-iiiiiiiiggfggggfggggfggggfgifiigdeddgggiigfgdddeb.
[(] -bg. llllllllgfggiifggfgggfgfggfiiiigggggiiiigfgggdefd.
bbddiiiiiiiiiiiiiiiiigggfgggggfggiiiigfgfiiiiiiggfggggd.
bbgiiiiiigiiiiiiiiiiiifggfgfgfgiiiiiiggiiiiiiigfgggfggg.
dgiigigggfgiiiiiiiiiiigggggggggiiiiiiiiiiiiiiiiggfggfgf.
giiggfgfggiiiiiiiiiiiiifgfgfgfiiiiiiiiiiiiiiiiigfggfggg.
iiiigggiiiiiiiiiiiiiiiggiiggggiiiiiiiiiiiiiigggfgggggfg.
iiiigfiiiiiiiiiiiiiiiiiiiiifgiiiiiiiiiiiiiiiiigggfgfggg.
iiigdedggggiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiigggfgf.
iiigddggfgfiigggg.
iiiggdLbgbdedgd[['diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiifgfg.
iiigddefdgdbbW?;?DMWiggiiiiiiiiiiiiiiiiiiiiiiiiiiiigggg.
iiiidggdiggg]F=;=?DFMOR[giiiiiiiiiiilkiiiiiiiiiiiiiiiif.
ikliiigiiiiglIDADBADIHIMYbgiiiiiiiikkliiiiiiiiiiiiiiiig.
ikkkiiiiiiigbROMMIFFFFFIKMVigiiiiiilkiiiiiiiiiiiiiiiiig.
ilklkiklkkkig'l -YRMIFFFDHIFK'giiggiiigdgggiiiiiiiiiiiig.

lmputer program similar to (but
is different: '0' means white and
;<=>?@ABCDEFGHIJKLMNOPQRSTUV

(Lincoln)
5546556466665667567667767666
4554556553555466556656666645
5355355453567566665666647:IT
65453434343665555455658=Rddd
665343434254453534236=Rdeded
43434343224122243434APdedded
554435342422414247AR'bgdgded
5453434344434252:FYbbdg[PAB[
345534346555443;RY'bdgR00002
435455454555546 [I gb [' '000000

4343445554566~~dkgid30000000
2434465466647YOgk~dBlOOOOOOO
355465656465:'Ykke[741111000
464666566645 : g[lil K862323lll
466676665657BfkniY;781122232
566656776676Alkki];772323243
577656776776[nnieCFDA4324342
65665577767?kpmkgbHMI6534455
5567767677<bnklkgCTWM86566?V
4667777576fkgA8'gid'O8674;RY
567777777?i'di[8biidY8668RQb
577888887;iibe[DBiiiY:56FCgV
657778788;dW [M?=ObiiM87?] [OW
566778898='F???b[Te]=6:BMD=F
667888;:=?YR77Id;;'[88;8;:;D
77888; ; ==; di66 [768g [; ; : 878; =
7788;=:==8'kA8?78i,iK==;88;:
88.=:===?. :bl=88?D]kgMA=. f . I : ;
8;:====?=??Wk;B==KW&dKB?=. 2 . .
. . . - - - - - .,-----?=?DC]8;=HKkk-'TKFD= . . - - - - . - , . ---- .-???BT'I:?lAinYVbYRMA
. --- , ---??=?BB?BMM] blmKbd [R [Y [TK
: =?=?BBABABAFKWbnkWV [TMPM [KH
;==??BDABDDDDDHRkgVC[YDKHWHY
==?BABADDFDA?DFP[iYb'TDFFMFD
=?BABADBADDBDBDFHebY']KDBMFT
??BABDADBDDADDDFF[gfAdKFAPMW
=?B?BABDDADBDDADFM1nib[DBHTH
=?B?DB?ADDDAFFFFFKRmkggHPRWV
=????ABDABDDDFDFG'Hblkib[iik
=?B?BB?BDDDABDDDMT?Wmlkkikli
???BAB?ADABDADDAeC:Mgklknnmn
?@?BADBDDABDDDDHki;=Vlmnnnnn
???BADABDBDABABklkB:=Rknrnnmn
?????BADDDDABATklki;==Fgnpnm
?@=?BBABADA?DMlkkliH===?]nmp
???????B?BDTikklkkik;====Rbl
??@B???DMYiniilklkliR:===??A
??===DYkkkkkiiiiiikik=;=HedM
==;?RnnnknlkiiiiiiigibD1iikl
==Kimnmnnnkliiigigiiiikiggik
Kdnnnnnmnkkkigggdgiggiiiddgi
mmmnhmklkggif ef igf iiiiigi
nkmmmmnkklif ggdegf giigiiii
nmnknmnkklkkkgggddgggiigiggg
nnkknnnnkklklifdegfgfiiigibD
nkklknknklmlkggdgggggiiigiiR
nklikkknnnnkkgggfifgiiiiigig
nkkiklknmninnkgfggiiiiiiiiiii
kplikiknnpnnkklkkklikiklkiik
npnnnnknpppmnnnnnknklknkklkl
PPP~P~~PPPPP~PP=~-

TUGboat, Volume 8 (1987). No. 2

WXYZ[\]--'abcdefghijklrnnop. The density of character k was assumed to be approximately k /36 for
0 5 k < 8. and approxirnately k / 7 2 + 1/9 for 8 5 k < 64.

6654567756666666677778788==.
6AD8;=76466566567677778988;.
[bb [I LOB7666665665776788; ; : .
bbb] [-'-Y<7466456777788;=:=.
bbb [[[[I [-H946556776888 ; 8==.
bbb ' -1 [-I ' 1 W6.545666787887 ; = .
bbb'b [[[-I ^-K554678877898: =.
ebb'bb ' '1 "1 F5677877788; 8?.
Mbbcb"'b-"'[F668878;8889=.
OBY' b ' - '1 ' ' -b ' [767788=====? .
002BT'b'bbb'bc-F77887;===:?.
OOOl6HR' 'bb] '1 'Y8787;8: ; :=? .
0000015J"'] 'M]'A8;:;: ;?==?.
00000003YO'~'OPbY88~~:=====. I I

OOOOOOl l IR[b]PA"B8;==?????.
101011322K][K?BVbF===??@??B.
31111123347B:;?DbM=?A?D??BA.
22324434354688?I][;?BBDBAB?.
32233355533577?ILC=ADAFBAB?.
62223354532568=Hc'ADBDDDBDD.
[P1855654335348Kb1?DDADDDD?.
bddeVA857378;CFP-bFBDBDADAB.
degdbWA6?=K] [W] 'b [FBA?AB?B? .
Mbgb'V=5F1bebbdbbTDA=??BA?D.
'gfd-?86FddL'ded[WB??W?B?B.
V['PF; ?65 [I ['ddeR?????????B.
IOT088866=VTY'b'??BBBBBBBAB.
=DMB;88868YPVWY[DDDFDFDDDDF.
7 1 = . . . =. . . , . , .88H [Y] RYFFFKFFFDDFH . --. .- -- ,.-?==;;DFDFK[KKKMKKKHHII.
=;:BD?F==:?F?DMLMKMMMKKIHIH.
==ARA;=?==BIBM] [KMMPMKKKHKI.
?FTDKKFMMKR]O-iPKMMOMMOMMKK.
I]B=RiilkiikbiVKMOMPMMPPMMM.
MD??BHWiknibilMKMPMPOPOOPOP.
IABABAD [dng] 1-MKMOPOMPOPOPO .
MTMKIHIHWgigkPMMPMMPROPOPRO.
bMIKR [' [kknkkTMMPOPORRRRRRO .
IMYRKKHM^ingkWPOPMMPORRQTRR.
DDK]iiiknmgiiOPOOMPORRORTTT.
KDFFIHMWbdbklTMMPMOPORRRTTT.
gV-OMMPY]nknnVPOPOPOPORTTTT.
id'gb-dignnpmWOPOPORRRRTTTW.
kgkkkinnmnmnnOPOPOPRRRRRTWV.
nnknnnpknnppiOMPORRQRQTTTTT.
mnnnmnpppmpnVMMPOPRRRRTTTWV.
nmnmnnppppkTKMMPOOOPRRTTTTT.
pnnnmpppdlMKMMPOPPRORTTTTTT.
npppppnbOYgKMMPOPQRRRTTTWWV.
R'fikdWHKKpIKMPMORORRRTTTTT.
?=?BDBDFFIkpTMOPPORRRRYYTTW.
1 FFIKQPHFFepnPMOPORRQV [VWVV .
lkl['knnbMdppgMMPOPORWVYVYW.
klmnmnnmpnnppmWOMMMRRR[WVWV.
ikknnmpppppppnniYPOMOTVTWVW.
degikl-ppnCRPTTTTTR.
iddbgkgkkiikknnnpppmbWTPRRR.
Vedb[gigiggiklmnmpppppgVRRR.
idgbgkikkklnmnnnnppppppgVR.
KMR [' iiklnnkgnpmnmpppppppp ' .
f I?BHl FM [b [OM] kpnnppppppppp .
iiFBDDBBDDFDDDKkpnppppppppp.
kigDDDFFFFFIHIHMnpppppppppp.
nknVHIHIKKKKKKKKVpppppppppp.

(Liberty)
OOOOOOOOODYVOOO.
000000007V'b800.
OOOOOOOOKIORYPOOO.
0000000B?['YR2000.
OOOOOOOTdabdbMOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooooooo.
0000000ggd"be00000000000000000OOOOOOOOOOOOOOOOOOOOOOOO.
0000000idTW['f000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
OOOOOOOggDFVdeOOO.
00000006HPRK]0000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.

ooooooooo~?~ ~~oooooooooYooo ~oooo~oooooooooooooooooooooo .
OOOOOOOOO6O[POOOOOOOOOO]20O[OOOD?OOOOOOOOOOOOOOOOOOOOll.
OOOOOOOOOOOVRPMOOOOO0004]=D[OO;V00000000OOOOOOOOOOlllll.
00000000000T0MW006H6000A'~[~]=]000016800000000001011131.
00000000000RPRYF000K[?;~V54@[~Y004?T5000000000121112221.
OOOOOOOOOOORTRVVOOOOOT]DVRTTRY~6OYFOOOOOOOOOOlll2232423.
00000000000R[RYV=00000;Y710W[RX[02000000000111112434342.
00000000000F[YVY~00001]?6YHRTVR00000000000F[YVŶ00001176YHRTVR̂B0010101BOO1O1O1lllll2233444353.
OOOOOOOOOOlOYV[W]OO27Ye[A;:MTWY[[Oll2322323232224343444.
OOOOllOOOllOY'[VW39]WKdPY8DRWXVY]1324333432434435545554.
001111111111?[YY[~71lldIMHMRVYWVW2435544343433454554665.
1111213132323X-T["14DdTPVTY[['TT2445656545655456677766.
1312422222233Y[D]bbDV["YYW'YYW[YY'O'?567657677766667588877.
223233344454480Wd'[b;3601 [[VYV]W[Y677787887777588989:8:.
23243434335346Kbcb'0=757g[YRYY](V(657788887877Bi;888;;=.
2243435355545XddWT'RD]DTdPOKRRV-V[877789898888di8;===?=.
4355355545453'bgdYM?R===FI=7=88?IYOYP?88;:8;8?gY;==?=?=.
3433545455556dbgdPA8;=RVPA7=:;IH=?BKMbB8;;;8FK[===?=?BA.
435535356454FgggYY8?TTRFA;8B:TB8I?DFMPi?:;:=Kg[?==?BABD.
5545555465657bgfR:?WD'FB[8?=DBFAWYK?RMRi=;=RRdnd=???BAD.
6466676645456iib'FR?bDFFK8i] M?M [I TOT [Fb] ; =Mbknn??BADDF .
565565666664VgfM^HDbP88W8;YO'eHGY'8DPKDRKDDdikik?BABFFF.
46556664545666ibHIbI88R78?F?Kd'HMb8=[MKYDT]-nkglA?BBDFF.
65566555455466fIFd??7?;7;A==eOiWM65566555455466fIFd??7?;7;A==eOiWM̂A8?bVVA8?bVVM?inkgikFBDDFFI.
54666645564566=Fi=I88R37=B?Db?bkMFF7@gRTiYDDFFIF.
656656646456466_MB861648=?Bb=BKkgTR;?KOYF'dpnnkikDDFFFF.
55676666654656He=077=66<DRVP8?P[iWD??DbWTbepppnnnDDFIHI.
66676676765656Y=087F68=]K?B8;=[KgXYF;Ain]bnpppppmBDFFFF.
55665665665557[D[78878gD7=?7:=(DVFed?FYkbdpppppppFDFFIF.
5546666546666A8M?6;3==]87?=7==]BVi]bMKTeblppppppnmDFIFI.
4565656664667V='88?5==K78==8;?T?bbinDK[[bpppppppnpDFFFH.
5464666565656]M'8966:;:89?;:;?K=-d'i?TdbgppnppppmnFFFGH.
5365664554568D[D;:3=====A?;:=?F?]T'd;RbppppmppppklFFIHK.
556656545546=BY:8@5==???IM=;??KI'P'g:MpppppgppppgkFFIKK.
454556664666JB';:=6?=?;BD?88?9F[bRbd8IkpppngpppngkDFIKK.
445453546666RTd?;:=A=?;?=?89?8BbL]bg?PgpppminpnmikFFHKH.
355645554665FWd=;:I;:I7A??7;?;?g--'g?KgppnnkipniiPIIKKI.
445465456646=V^=:7D:;T7?@B6:?;?g]['-;AgmnppkgdndiFFHIHK.
345545645466D[0;76?8'?8=AA7;=:?d]̂'B:BgkpppipkklnFFIHKK.
233554566666F[BA58?=T8=FD?7:;=DbT-]B:igppnnnnkk'FIHKKK.
343545666666F]8I3F;TB8;?F=;7;?BbT]b?8idppknkknnFFIHKKK.
344566656566M];=5H;=:F?FNA;7:?=['bgFD?YdnppkkpnYDFHIHKK.
345466666766Q';:8BR:@?;??=68=?;TbdgkgbTbininkiVDFIHIKKK.
445665766777Hd;7==b;D=;??;87=D8IbbbiLAgbbk?dKFDFFIHIHKM.
546477777787;':8B-I:?:;7;7:7?=8Dbbei?AYg'kBDDDDFFIHIKKK.
3555667877877V=8Rd7;;;=?:;;==;ATbcbi??MkbkDDFFFFIHIKHKK.
6665766777777MBBd'6=7:?;;=8?;Hilgbci?9Id'iDDFFGHIKHIKKM.
6787878:88888IA'iY6<7?=DAA?=HliifbdiB:IbgiMFFIHKKKKKMMM.

---- . , . , , . , ?=ODdkR6?8?FP;??InknkbgbkB?HbdgbIHMMMMMOMMMP.
??????BDABABBHIdnR=D?DTA=BKnpnpibignK1igbkkMMRPRRRRRRRR.

148 TUGboat, Volume 8 (1987), No. 2

Appendix 3: Transforming the pixel data
The following WEB program illustrates how to convert data like t,hat of Appendix 1 into the form required
by the fonts and macros described earlier.

1. Introduction. This program prepares 33-level halftone images for use in T# files. The input is
assumed to be a sequence of pictures expressed in the form

m n
(first line of pixel data, n characters long)

. . .
(m th line of pixel data. n characters long)

terminated by a line that says simply '0'. The pixel data consists of the characters "0" to "9" and " A "
to "V". representing 32 levels of darkness from black to white. [See Appendix 1.1

The output is the same set of pictures, expressed in a simple format used for 33-level halftones. with
ASCII characters "0" to "P" representing darkness levels from white to black. The levels are adjusted to
compensate for the idiosyncrasies of Canon LBP-CX laser-printing engines. Two dots are typeset for each
pixel of input: hence there are 2m "halflines" of n-character data in the output.

2. Here's an outline of the entire Pascal program:
program half tones (z,nput , ou tpu t) :

label (Labels in the outer block 4)

const (Constants in the outer block 3)
type (Types in the outer block 5)

var (Global variables 6)

procedure inztzalize; { this procedure gets things started properly)
var (Local variables for initialization s)
begin (Set initial values 7)

end:

begin in i t ia l ize; (The main program 23);
end.

3. Each picture in the input data must contain fewer than rnuz-rn rows and max-n columns.
(Constants in the outer block 3)

max-m = 200; { n2 should be less than this)
max-n = 200; { 72 should be less than this)

This code is used in section 2

4. The main program has one statement label, namely cleanup-and-ter7nintLte.
define cleanup-and-terminate = 9998
define f inish r goto cleanup-and-termznate { do this when all the pictures have been output)

(Labels in the outer block 4) s
cleanup-and-terminate ;

This code is used in section 2.

5 . The character set. We need translation tables between ASCII and the actual character set. in order
to make this program portable. The standard conventions of TEX: The Program are copied here, essentially
verbatim.

define text-char r char { the data type of characters in text files }
define f irst-text-char = 0 { ordinal number of the smallest element of text-char)
define last-text-char = 127 { ordinal number of the largest element of text-char)

(Types in the outer block 5) r
ASCII-code = 0 . . 127: {seven-bit numbers }

This code is used in section 2.

TUGboat, Volume 8 (1987), No. 2

6. (Global variables 6) -
xord: array [text-char] of ASCII-code; { specifies conversion of input characters }
zchr: array [ASCII-code] of text-char: { specifies conversion of output characters }

See also sections 10, 13, 14; and 22.
This code is used in section 2.

['43] + . # - ; zchr

['53] + '+.: xchr
. . ,['54] t * , * ; xchr['55] t * - . ;

xchr['56] t - . .; xchr['57] + - / - ;
zchr['60] + -0-1 xchr['6l] + '1.; xchr['62] - * 2 * ; xchr['63] c -3'; xchr['64] + - 4 - ; xchr['65] +- - 5 - :

xchr['66] t + 6 - ; xchr['67] + -7 . :
xchr['70] t - 8 - ; xchr['71] c - 9 - ; xchr['72] + - : -; xchr['73] + ' ; + ; xchr['74] +- - < - ; zchr['75] +- -= - ;
xchr['76] - - > * ; xchr['77] + - ? - ;
zchr['100] + -@.; xchr['lOl] t - A F : xchr['l02] + -B-: xchr['103] + - C - ; xchr['104] + .D*;
xchr['105] t -E'; xchr['l06] t OF-: xchr['107] + * G s ;
zchr['110] t .Hs: xchr['lll] t 'I-; xchr['l12] t - J - ; xchr['l13] t - K 7 ; xchr['ll4]
xchr['115] t - M s ; xchr['ll6] c .Ns; xchr['117] + - 0 ' :
zchr['120] t *Pe; xchr['121] t -9-1 xchr['122] - - R ' ; xchr['123] + - S s ; xchr['124]
xchr['125] t * U ' : xchr['126] t .V * ; xchr['127] t .Ws;
xchr['130] t 'X'; xchr['131] + 'Y'; xchr['132] + * Z - ; xchr['133] + . [- ; xchr['134]
xchr['135] - -1 - ; xchr['136] t - ^ - ; xchr['137] + + - * ;
xchr['l40] + * ' .; xchr['141] + - as : xchr['142] c -b ' ; xchr['143] + - c - ; xchr['144]
xchr['145] c - e ' ; xchr['146] + -f - : xchr['147] t -g - ;
xchr['l50] t - h S ; xchr['151] t ' i-; xchr['l52] t *j-: xchr['153] t -k*; zchr['l54] + -1';
xchr['155] t .ms; xchr['156] t -ns ; xchr['157] + -0.:

xchr['160] t * p * : xchr['l61] t - q * ; xchr['162] t - ra ; xchr['163] t ' s * ; xchr['l64] t * t e ;
zchr['165] + *u'; xchr['166] t * v e : xchr['167) +- * w a ;
xchr['170] t - x s ; xchr['l71] + - y s ; xchr['l72] t + z + ; xchr['173] + * (- ; xchr['174] + - I - ;
xchr['175] + - I - ; xchr['176] + - - - ;

xchr[O] + -;; xchr['177] + -,-; { ASCII codes 0 and '177 do not appear in text)

See also sections 9. 11. 15. and 17

This code is used in section 2.

8. (Local variables for initialization s) r
i: 0 . . last-text-char;
This code is used in section 2.

9. (Set initial values 7) +-
for i + 1 to '37 do xchr[i] t - u s :

for i + first-text-char to last-terct-char do xord [chr(i)] t '177;
for z + 1 to '1 76 do xord [xchr[i]] +- z;

10. Inputting the data. We keep the pixel values in a big global array called v. The variables m and n
keep track of the current number of rows and columns in use.

The dd table contains density values assumed for the input, indexed by single-character codes.

(Global variables 6) +=
v: array [O . . m a x - m) 0 . . max-n] of real; {pixel darknesses, from 0.0 to 1.0)
m: integer; { rows 0 . . m + 1 of v should contain relevant data}
n: integer; { columns O . . n + 1 of u should contain relevant data }
dd: array [text-char] of real;

150 TUGboat, Volume 8 (1987), No. 2

11. All input codes give zero density. except " 0 " to "9" and " A " to "V" .

(S P ~ initial values 7) +E
for i - ,f i~..st-tez_cha,r to lust-text-char. do dd [c h r (i)] t 0.0:
for i - " 0 " to "9" do d d [c h r (i)] -- 1.0 - (i - "ON) /31 .0 ;
for i + "A" to "V" do d d [c h r (i)] + 1.0 - (i - " A " + 10) /31 .0 :

12. The process of iiiputting pixel values is quite simple. We terminate the program if anomalous values of
m arid r~ occur. Bouiidary values are added at the top, left. right,. arid bottom in order to provide "padding"
that will be coiiv~rlierit in the pixel trarisforrnation process. Each boundary value is equal to one of its
adjacent neighbors.

(Input a picture. or terminate the program 1 2) c
r e u d (m) : if (7n 5 0) V (r n > mnx_m) then Jinrsh:
' read-h('n) : if (T L 5 0) V (1 1 2 mar -n) then fitin~sh;
for i - 1 t o rn do

begin for 1 -- 1 to rt do
begin 'recli?(c): ~ [i . j] + dd[c j :
end:

'uj i . 01 - ilji. 11: U ! , L . 11 + I] - u [i . 12.1:

read-h :
end:

for J - 0 to n + 1 do
begin vj0.31 - 1~[1.31: u[m + 1. jl t 'u[l -r~. j] :
end

This rode is used i n section 2 3 .

13. Thr. todt. just written rnakes usr of three temporary registers that must be declared:

(Global variablrs 6) +=
i . j : m t e p r : { current row anti column }
c: clzur.: {character read from input }

14. Pixel compensation. The 33-level output of this program is assu~ned to be printed by a forit that
contains 4 x 8 cliaracters. wlxre each character lias 0 to 32 black bits. Physical properties of output devices
cause distortions. so that a, character with k black bits does not have an apparent density of k/32. We
therefore nlairltairi a table of apparent density values.

define n im- l = 32 { n~axirrlurri out,put l e~e l }

(Global variables 6 j +=
d: array [O . . ,rnc~s_l] of real: { apparent densities. from 0.0 to 1.0]

15. This t a b k is based on some drrisitoinetrr nleasurerrlents that are not especially reliable. The amount
of toner seerns to vary between the top of a page and the bottom: also blocks of the character " N u seen] to
appmr darker than hloclis of the character "0". because of sonie property of xerography, although the "0"
has one more bit t~ i rned oil. Such anomalirs have been snmothed out here. since the resulting values should
provr good enough in practice.

(Set initial values 7) +=
d@ - 0.0: d [l] - 0.06: d [2] - 0.095: d [3] + 0.125: 441 -- 0.153:
d [5] 6 0.175: d [6] + 0.213: dl71 -- 0.245: dl81 + 0.27; d [9] + 0.29;
d [10] t 0.3: d [l l] + 0.31: dl121 + 0.32: d[13] + 0.33; d[14] + 0.34:
d [l5 j - 0.35: r1[16] t- 0.36: d[17] + 0.37: d[18] + 0.38: dl191 + 0.4:
4201 t 0.42: d[21] + 0.44: d[22] + 0.47: dl231 + 0.5: dl241 + 0.53:
d[23] + 0.57: d[26] - 0.61: dl271 + 0.66: d[28] + 0.72: d[29] + 0.80;
tl[30j + 0.88: dl311 - 0.96: d[32] t 1.0:

TUGboat, Volume 8 (1987), No. 2 151

16. We convert the pixel values by using a variant of the Floyd-Steinberg algorithm for adaptive grayscale
[Society for Information Display. SID 75 Digest. 36-37]. The idea is to find the best available density. then
to diffuse the error into adjacent pixels that haven't yet been processed.

The following code assumes that x is the desired density value in column 1 of the current halfline. It
outputs one 33-level density, then updates x and J in preparation for the next column. Adjustments to the
densities iri the two next halflines are accumulated in auxiliary arrays nextl and nex t2 : this will cornperisate
for errors in the current halfline.

We assunie that nex t l [J] , n r z t l [j + 11, and next2 [I] correspond to the dots that are adjacent to cur ren t [j] .

(Output one value and move to the next column 1 6) 3

(F ind I so that d[l j is as close as possible to z 2 1) :

write (xchr [" O N + 11) : err t z - d [l] :
nert l [J ; - m ~ t l [J] T alpha * er7 :
n,ert2 [j] - beta * err;
j + j + 1: { move right }
next1 ijj + next1 [j] + yarnrrm * err:
z + cu.r..rent[jj + delta * er7

This code is used in sections 18 and 18.

17. The constants alpha . . delta control the distribution of errors to adjacent dot positions.
(Set initial values 7) CE

alpha - 7 /16 : { error diffusion to SW neighbor)
beta + 1/16: {error diffusion to S neighbor }
ganzma + 5/16: { error diffusion to SE neighbor }
delta t- 3/16: { error diffusion to E neighbor)

18. Herr is the overall control of the process. Every halfline of the picture being output is a sequence of
ASCII charac.ters from "0" to "P", terminated by " . ".

(Output the picture 1s) c
for j - 1 t o r~ + 1 d o

b e g i n nextl [j] 0.0: next2 [j] + 0.0:
e n d :

for i + 1 t o m d o
b e g i n (Set the current halfline data for the upper row of dots in line .i 1 9) :

j t- 1: x + curren,t [lj;
r e p e a t (Output one value and move to the next columri 16) :
u n t i l j > 7 1 :

wrz te - l7~ (~ . -) : (Set the current halflirie data for the lower row of dots in line i 2 0) ;

j - 1: x + cvrrent[l j :
r e p e a t (Output one value and move to the next colunln 1 6) :

u n t i l j > n:
wrzte-ln(+ . -) ;
e n d

This rode is used in section 23

19. The density value for dot 1 in the upper halfline of line z is obtained as a weighted average of the input
values in rows z - 1 and 1 , colunlns 1 and J + 1. The upper halfline is skewed to the right. so we must shift
nest1 and nrx t2 appropriately.
(Set the current halfline data for the upper row of dots in line i 1 9) G

for j t- 1 to n d o
b e g i n currentj j] + (9 * 'u [i . j] + 3 * u [i . j + 11 + 3 * v [i - l j j] T V [Z - l ~ j + 1]) / 1 6 i n e x t l [j + 11:
next1 [j] + n ~ ~ t 4) [j] ;
e n d :

next1 [n + 11 t 0.0

This code is used in section 18

152 TUGboat, Volume 8 (1987), No. 2

20. The lower halfline is similar, but in this case there is leftward skew; we use rows i and i + 1, columns
j - 1 and j .

(Set the current halfline data for the lower row of dots in line i 2 0) E

for j t 1 to n d o
b e g i n current[j] + (9 * v[i . j] + 3 * v [i . j - I] + 3 * v [i + 1. j] + .u[i + 1. j - 1]) /16 + nextl [j] ;
nextl [j + 11 + next2 [j] :
e n d :

nextl [I] +- 0.0
This code is used in section 18.

21. The algorithm is now cornplete except for the part that chooses the closest possible dot size. A
straightforward binary search works well for this purpose:
(F ind 1 so that d[l] is as close as possible to x 21) =

i f x 5 0.0 then 1 + 0
else i f x > 1.0 t h e n 1 maz-1

e l se b e g i n lo'w-l + 0 ; h2yh-l + m a d : { we have d[low-l] < s < d[hiyh-l] }
w h i l e hrgh-l - low-l > 1 d o

b e g i n m,zd-l + (lour-1 + hrgh-1) d i v 2 :
i f x > d [m d l j t h e n low-l + mid-l
e l se hzgh-1 + rnzd-1;
e n d :

i f x - d[lou!-1] < d[hrgh-l] - x then 1 - low-1 else I + hzgh-1;
e n d

This code is used in section 16.

22. W e had better declare the variables we've been using.
(Global variables 6) +E
x: real: { current pixel density }
err: real: { difference between x and the best we can achieve}
current: a r ray [0 . . maz-nj o f real: { desired densities in current halfline }
nextl . next2: a r ray [O . . muz-n] of real: { corrections to subsequent densities }
alpha. beta, gamma, delta: red 1 { constants of error diffusion }
1 ; low-1, mzd-1. high-1: 0 . . ma-1 : { trial density levels }

23. The main program. Yaw we're ready to put all the pieces together
(The rnain program 2 3) E

write-ln (\input,hf 33 -): wrzte-ln ;
w h i l e true d o

b e g i n (Iriput a picture. or terminate the program 12):
wri te_h(- \beginhal f tone .): (Output the picture 18);

write-ln (' \endhalf tone *) ; write-ln;
e n d :

c leanup~and_t~rminate :

This code is used in section 2.

TUGboat, Volume 8 (1987), No. 2

Appendix 4: Pixel optimization
Here is another short WEB program. It was used to generate the special font for Mona Lisa.

1. Introduction. This program prepares a METAFONT program for a special-purpose font that will
approximate a given picture. The input is assumed to be a binary file that contains one byte of density
information per pixel. The output will be a sequence of lines like

this means that bits 3, 15, 16, and 17 of the character for row 10 should be black.

2. Here's an outline of the entire Pascal program:
program p ic fon t (by tes -zn , o u t p u t) ;

type (Types in the outer block 5)

var (Global variables 6)
(Basic procedures 10)

begin (The main program 26) ;
end.

3. The picture in the input data is assumed to contain mm rows and nn columns.
define mm = 512 { this many rows)
define nn = 440 { this many columns)

4. It's convenient to declare a macro for incrementation.
define z n c r (#) - # t # + 1

5 . Inputting and outputting the data. The input appears in a file of &bit bytes, with 00 representing
black and FF representing white. There are mm x nn bytes; they appear in order from top to bottom and
left to right just as we normally read a page of text.
(Types in the outer block 5) =

ezght-bits = 0 . . 255; {unsigned one-byte quantity)
byte-f i le = packed file of eight-bzts; {files that contain binary data)

This code is used in section 2.

6. (Global variables 6) c
bytes-zn : byte&:
See also sections 9, 14, 16, 22. and 25.

This code is used in section 2.

7. Different Pascal systems have different ways of dealing with binary files. Here is one common way.
(Open the input file 7) =

r ese t (by te . s - i n , * -, * / B : 8 -)

This code is used in section 26.

8. We shall use the following model for estimating the effect of a given bit pattern: If a pixel is black, the
darkness is 1.0: if it is white but at least one of its four neighbors is black, the darkness is te ta; if it is white
and has four white neighbors, the darkness is zero.

define whzte = 0 {code for a white pixel with all white neighbors}
define gray = 1 { code for a white pixel with 1, 2. 3, or 4 black neighbors }
define black = 2 { code for a black pixel)
define t e t a - 0.2 { assumed darkness of white pixel with a black neighbor)

154 TUGboat, Volume 8 (1987). No. 2

9. There isn't room to store all the input bytes in menlory at once. biit it suffices to keep buffers for about
a doze11 rows near the current area being computed.
(Global variables 6) +z
i i : in teyer ; { the buffer holds rows 822 - 7 through 822 + 4)
b ~ ~ f l e r : array [-2 . . 9.0 . . rLn + 11 of real; { densities in twelve current rows }
darkness : array [-3 . . 9 .0 . . n n + I] of 'white . . black: { darknesses in buffer rows }
new-row: array [O . . n n + 11 of real: { densities in row being input }

10. The get-zn procedure conlputes the densities in a specified row and puts them in new- row Thls
procwiure is called successively for 1 = 1. 2
(Basic procedures 10) z
procedure ye t -m(i : znteyrr):

var j : in teger : t : eryh,t_bzts; { byte of input }
begin new-roc [0] - 0.0:
if '2 > mm then

for 3 1 to nn do ne~c - rou~ : j] t 0.0
else for j + 1 to ,rLn do

begin 'rea(l(bytes-isr1.t): nelc_rotr.[,jj + (255.5 - t) j 256 .0 :
end:

aeul_row [nn + I] - 0.0:
end:

See also sectioris 11 arid 20.

This code is used i l l sectiori 2 .

11. Here is a procedure that "rolls" tho buffer doum eight lines:
(Basic procedures 10) +z
procedure rol l :

var j: 0 . . n7i, + 1: i : 2 . . 9: k : integer:
begin for i - 6 to 9 do

for j + 0 to 'nn + 1 do
begin buffer.[i - 8. jj - hu#er[i. j] : dark7iess:i - 8. j] - darkneas[i , j] :
end:

for j 0 to 7171 + 1 do darkriess [-3.3:; da,rhes.sj5. j] :
i n c r (i i) :
for i - 2 to 9 do

begin ge t -m(8 * 23 + i - 3):
for 3 - 0 to n,n - 1 do

begin bufle!r[i . j] - neiu-row [J] : darkness ji. j] - ruliite:
end:

end:
end:

12. It 's tedious but not difficult to get everything start>ed. We plit zeros above the top lines in the picture.

(Initialize the buffers 12) =
2 2 t- 0:
for i + 6 to 9 do

begin get-ln (i - 5) ;
for j - 0 t o nn + 1 do

begin bufler ji. j] 6 new-i.o?o[j]; darkness [i : j] 6 whrte:
end:

end:
for % + -2 to 5 do

for j + 0 t o nn + 1 do
begin h.r~f ler[?., j] - 0.0: darkness[i . j] + mh,zte:
end:

for j - 0 to izn - 1 do darkness[-3.11 6 2r.h~te
This code is used in section 26.

TUGboat, Volume 8 (1987): No. 2

13. It's easy to output the current darkness values. Here we output eight consecutive rows.

(Output t,he pixel values for the top eight rows of the buffer 13) E

for i + -2 t o 5 do
begin wr i t e (- r ow (- . 8 * r i - 5 A- i : 1, -) ; , co ls (.): cols-out + 0:
for j + 1 to n n do

if darkness[i . jj = black then
begin if cols-out < 15 then

begin if cols-oi~t > 0 then w?.r te(- , -) :
zncr(cols_out) :
end

else begin wr r t e - i n (- , *) : w r i t e (- ,,,,,,, ,,,,,,,,~): cols-out - 1;
end:

~ ' r ? , f e (J : 1):
end:

turlte-1n (- 1 ; -)
end

Tliis cod? is used in section 26

14. (Global variables 6) t~
cols-out : 0 . . 13: { t h ~ nurnber of colurnns output so far 011 this line }

15. Dot diffusion. The pixels are divided int,o 61 classes. nurrihered from 0 to 63. We convert the pixel
values to darkriesses by using a rnetliod called ..dot diffusion." Values are assigned first to all the pixels of
class 0, then to all the pixels of class 1. etc.: the error incurred at each step is distributed to the neighbors
whose class rlumbrrs are higher. This is done by means of precomputed tables c lass_row. class-col, s t a r t ,
de l - i , de l - j . and alpha whose function is easy t,o deduce from the following code:

(Choose pixel values and diffuse the errors in the buffer 15) -
for k + 0 t o 63 do

begin i + class-row [k] : j + class-col [k j :
while j < nn do

begin (Decide the color of pixel [i . jj and the resulting err 17):

for 1 t start [k] to start [k + 11 - 1 do
begin 1~ - i + del_ l [l] : 1 , + j + del-1 jlj: ~ I L ~ ~ ~ T [I L , ~ I] + b?~, f fer [u,v ! t err * ulphu[l] :
end:

j + j + 8 :
end:

end

This code is used in section 26

16. (Global variables 6) +=
c l a s s ~ o z ~ . : array [0 . . 631 of -2 . . 8: { buffer row containing pixels of a given class)
class-col: array [0 . . 631 of 1 . . 8: { first col~imn containing pixels of a given class }
clas.s_num,ber: array 1-2 . . 9 .0 . . 91 of 0 . . 63; { number of a given position}
er r : real; { error introduced a t t,he current position }
err-black: r e d : { error iritroduced a t the current position if black chosen)
black-dzff: real: {differrrice between err and em-black for gray pixel}
1: 0 . . 256: { index into diffusion tables }
s ta r t : array [0 . . 641 of 0 . . 256: {first entry of diffusion table for a given class)
del-z, del-j : array [0 . . 2561 of -1 . . 1: { neighboring location for tiiffusion)
alpha: array [O . . 2591 of real: { constant of proportionality for diffusion)

156 TUGboat, Volume 8 (1987), No. 2

17. Here we choose white or black, whichever minimizes the magnitude of the error. Potentially gray
values of this pixel and its neighbors make this calculation slightly tricky, as we must subtract zeta when a
gray pixel is created and add zeta when it is destroyed.

(Decide the color of pixel [i, j] and the resulting err 1 7)

i f darkness [i , j] = gray t h e n
b e g i n err + buffer[i , j] - zeta; err-black t err - black-dzff;
e n d

e l s e b e g i n err +- buffer[i , j] ; err-black + err - 1.0;
e n d ;

i f darkness[i - 1, j] = white then err-black t err-black - zeta;
i f darkness[i , j - 11 = whzte then err-black t err-black - zeta;
i f darkness[i . j + 11 = white then err-black +- err-black - zeta;
i f darkness[i + 1: j] = white then err-black + err-black - zeta;
i f err-black + err > 0 t h e n

b e g i n err + err-black; darkness[i , j] + black;
i f darkness [i - 1, j] = whzte then darkness [i - 1; j] t gray;
i f darkness [i. j - 11 = whzte then darkness [i , j - 11 + gray;
if darkness \i, j + 11 = white then darkness i i , j + 11 + gray;
i f darkness [i + 1 , j] = white then darkness [i + 1: j] + gray:
e n d

This code is used in section 15.

18. (Initialize the diffusion tables 18) r
black-dzff t 1.0 - 2.0 * zeta:

See also section 19.

This code is used in section 26.

19. Computing the diffusion tables. The tables for dot diffusion could be specified by a large number
of boring assignment statements, but it is more fun to compute them by a method that shows some of the
mysterious underlying structure.

(Initialize the diffusion tables 18) +-
(Initialize the class number matrix 2 1);
(Compile "instructions" for the diffusion operations 2 3)

20. The order of classes used here is the order in which pixels might be blackened in a font for halftones
based on dots in a 45" grid. In fact, this is precisely the pattern used in the -dot300- font that was
described earlier.

(Basic procedures 10) +-
p r o c e d u r e store(i , j : integer); { establish new class-row, class-col)

b e g i n i f i < 1 then i t i + 8 e lse i f i > 8 then i t i - 8 ;
i f j < l t h e n j + j + 8 e l s e i f j > 8 t h e n j t j - 8 ;
class-nurnber.[i, j] +- k : class-row[k] +- z; class-col[k] +- j ; i n c r (k) ;
e n d ;

p r o c e d u r e store-eight(z, j : znteger); {rotate and shift for eight classes)
b e g i n s tore(2 , j) ; store(i - 4 : j + 4) ; store(5 - j , i) ; store(1 - j 7 i - 4) ;
store(4 + j , 1 - i) ; s to re(j , 5 - i) ; store(5 - i , 5 - j) ; store(1 - i , 1 - j) ;
e n d ;

TUGboat, Volume 8 (1987), No. 2

21. (Initialize the class number matrix 2 1) r
k t 0 ; store-eight (7 , 2) : store-eight (8 , 3) ; store-ezght (8 , 2) ; store-eight (8 , l) ;
store-eight (l,4); store-eight (1 , s) ; store-eight (l , 2) ; store-eight (2 , 3) ;
fo r i + 1 t o 8 d o

b e g i n class-number[i , 01 +- class-number [i, 81; class-number [i, 91 t class-nurnber[i: 11;
e n d ;

f o r j t 0 t o 9 d o
b e g i n class-nu,mber [-2. t class-number [6 , j] ; c lass-number[-1, j] + chss-number [7 , j] ;
class-number [O. j] t class-number [8 , j] ; class-number [9 , j] t class-number [1 , j] ;
e n d

This code is used in section 19.

22. The tricky part of this process is the fact that some values near the bottom of the buffer aren't ready
for processing until errors have been diffused from the next bufferload. In such cases we go up eight rows to
process a value that has been held over.
(Global variables 6) +E
hold: a r r a y [O . . 9 .0 . . 91 o f boolean:

{ is this value too close to the bottom of the buffer to allow immediate processing? }

23. The "compilation" in this step simulates going through the diffusion process the slow way, and records
the actions it perfornls (so that they can all be done at high speed later).
(Compile "instructions" for the diffusion operations 2 3) r

fo r J t 0 t o 9 d o ho ld [9 . j] - t r ue ;
f o r z t O t o 8 d o

f o r j + O t o 9 d o ho ld [z , j] + fa lse ;
l t 0 : k - 0 ;
r e p e a t i +- class-row[k]; j +- class-col [k] ; w + 0 : s ta r t [k] +- I ;

f o r u t i - l t o i t l d o
f o r v t j - l t o j + l d o

i f class-number [u, v] > k then
b e g i n deE..i[l] + u - i ; del-j [1] +- v - j ; i nc r (1) ;
i f u = i then w t w + 2 { neighbors in the same row get weight 2)
e l s e i f u = j then w + w + 2 { neighbors in the same column get weight 2)

e l s e i n c r (w) : { diagonal neighbors get weight 1)
e n d

e l s e i f hold [u, v] then hold [i ; j] t t r ue ;
i f hold [i, j] then class-row[k] t- i - 8 ;
(Compute the alpha values for class k , given the total weight u: 2 4) ;

zncr (k) ;
u n t i l k = 64:
start [64] + 1

This code is used in section 19.

24. (Compute the alpha values for class k , given the total weight w 2 4) r
f o r 11 + star t [k] t o 1 - 1 d o

b e g i n if del-i [l l] = 0 then alpha[l l] +- 2 . 0 1 ~
e l s e i f del-j [l l] = 0 then alpha[l l] t 2 . 0 1 ~

e l s e a lpha[l l] - 1 . 0 1 ~ ;
e n d

This code is used in section 23.

25. (Global variables 6) +=
11: 0 . . 256; { loop index }
'u, u : znteger; { neighbors of i and j }
w: in teger ; { the weighted number of high-class neighbors}
i , j : in teger ; { the current pixel position being considered }
k : 0 . . 64; { the current class being considered)

TUGboat, Volume 8 (1987), Pio. 2

26. The main program. Finally we're ready to get it all together.
(The main program 26) =

(Initialize the diffusion tables is):
(Open the input file 7);
(Initialize the buffers 1 2) ;

repeat (Choose pixel values and diffuse the errors in the buffer 15) :

if ii > 0 then (Output the pixel values for the top eight rows of the buffer 13) ;

~ 0 1 1 .
until 8 * iz > mnL

This code is used in section 2.

Acknowledgements. The research described in this paper was supported in part by the System Development
Foundation and in part by National Science Foundation grants IST-8201926. XICS-8300984. and DCR-8308109.

TUGboat, Volume 8 (1987), No. 2

Addendum
Stop the presses! When I wrote the preceding pages (and had them typeset). I was unaware of a L.mell known"
method that should have been included for comparison. So far this paper has considered (1) a halftone font
with 65 levels of gray, in which each 8 x 8 character essentially contributes two dots to a picture; and (2) a
halftone font with 33 levels of gray, in which each 4 x 8 character contributes one dot to a picture. It's
also possible to construct (3) a halftone font with 17 levels of gray, in which each 4 x 4 character essentially
contributes half of a dot (actually two quarter-dots) to a picture. This third method is based on an idea due
to Robert L. Gard [Computer Graphics and Image Processing 5 (1976), 151-1711.

The kth level of gray in the half-dot scheme is obtained by blackening cells 0 to k - 1 in the array

(We actually make two sets of characters, one the mirror image of the other, and alternate between them as
a picture is typeset.) The following METAFONT file will generate such a font hd300. in essentially the same
way that the other fonts dot300 and hf300 were generated earlier:

% halftone font with 17 levels of gray, characters "A" (white) to " Q " (black)
% includes also the mirror-reflected characters "a" (white) to "q" (black)

pair p[]; % the pixels in order (first pO becomes black, then pi, etc.)
p0=(3,0); p4=(2,0); p8=(2,2); p12=(3,2);
transf o m r ; r=identity rotatedaround ((1.5, I .5), 180) ;

for i=O step 4 until 12: p[i+l]=p[i] transformed r ;
p [i+21 =p [i] shifted (0,l) ; p [i+3] =p [i+2] transformed r ; endf or

w#:=4/pt; % that's 4 pixels
font-quad:=w#; designsize:=8w#;

r:=identity ref lectedabout ((2,O) , (2,3)) ;
picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 16:

begin~har(i+ASCII"A'~,w#,w#,O); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-I]; fi
prevchar:=currentpicture; endchar;
begin~har(i+ASCII"a~,w#,w#,O);
currentpicture:=prevchar transformed r ; endchar;
endf or

Here are four pictures for comparison, showing also the result of the elaborate "dot diffusion'' method
discussed at the end of my paper:

double dot single dot half dot dot diffusion

160 TUGboat, Volume 8 (1987), No. 2

(Each of these was printed on a Canon laser printer with 300 pixels per inch.) Gard's half-dot method
clearly improves the quality of single-dot pictures; it also has the advantage that its characters are square
instead of diamond-shaped, hence the data is easier to compute. On the other hand, it does require twice
as much data. Indeed, the double-dot picture shown here was typeset from 64 rows of 55 characters each;
the single-dot picture was typeset from 128 rows of 55 characters each; and the half-dot picture was typeset
from 128 rows of 110 characters each.

The upper left corner of the half-dot data for Mona Lisa looks like this:

Uppercase and lowercase letters alternate in a checkerboard fashion, so that the reflected characters will
appear in the correct positions. The \beginhal f tone macro is the same for half dots as for double dots:
only the font name and the data encoding scheme are different.

TUGboat, Volume 8 (1987), No. 2

Output Devices

The Ideal TEX Driver

Robert W. McGaffey
Martin Marietta Energy Systems, Inc.
Oak Ridge, Tennessee

It is intended that this article encourage discussion
of features of output drivers with a view towards
both selecting the best features currently available
and labelling those as standards to be met by driver
writers. 9&X has been available long enough and
output drivers have matured to the point that it
is possible and reasonable to decide upon a set of
minimal features. (This is not yet true of TEX
previewers.) We hope that there will be enough
interest in setting standards to result in a session
on output standardization at the TUG meeting this
summer.

A driver should provide page-level control over:
1. Page orientation. In particular, both portrait

mode and landscape mode must be supported.
In addition, devices which support Postscript
should be able to orient a page at any angle
desired. Zero degrees should be equivalent to
portrait mode, 90" equivalent to landscape,
45" halfway between, 180" upside down, and
so forth (assuming increasing angles measured
counter-clockwise).

2. Magnify a page to any magnification desired.
We realize that the availability of fonts will af-
fect some devices, but others such as the APSp5
and the FR80 should be able to handle all mag-
nifications within a given range. TEX does not
restrict users to certain \map i f icat ions and
neither should drivers unless the fonts are
missing. We recognize that this directly con-
tradicts the restriction in that there be
only one document-level \magnif ication per

file and that it will cause trouble when
t rue dimensions are used.

3. Modify the margins. W ' s \output routine
creates a box and then calls upon \shipout to
send the box to the . dvi file. The only standard
that has been zdopted (that we know of) con-
cerns the margins surrounding the \vbox that

ships out. In TUGboat, Volume 5, No. 1,
David Fuchs states in an article (page 22): "I
would urge everyone to adopt the convention
used at Stanford: all DVI-reading programs

margin, but these values default to 1 inch if not
explicitly specified." We second the motion.
The user should be able to replace these values
with his own values.

4. Exceed the page boundaries without wrap-
around, overstriking, or some other catastro-
phe. Stated positively. any material which will
be printed off the page should be indicated in
an error message and then not printed. Ideally,
if part of a figure, a rule. or even a character
would fit on the page. it would be good if that
part of it were included. But we realize that
doing this in some cases would cause severe
loss in computer efficiency.

With respect to fonts. drivers should be able to:
1. Handle all of the CMR fonts. (Not the AMR fonts

as a substitute.)
2. ,4110~ user specifiable control over handling

unavailable fonts. Users should be able to
select from the following list:

a. Replace the missing characters with white
space exactly matching the metric dimen-
sions of the characters.

b. Replace the missing characters with black
ink precisely matching the metric dimen-
sions of the characters.

c. Substitute a smaller or larger font if the
difference in size is less than 0.5 pixels on
the output device and inform the user that
this was done. For example, a ten point
font on a 300 dot/in laser printer uses
approximately 41.511 pixels for its charac-
ter heights. (10 points divided by 72.27
points/in multiplied by 300 dotslin.) If we
assume that the magnification for this font
was 1000, then 41.011 pixels would indi-
cate a magnification of 987.955 and 42.011
pixels comes out to 1012.045. Thus, if this
font were requested at any magnification
in the range 988-1012 inclusive, we can be
sure that using the font at magnification
1000 would at most produce an error of
one pixel in either direction. We include
this feature because once (in trying to cal-
culate magnifications) we requested a font
at magnification 1096 only to be turned
away. So we shifted the numerator in our
calculation and got turned away for asking
for 1094. There was no simple way to get
1095 and yet that was what we needed and
wanted. If this feature were implemented,

allow the user to specify an extra top or left

162 TUGboat, Volume 8 (1987), No. 2

we would have been in business.* In no turns out to be zero. Of course, the horizontal
case should a font be replaced with another movement should depend upon sps and not
font whose topology is different (such as pixels.
CMBlO for CMRIO). 2. Similar arguments apply to \vrules and their

d. "Jiggle" the pixels of the font closest widths.
in magnification to make it smaller or
larger until it is the right size. This
method would actually be useful for draft
copies if the final output device is capable
of "real" magnification. This technique
would also allow pixel-bound devices to
support orientations of any angle.

3. Refer to pixel files with device-dependent
names. On our VAX we have an LN03 driver
which refers to the pixel files using the name
TEX$PXLDIR. This causes difficulties if our
QMS driver uses the same name. Yet if each
driver used a name like TEXLNO3_PXLDIR, there
would be no problem.

With respect to font loading:
1. Drivers should download only the characters

specifically needed to produce the document.
This will save both device memory and CPU
time for both the device and the computer
which drives the device.

2. Drivers should be written to be executed in
three stages. The first procedure should write
a file giving the font and character information
needed by the document as well as the char-
acter positions. The second procedure should
download the fonts and the third must set the
characters on the page. The reason for this
approach is to enable a font manager to replace
the second procedure. This font manager could
keep track of what fonts and characters are
already loaded in the device and thus enable
more efficient processing.

With respect to rules:
1. All \hru les with exact heights (plus depths)

must span the same number of pixels on the
paper, assuming devices of the same resolution.
(We have seen this not occur. The results are
distracting at best, and have caused us to make
some macros device-dependent.) This can be
accomplished by calculating the rule thickness
in pixels, rounding to the nearest number of
pixels, and finally, using one pixel if the result

-

* Editor's note: TEX itself can generate such an
"inexact" magnification: for a font at \mags t ep4
with a document magnification of 1200. a magnifi-
cation of 2489 will be requested instead of the 2488
defined by p l a i n for \magstep5.

With respect to outputting pages:
1. There should be at least three ways to order

the output:
a. The pages may be output in the same order

they were shipped out. A starting page
and number of pages should be allowed
here.

b. The pages may be output in reverse order.
A starting page and number of pages
should be allowed here also.

c. The pages may be output in page number
order. In this mode \count0 should
be more significant than \count1 which
should be more significant than \count2
etc. Thus page 4 .6 should be printed
before page 4 .7 and page 4 . 5 before
page 5.4. Pages numbered with roman
numerals should also come out in their
real order (i , ii, iii, . . .). In this mode
drivers should allow ranges of pages such
as (-2 .4 ,3 .2) for pages ii.4 through 3.2.
If there should be two or more pages with
the same set of \counts and that page
number is specified, all of those pages
should be printed.

With respect to the \spec ia l command drivers
should be able to:

1. Pull in a plot from a plot file which is written
in some standard format which the output
device can read. This may be a . tk f file for a
Tektronix plotter, a Quic file for a QMS laser
printer, etc.

2. Since the above is often impractical, every
driver should call a subroutine named SPECIAL
and send it the character string contained in
the .dv i file when it does not understand the
string itself. This would allow users of the
driver to expand the capabilities of their driver
without knowing or having the source code
available. This subroutine would be supplied
as a null routine, and of course the driver
would have to be sent as object code rather
than executable code so that the subroutine
special could be linked to the driver.

With respect to the driver parameters a driver
should:

1. Be able to read an initialization file which
can be made to contain the instructions and

TUGboat, Volume 8 (1987), No. 2 163

parameters which are usually used by the end
users. Thus, if a user commonly uses landscape
mode he/she may create such a file and save
the effort of typing in the landscape command
every time.
In addition to the initialization file, a driver
should be able to write the commands it
receives from a user into a file which can be
read by the driver and executed. Thus if a user
is debugging a particular set of pages. he/she
need not reenter the set of commands but may
instead refer the driver to the file containing
the needed set of commands.
Drivers should also be able to run from batch
mode as well as interactive mode.

With respect to METAFONT, drivers should be able
to do either of the following:

1. Have the ability to download fonts produced
by METAFONT.

2. Come with a program able to convert standard
METAFONT output into a form needed by the
driver. This would enable users to create
different sizes of the CMR fonts as well as logos.
special symbols, etc.

Editor's note: Robert MCGaffey has agreed to
chair a committee to define standards for 7$J
output drivers, and will be holding an organizational
meeting at the Seattle TUG meeting. Persons
interested in participating in this effort should write
to Robert, with a copy of the letter to Bart Childs,
to assist in planning.

Output Devices

Don Hosek

The device tables on the following pages list all
the device drivers currently known to TUG.
Some of the drivers indicated in the tables are con-
sidered proprietary. Most are not on the standard
distribution tapes; those drivers which are on the
distribution tapes are indicated in the listing of
sources below. To obtain information regarding
an interface, if it is supposed to be included in
a standard distribution, first try the appropriate
site coordinator or distributor; otherwise request
information directly from the sites listed.

The codes used in the charts are interpreted
below, with a person's name given for a site when
that information could be obtained and verified.
If a contact's name appears in the current TUG
membership list, only a phone number or network
address is given. If the contact is not a current TUG
member, the full address and its source are shown.
When information on the drivers is available. it is
included below.

Screen previewers for multi-user conlputers are
listed in the section entitled '.Screen Previewers". If
a source has been listed previously under "Sources",
then a reference is made to that section for names
of contacts, etc.

Corrections. updates, and new information for
the list are welcome: send them to Don Hosek.
Bitnet DHOSEKQHMCVAX (postal address on page 99).

Sources

ACC Advanced Computer Commun~cations.
Diane Cast. 720 Santa Barbara Street. Santa Barbara.
CA 93101, 805-963-9431 (DECUS, hlay '85)
Adelaide Adelaide University. Australia

The programs listed under Adelaide have been sub-
mitted to the standard distributions for the appropriate
computers. The PostScript drlver permits inclusion of
Postscript files in a file. The driver is described in
TUGboat. Vol. 8. No. 1.

AMS American Mathematical Society, Barbara
Beeton, 401-272-9500 Arpanet: BNBOXX . LCS . MIT . Edu

Arbor ArborText. Inc.. Bruce Baker. 313-996-3566,
Arpanet. bwb%arbortextOum~x.cc.um~ch.edu

ArborText's software is proprietary and ranges in
price from $150 to $3000. The drivers for Postscript
printers, the HP LaserJet Plus, the QMS Lasergrafix.
and Imagen printers are part of their DVILASER
series. The drivers all support graphics and include
other special features such as use of resident fonts or
landscape printing when supported by the individual
printers

Printing on the Autologic APS-5 and p-5 photo-
typesetters wlth DVIAPS includes support of Autologic
standard library fonts and Logo processing.

A - W Addison-IVesley. Brian Skidmore.
617-944-3700. ext. 2253

Addison-Wesley supports graphics on all Macintosh
software, and on Imagen. Postscript, and QMS laser
printers on the IBM PC.

Bochum Ruhr Universitat Bochum.
Norbert Schwarz, 49 234 700-4014
Caltechl California Institute of Technology.
Glen Gribble. 818-356-6988
Caltech2 California Institute of Technology,
Chuck Lane, Bitnet: CELOCITHEX

164 TUGboat, Volume 8 (1987), No. 2

Canon Canon Tokyo, Masaaki Nagashima.
(031758-2111

Carleton Carleton University. Neil Holtz.
613-231-7145

CMU Carnegie-Tvlellon University, Howard Gayle,
412-578-3042

Columb. Columbia University, Frank da Cruz,
212-280-5126

COS COS Information, Gilbert Gingras.
514-738-2191

DEC Digital Equipment Corporation. John Sauter.
603-881-2301

The LN03 driver is on the VAX/VMS distribution
tape.

GA Tech GA Technologies

GMD Gesellschaft fiir Mathematik
und Datenverarbeitung, Federal Republic
of Germany, Dr. Wolfgang Appelt,
uucp: seismo!unido!gmdzi!zi.gmd.dbp.de!appelt

HP Hewlett-Packard, Stuart Beatty, 303-226-3800

IAM Institut fiir Angewandte Math, Univ of Bonn,
Federal Republic of Germany. Bernd Shulze,
0228-733427: Bitnet: BESCHUQDBNUAMAl

INFN IhTN/CNAF, Bologna, Italy. Maria Luisa
Luvisetto, 51-498286. BITnet: MILTEXQIBOINFN

The CNAF device drivers are on the VAX/VMS
distribution tape.

Intergraph Intergraph. Mike Cunningham,
205-772-2000

JDJW J D J Wordware. John D. Johnson7
415-965-3245. Arpanet: M. JOHNQSierra. Stanf ord.Edu

K&S Kellerman and Smith, Barry Smith,
503-222-4234

The Macintosh drivers and the VAYIVMS Imagen
driver support graphics.

LLL Lawrence Livermore Laboratory

LSU Louisiana State University. Neal Stoltzfus.
504-388-1570

Milan1 Universita Degli Studi Milan. Italy,
Dario Lucarella, 02/23.62.441

Milan2 Universita Degli Studi Milan. Italy.
Giovanni Canzii. 02123.52.93

MIT Massachusetts Institute of Technology,
Chris Lindblad. MIT A1 Laboratory. 617-253-8828

The drivers for Symbolics Lisp machines use the
Symbolics Generic Hardcopy interface as a back end, so
it should work on any printer that has a driver written
for it. The printers listed in the table indicate drivers
the program has been tested on.

The U;vIx drivers for Postscript and QMS printers
both support landscape printing and graphics inclusion
via specials.

MPAE Max-Planck-Institut fiir Aeronomie.
H. Kopka. (49) 556-41451, Bitnet: MI040L8D606WD01

MR Math Reviews, Patrick Ion. 313-996-5273

NJIT New Jersey Institute of
Technology. Bill Cheswick. 201-596-2900,
Arpanet. chesulckQjvnca.csc.org

OCLC OCLC, Tom Hickey. 6565 Frantz Road.
Dublin. OH 43017. 616-764-6075

OSU2 Ohio State University, John Gourlay.
614-422-1741, gourlay.ohlo-stateacsnet-relay

Pers Personal m. Inc.. Lance Carnes,
415-388-8833

Graphic output is supported on Imagen. Post-
Script. and QMS printers

PPC Princeton Plasma Physics Lab. Charles
Karney. ARPAnet: KarneyXPPC . MFENETQNMFECC . ARPA

Versatec output from '!$-Xspool is produced via the
TETPLOT program. TfjXspool also produces output
for the FR80 camera. Color and graphics primitives are
supported through specials.

Procyon Procyon Informatics. Dublin, Ireland,
John R.oden, 353-1-791323

SARA Stichting Acad Rechenzentrum Amsterdam.
Han Soo t , Stichting blath Centrum.
Tweede Boerhaavestraat 49, 1091 AL Amsterdam
(see TCGboat. Voi. 5. No. 1)

Scan Scan Laser. England. John Escott,
+l 638 0536

Sci Ap Science Applications. San Diego. CA4.
619-458-2616

SEAC Stanford Linear Accelerator Center.
415-854-3300

The SLAC drivers are on the standard ChIS
distribution tape.

SRI SRI International

Stanford Stanford University
The Imagen driver from Stanford is present on

most distributions as the file DVIIMP. WEB. I t provides
limited graphics ability.

Sun Sun, Inc.

Sydney University of Sydney, Alec Dunn.
(02) 692 2014. ACSnet: alecdQf acet .ee. su.02

Talaris Talaris. Rick Brown. 619-587-0787
All of the Talaris drivers support graphics.

T A&M1 Texas A&M. Bart Childs. 409-845-5470.
Csnet: ChildsQTAMU

Graphics is supported on the Data General drivers
for the Printronix. Toshiba. and Versatec on the Data
General MV. On the T I PC, graphics is supported
on the Printronix and Texas Instruments 855 printers.
There is also a previewer available for both the Data
General and the TI.

T A&M2 Texas .4&M. Ken Marsh. 409-845-4940,
Bitnet: KMarshQTAMNIL

T A&M3 Texas A&M, Norman Naugle.
409-845-3104

TUGboat, Volume 8 (1987), No. 2

The QMS driver supports inclusion of QUIC graph-
ics commands via specials as well as landscape printing.

T A&M4 Texas .4&M. Thomas Reid. 409-845-8459.
Bitnet: X066TRQTAMVM1

The m r o x package includes a DVI driver (m r o x) ,
a GF/PXL to Xerox font converter (PXLrox2), and a
utility to build TFM files from licensed Xerox fonts
(Xetrix). The programs are all written in C. Xetrix
currently runs only under U N I x .

At present the m r o x package is being distributed
on a twelve-month trial basis; the trial is free for
U.S. educational and government institutions, $100 for
foreign or commercial institutions. Licensing agreements
will be available when the trial offer expires.

Tools Tools GmbH Bonn. Edgar FuB.
Kaiserstrafle 48. 5300 Bonn. Federal Republic of
Germany

The Tools implementation of and the drivers
listed are described in TUGboat. Vol. 8, No. 1.

TRC Finland Technical Research Centre
of Finland, Tor Lillqvist, +358 0 4566132,
Bitnet: tmlQf ingate

UBC University of British Columbia. Afton Cayford,
604-228-3045

UCB University of California, Berkeley,
Michael Harrison, Arpanet: vortexQberkeley . arpa

UCIrvl University of California, Irvine,
David Benjamin

UCIrv2 University of California, Irvine.
Tim Morgan, Arpanet: MorganQUCI

U Del University of Delaware, Daniel Grim.
302-451-1990, Arpanet: grimQhuey . udel . edu

The distribution includes a program to convert font
files generated by METAFONT to Xerox font format.

U Koln Univ of Koln, Federal Republic of
Germany, Jochen Roderburg! 0221-1478-5372,
Bitnet: A0045QDKORRZKO

U Mass University of Massachusetts, Amherst.
Gary Wallace, 413-545-4296

U MD University of Maryland, Chris Torek.
301-454-7690. Arpanet: chrisQmimsy . umd. edu

The G N I x Imagen driver is on the U N I x distribution
tape.

U Mich University of Michigan. Kari Glusk~,
313-763-6069

UN1.C Aarhus University. Regional Computer
Center

U Shef University of Sheffield, England.
Ewart North. (0742)-78555. ext. 4307

Utah University of Utah, Nelson H. F. Beebe.
801-581-5254, Arpanet: BeebeQUtah-Sclence

The Beebe family of drivers was described in
TUGboat, Vol. 8, No. 1. Graphics is supported only in
the DVIALW (Postscript) driver.

U Washl University of Washington.
Pierre MacKay. 206-543-6259.
Arpanet: MacKayQJune. CS .Washington. edu

The programs listed under U Washl are all on the
standard U N I x distribution tape.

U Wash2 University of Washington, Jim Fox,
206-543-4320, Bitnet: f ox7632Quwacdc

The QMS driver for the CDC Cyber was written
under NOS 2.2 and supports graphics.

Vander Vanderbilt University, H. Denson Burnum.
615-322-2357

Wash St Washington State University. Dean
Guenther, 509-335-0411, Bitnet: GuentherQWSUVMl

W'mann Weizmann Institute, Rehovot,
Israel, Malka Cymbalista: 08-482443,
Bitnet: VurnalkiQWeizmann

Screen Previewers

s Data General MV

T A&M1 See above for contact name.

5 IBM MVS

Milan1 See above for contact name
Drives Tektronix 4014 terminal.

GMD See above for contact name.

rn Siemens BS2000

GMD See above for contact name.

UNIX

Adelaide Programs are on distribution tape.
The DVItoVDU program is capable of driving

the following terminals: AED 512: ANSI-compatible;
DEC ReGIS: DEC VT100; DEC VT220; Tektronix 3014;
and Visual 500. 550.

Talaris See above for contact name.
The Talaris driver supports the Talaris 7800 termi-

nal. Tektronix graphics are supported on-screen.

Utah See above for contact name.
The Beebe driver family includes a driver for the

BBN Bitgraph display.

5 VAX VMS

Adelaide Programs are on distribution tape.
The DVItoVDU program is capable of driving

the following terminals: AED 512. ASSI-compatible:
DEC ReGIS; DEC VT100: DEC VT220; Tektronix 4014:
and Visual 500, 550.

INFN See above for contact name.
The INFN drivers include support for DEC VT125

and Tektronix 4014 terminals

Talaris See above for contact name.
The Talaris driver supports the Talaris 7800 termi-

nal. Tektronix graphics are supported on-screen.

Utah See above for contact name.
The Beebe driver family includes a driver for the

BBN Bitgraph display.

TUGboat, Volume 8 (1987), No. 2

TUGboat, Volume 8 (1987), No. 2

Low-Resolution Printers on Microcomputers and Workstations - Laser Xerographic, Electro-Erosion Printers

LOW-Resolution Printers on Microcomputers and Workstations - Impact, Electrostatic Printers, and Video Displays

I I
Epson

Fujitsu 1
I 1

GE 3000 COS

MPI Sprinter

1 I

Printronix

Video display Arbor A - W
K&S

Cadrnus HPlOOO +
U Koln I

HP3000 IBM PC Integrate SUN 1 isolutionsj

MR Utah Utah
Utah

U Shef A - W
Milan1
Pers
U Shef

Utah Utah Utah

I I I I I I

A - W Utah Utah
Pers
Utah

U Koln Tools A -W UClrv l Arbor
Arbor Utah UCB
Pers UClrv2

nstr PC station ',L

T A & M l Arbor 1

Typesetters

CRTronic

Allied Linotype

Alphatype CRS 7
Compugraphic 8400
Compugraphic 8(00
Harris 7500 -----t-
Hell Digiset ----I--

TUGboat, Volume 8 (1987), No. 2

Using PostScript with ll&X
Alec Dunn, University of Sydney*

Several articles in TUGBOAT have demonstrated
methods of drawing simple graphics using dots and
horizontal or vertical rules. UTEX provides a com-
plex \p ic tu re environment which uses special fonts,
containing arcs and diagonal lines, to draw more
elaborate figures. These methods have the advan-
tage of portability because they use only facilities
common to all Tj$ implementations and most dvi
processors. But they have the disadvantages of lim-
ited scope, difficulty of use, Tf l memory limitations,
and lack of an interface to other graphical systems.
A more versatile approach is to link a graphical
language, such as Postscript, into TEX, using the
\ spec ia l command. A recent TUGBOAT article [I]
describes this approach, and several other sites have
used this method.

This article describes work on these lines at the
University of Sydney. Some small improvements on
the methods of [I] make the 'lJQ-Postscript inter-
face simpler and more foolproof for users. Also, the
use of this system with a general-purpose graph-
ics package and with a specially-written Macintosh
PostScript generator are discussed.

1 The PostScript language

This section briefly describes the features of
PostScript relevant to its usage with m, for the
benefit of readers unfamiliar with the language.

PostScript is a language for programming two-
dimensional graphical and typesetting operations. It
is independent of any brand of printer, and it has
been implemented on several models of laser printers
and typesetters. Unlike TI$, PostScript is a propri-
etary product, owned by Adobe Systems Incorpo-
rated. The following small example demonstrates
the operation of PostScript:

'Comments should be sent to A Dunn, School of Electrical
Engineering, University of Sydney, NSW 2006, Australia, or
via ACSNET to alecd@facet.ee.su.oz.

newpath 113 92 moveto
116 96 l i n e t o 113 100 l i n e t o
110 96 l i n e t o closepath s t roke

To understand this example you should know that
commands apply to the numbers preceding them,
and you can safely ignore the newpath and st roke
commands. The example code draws a diamond
shape (0) starting from coordinates (113,92) and
with sides of length 5 units.

Note that we haven't specified what the units are.
PostScript lets you define and re-define your own
units, so the diamond could be drawn at any size by
suitable definition of the units. This is one of the
most important features of PostScript (for present
purposes) - everything, including text, is perfectly
scalable. Similarly, the entire coordinate system can
be shifted at any time, so the point (113,92) can be
placed anywhere on the page.

Other valuable features of Postscript are demon-
strated by the example. Nowhere in an ordinary
PostScript program is there any reference to the
printing hardware: the example will produce the
same results on a 300 dots/inch laser printer and on
a phototypesetter; raster conversion is performed in
the printer. And the code is entirely in visible ASCII

characters and so is fully portable and communicable
between different computers and operating systems.
PostScript is just as portable as TEX.

The natural way to combine and PostScript is to
use the 'I$$ \spec ia l command to pass PostScript
code to the dvi processor (TEX itself has no use for
PostScript, since T&X is only concerned with placing
objects on pages, not with actually imaging those
objects).

To obtain a PostScript graphic, using our system,
the TEX user puts a command of the form

172 TUGboat, Volume 8 (1987). So. 2

\special(PF filename height width3

into his or her TEX file at the point at which the
lower left corner of the graphic is to be placed (which
may be inside a float). The P F is just a keyword,
chosen by us, to distinguish this kind of \specia l
command from any others which may be used (using
a keyword for this purpose is recommended in The
W B o o k page 228). The PostScript code is in file
filename - we don't insert the PostScript code it-
self because it tends to be verbose and the \specia l
command uses 7&X memory. The height and width
arguments define a bounding box for the graphic.
(Historical reasons compelled the unfortunate choice
of height, width order instead of Postscript's x, y or-
der). An example of this form of \specia l command
is :

\special{PF diamond 4mm 3mm)

which is how the diamond example above was drawn.
The \specia l command' occupies no height or

width (since can't interpret its contents), so in
practice it must be supplemented by glue commands,
for example:

\hbox t o width
C\vrule h e i g h t height w id th Opt

\special iPF filename height width)\hf ill

Of course, this can be simplified for users by a suit-
able macro.

This is the full extent of W ' s role - most of
the work in combining TEX and PostScript is per-
formed by the dvi processor. In this case the proces-
sor, called Dvi/PS, was written by us for Vax/VMS
machines and is proprietary to the University of Syd-
ney. If you have the source code to a different dvi
processor you may be able to adapt it to handle the
\ spec ia l command (naturally, it must be driving a
PostScript device!).

When Dvi/PS encounters a \ spec ia l command, it
already knows the coordinates of the lower left corner
of the graphic (by the same mechanisms by which it
knows where text is to be placed); the P F keyword
and the filename, height, and width arguments follow
in the dvi file. Dvi/PS then scans the PostScript

file to find its bounding box, which, if the file con-
forms to the Adobe structuring conventions [2] . will
be given in a specially-formatted comment line.

Knowing the bounding box of the graphic in its
own PostScript coordinate space, and the desired
location and bounding box in the page's space,
Dvi/PS computes a suitable transformation matrix
and sends this to the printer before sending the con-
tents of the Postscript file. This relieves the user
from having to know anything about the size of the
PostScript graphic, or about its coordinate system
- the graphic will always appear where the user
asked for it and at the size he or she asked for.

It is possible, even likely, that the user-specified
bounding box and the graphic's PostScript bound-
ing box will have different aspect ratios. PostScript
allows different scale factors horizontal!^ and verti-
cally, so the graphic could be fitted exactly to the
user's bounding box. But most users don't want
their graphics distorted in this way, so Dvi/PS com-
putes only one scale factor, according to the limiting
dimension (horizontal or vertical), and applies that
to both dimensions, adjusting the origin transfor-
mation so that the graphic will be centered in the
non-limiting dimension.

An example may make the whole process clearer.
Suppose the W file contains

\special{PF ca t 180pt 200pt)

so the user is asking for a graphic of 200pt x 180pt (in
normal x, y order). Also suppose the Postscript file
ca t has a bounding box of (llO,50) to (190,140), af-
ter conversion to TEX points. The PostScript width
is 80 pt and height 90 pt. The limiting dimension
is the vertical, allowing a scale factor of 2x , which
leaves 40 pt of white space to be taken up in the hori-
zontal. So Dvi/PS emits PostScript code to shift the
origin horizontally by -110 +40pt and vertically by
-50 pt and then to magnify by 2. The graphic, as
printed, will be 180pt high and 160pt wide, hori-
zontally centered in its bounding box (see Figure 1).

If either dimension is given as zero in the
\ spec ia l command Dvi/PS ignores the correspond-
ing PostScript dimension in its scaling calculation
and doesn't center the graphic, leaving it left- or
bottom-justified. Combinations of zero and non-zero
arguments, in suitable macros, give most of the fa-
cilities users want.

It is not an error for the PostScript code to draw
outside of its supposed bounding box, since users

TUGboat, Volume 8 (1987). No. 2 173

Figure 1: cat

may want to achieve special effects this way. Dvi/PS
doesn't produce code to clip the image, nor does it
draw the bounding box onto the page.

A PostScript file to be used in a \special com-
mand should not depend on another such file, since
it is not known in what order Dvi/PS will process
them. Also, text should use only native PostScript
fonts, not downloaded fonts, which Dvi/PS may not
yet have loaded. In practice these are not serious
limitations.

4 Error handling

Of course, errors are possible: the PostScript file
may be missing, or it may not conform to the struc-
turing conventions and so not contain a bounding
box specification. Dvi/PS copes with such prob-
lems by leaving white space if the file is missing,
or not performing any coordinate transformation if
the bounding box is unspecified.

But it is impractical for Dvi/PS to attempt to
control errors in the PostScript file itself - once
Dvi/PS sends the PostScript file to the printer it
effectively hands over all control to that file. For the
purposes of this system we can define a well-behaved
PostScript file as one which leaves the printer in the
same state as it found it , except for the coordinate
system (which Dvi/PS always restores) and marks
added to the page (which was the purpose of send-
ing the file). For example, a file which executes the
PostScript showpage command (which prints and
ejects the s age) is not well-behaved.

Unfortunately, few Postscript files are well-
behaved! Most software with PostScript output aims
to produce a complete specification of the final hard
copy, which is the purpose for which PostScript was
conceived, but here we are using it for "graphical
procedures". This problem is the major limitation
in using PostScript with T@ - to get well-behaved
PostScript has required writing our own software.

5 Sources of PostScript code

You can write PostScript code yourself with any text
editor, but this is impractical for graphics of any
complexity. At the School of Electrical Engineer-
ing we have extended our general-purpose graph-
ics package so that it can produce a well-behaved
Postscript file instead of driving a graphics device.
Most of the graphically-oriented software written in
the School in the last five years can now be used
together with m, and several theses and reports
have been printed almost entirely without cutting
and pasting.

Graphics produced by applying programs to data
are very useful in engineering, but we also need to
be able to just draw and have the drawing translated
into PostScript. MacDraw on the Macintosh is ideal
for simple engineering drawing, and MacPaint for
freehand drawing. But it is tricky to make the Mac-
intosh produce a PostScript file, and almost impossi-
ble to convert that file into well-behaved PostScript,
so we have written a program, Postscript from Mac,
which can convert MacDraw and MacPaint files di-
rectly into PostScript files suitable for inclusion in
TEX documents. (The cat example, above, was
drawn with MacDraw and converted by PostScript
from Mac into a PostScript file of about 1 Kbyte.)

PostScript from Mac has proved surprisingly pop-
ular with the academic staff of the School and has
revealed an unexpected demand for a means of easily
including good quality graphics into mY documents.

References

[I] H. Varian and J. Sterken, "MacDraw Pictures
in Documents", TugBoat, vol 7 no 1.

[2] PostScript Language Reference Manual,
Addison-Wesley, Reading, Mass. Appendix C,
pp 263ff.

TUGboat, Volume 8 (1987), No. 2

Site Reports

TEX-L Access for Bitnet Users

Glenn Vanderburg
Texas A & M University

Texas A & M operates a file- and list-server for
those with Bitnet access. To use the server, send
commands to LISTSERVQTAMVMl. Commands can be
sent either interactively or in mail files. To get a list
of the available w - r e l a t e d files, send the command
"get t e x f i l e l i s t " . You can then get any of
the files listed with "get f i lename f i l e t ype" .
The server accepts many other commands: issue an
"info" command to find out more.

The list of available files is currently small;
w h a x archives and files, WEB sources, and the

style repository. We hope eventually to offer
most of the files that those with ARPAnet access
can get from Score (sources. change files for various
systems, macro packages and documentation. etc.).
Suggestions are welcome, and should be sent to
X23OGVQTAMVMl. BITNET (along with complaints and
problems). And if anyone would like to donate a
disk pack or two, that would help out a lot!

Finally, TEX-L is a TEX discussion list and
w h a x redistribution. To subscribe, send this
command to LISTSERVQTAMVMl with your name:
"subscr ibe tex-1 f i rs tname lastname" and you
will begin receiving TEX-L and w h a x from a
nearby Bitnet list server.

and Training
A Case Study

Laurie Mann
Stratus Computer
Marlboro, MA

Over the last seven years, m a n y "Site Reports" have
appeared i n these pages. Th is is a site report with
a difference - I ' m not a programmer o r a system
administrator. Th is i s a look at the issue of T$JY
training at Stratus. and how we hope to improve
training for new l&X users.

For the last 31/2 years, Stratus Computer has
been using rn to produce software manuals and

other publications. Between 1981 and 1983. Stratus
had published about twenty manuals, with all the
production work being sub-contracted out. But
Ron Webber. the Publications manager. wanted to
bring production in-house. He looked into several
production systems, and decided to port to
the Stratus and use the Compugraphic 8400 as the
output device. With some help from Eric Janszen,
he ported m, wrote a driver, wrote a format file
and taught four technical writers the basics about
formatting manuals with Tm

I was hired back in Yovember, 1983 as the first
Publications Specialist. The first few weeks were
very interesting and very frustrating. My previous
computer experience was pretty limited. I knew
how to log in. I knew how to use Emacs. Ron
spent some time the first day getting me acquainted
with the Stratus equipment. and giving me some
introduction to TEX. But being fairly non-technical,
I found everything very confusing. It took me a
while to remember that a file was not permanently
changed until I'd written it out. I had difficulty
comprehending the differences between executing a
command macro and working in an Emacs buffer
(something I hate to admit today).

Some of TEX looked easy. Before Ron hired
me. he showed me the format file he'd written. and
some of that even read like English. Besides, at first
I was only supposed to be debugging TeX files that
the writer had formatted. Compiling and binding
programs is easy, right? But debugging files is
a not a trivial activity. I remember the first time I
saw the error.
TeX capac i t y exceeded, s o r r y
If you r e a l l y abso lu te l y need more capac i t y ,
you can ask a wizard t o enlarge me.

I was absolutely lost. Ron explained what most of
the error messages meant. including some I'd seen
that he'd never seen when he was experimenting
with m. But. over the winter, the error messages
became less frequent. And I generally ceased
to panic when I did see an unfamiliar error. I
started to learn how to format manuals. so the
writers could concentrate on writing rather than
formatting. Formatting, particularly the challenge
of producing nice tables and usable indexes. really
appealed to me.

I read everything I could about rn. but there
really wasn't very much material available. I had a
line-printer copy of The W b o o k . While the first
few chapters were absolutely invaluable, most of it
seemed to be aimed at programmers. Ron's written
introductory material on read the same way.

TUGboat, Volume 8 (1987), No. 2 175

Though I struggled with l&X a lot as I was first
learning it, within a few months I was m n i c i a n
enough to format manuals and send off completed
manuals to our printer every month.

The fledgling production group added a second
book producer in April, 1984. Carol Klos also
had little computer experience before coming to
Stratus, but was interested in learning about manual
production. She also found learning TJ$ difficult,
but was soon producing high-quality manuals. That
fall. I became the Production group's manager.
By mid-85 there were five Publications Specialists
and one full-time Typesetter in the Production
group. We also added a Compugraphic 8600
typesetter and an MCS High Speed Processor. The
department produced something over sixty manuals.
some newsletters. and some long Marketing projects
in 1984 and 1985.

One of first things I was supposed to do upon
becoming the group's manager was to assemble an
in-house production manual. Well, one thing led to
another, and the manual sits in assorted pieces in my
directories. Over the last few years, I restructured
Ron's basic TJ$ information and included lots of
examples. I worked with Mary Fusoni, the second
technical writer at Stratus, to develop formatting
and indexing guidelines for writers. I wrote up
many brief descriptions of how to use tools and
equipment, but this information is disorganized and
is sometimes later found to be wrong (I've since
strongly encouraged people to edit what I write).
While I'm a m resource. I'm not a very good
teacher. and the training materials we have are
somewhat lacking.

Back in 1985, when three new people joined
the group in a six week period. I worked with
each person individually for a time but pretty much
encouraged her to learn things on her own. The
worst mistake here was giving new hires too much.
too fast. What I should have done instead was to
introduce new employees to the computer system,
and have them spend a few days learning Emacs
and basic operating system (VOS) commands. I
should have waited before introducing m. working
with the batch queue, debugging files. using the
phototypesetter, etc. But despite the fact that
everyone had early difficulties, the entire group has
now been together for over two years. For the last
two years, manual production has been so efficient
that manuals were completed and printed before
the software release tapes were cut.

In-house manual production saves time and
money. Not long after Ron brought Production in-
house, he created positions for Editors and Project
Leaders. He also had us strengthen department

procedures, and develop a team approach to manual
publication. Our department now has five project
leaders, each one responsible for an area of Stratus
manuals (Communications, End-User, Languages.
etc). Each team consists of a Project Leader,
Writer, Editor and Publication Specialist. The
Publication Specialist is responsible for most of
the formatting, illustrating, and production of the
manuals. The Writer writes the manual. but does
minimal TFJ formatting. The Editors and Projects
Leaders usually don't touch the source files at all.
and work only on typeset galleys. We all believe this
team approach has helped us improve the quality
of our manuals. Our customers have been giving
us good marks over the last two years. Three
manuals were published in 1985 won local Society
for Technical Communication (STC) awards. and
one of those took an International STC award.

Ron was a member of TUG in the early '80s,
and I joined in 1986, after spending a year in the
STC. But our only contact with TUG was through
TUGBOAT. When I went to the conference at
Tufts last summer, I wasn't sure what to expect.
Would I be the only non-programmer there? Was
TEX training an issue for other sites? It turns out
that all kinds of people use 'QX, from secretaries
to technical writers, from graphic designers. to, yes.
computer programmers. A number of us got
together to discuss how to improve Tm training,
and we all felt it was something we should pursue
in the future.

Over the winter. I came to the conclusion that
as much as I liked working with TJ$, I really
didn't much like the managerial side of the job,
so I switched jobs with Carol. This has given me
more time to study w. as I've been implementing
a new format file. Additionally, I have started to
organize material for that production manual. This
is important now because Carol will be hiring more
Production Specialists over the next few months.
Carol and I want to take a more structured approach
to the training of new people. Additionally. we are
going to see if we can hire people with prior
publishing and/or computer experience (send your
resumes to Carol if you are interested-we may
also be hiring a tools programmer later this year).

While hiring non-technical people to work with
Q X succeeds in the long run, it can cause a lot
of job frustration. particularly in the first months.
There are several reasons for this:
1. Insufficient instruction on how to use VOS.
2. Insufficient instruction on how to use Emacs.
3. Insufficient material on basic TEX information

for non-programmers.

TUGboat, Volume 8 (1987), No. 2

4. Insufficient organized material on formatting
standards and production tools.
Stratus now has good introductory manuals

about VOS and about Emacs. We will need to
help new people get adjusted to using computer
equipment, and have taken this into consideration
as an important part of new-hire training. Until
new hires are comfortable using VOS and Emacs,
it's counter-productive to present much about l&X.

We want to take a more structured approach
to teaching production skills in general and TEX
in particular. Initially, only the basics about
w will be presented. It's been my personal
experience that overloading w n i c a l detail early
on is very confusing to most non-programmers.
(It's very interesting once you've adapted to using
w, but not immediately.) Once the new hires
master simple TljX concepts (like font designations,
spacing, running w) they can go on to learn
about how is used to create "beautiful books."

Since last summer, with the help of others in
the Publications department, I've been assembling
an outline for the production manual. Actually.
the planned manual is now two-a tutorial and a
reference manual. Here's the proposed outline for
the tutorial:

Introduction

Section 1: VOS Tutorial
A. VOS and Stratus Computers
B. Using VOS

1. Logging-In and Logging-Out
C . Using Emacs

1. Moving the Cursor
2. Moving Text
3. Saving Text

D. File Management
E. Basic VOS Commands

Section 2: Introductory TEX Reference Material
A. Basic Printing Concepts

1. Fonts
a. Characters

2. Spacing
3. Page Make-up

B. Typesetting Languages and TEX
C . Stratus Implementation of 7$X

Type Fonts and Type aces
Point Sizes
Spacing
a. Examples of Vertical Spacing
b. Examples of Horizontal Spacing
c . Special Characters
Running 7$X

a. Debugging Log Files
b. Preparing Files for the Typesetter

5. Introduction to Machines

Section 3: TEX Tutorial
A. Exercise 1: A Letter
B. Exercise 2: A Sign
C . Exercise 3: A Phonelist
D. Exercise 4: A Flyer
E. Exercise 5: A Form
F. Exercise 6: A Table
G. Exercise 8: A Report

Note o n presentation of samples: Each exercise
will begin wi th the specifications for a job and a n
unformatted file (the manual will also direct the
reader to a n on-l ine, unformatted file). I n the back
of the book, the final, formatted file will appear o n
a left-hand page and the typeset output will appear
o n a r ight-hand page.
Appendix A: Formatted file and typeset output for
each exercise

When people are brought in, they will have five
experienced Publications Specialists to help train
them. We also hope to have this tutorial in place
in the next few weeks, with the reference manual to
follow later in the summer. I'll let you know how
things go.

Data General Site Report

Bart Childs

We have updated to w 2.1 and now support DG's
4558 laser printer, which is a pretty plain Canon
engine. I mentioned some of its limitations in the
last issue. We seem to have little or no problem with
it except that the size of the font downloading files
is inordinately large. It can still operate near rated
capacity with parallel or 19.2k serial interfaces.

We also have graphics inclusion. The source of
the driver is the same as for our QMS driver: thus
we are making it by use of a change file and have
a large number of "device dependencies" as well as
the "system dependencies". We reserve the latter
for the operating system and compilers.

Graphics inclusion in the QMS uses the QUIC
language and Canon-compatible instructions on the
4558. We use QIC and LBP for the file extensions.
I have written a WEB code for the translation of

TUGboat, Volume 8 (1987): No. 2 177

Q I C files to LBP files. It is limited at this time to directly-connected devices. It has been tested over
translation of bitmap patterns. both DECnet and VAXJPSI (X-25) links.

We require that the TEX sources allocate the The second enhancement is to interface rn to
space for the graphics to be included. The graphic an editor, a feature which is missing from both VMS
named drawing is included by use of the rn implementations. When ?IEX spots an error in an
command: input file and prompts the (interactive) user with

\specialicopy(drawing))

This implies that drawing.qic is read by the QMS
driver and that drawing. lbp is read by the 4558
driver. This is a step toward the goals mentioned by
Leslie Lamport in the last issue without committing
to Postscript only.

I suggest that we introduce a companion file
with the extension . s i z that would be created
by any graphics-producing program or translator.
This would give the information necessary to
allocate the space for graphics.

"?," a reply of "E" invokes the editor and positions
the cursor at the place in the input file where ?&X
spotted the error. After correcting the text, exiting
the editor causes the file to be written to disc; the
context of the error is again displayed and the "?"
prompt re-issued.

The editor which has been interfaced to T&X
is callable TPU, since it allows the cursor to be
positioned at the appropriate part of the file with
ease. However, the user is not restricted to the
default EVE editing interface. Customised editors.
such as the EDT emulator, can be selected in the
usual way, simply by assigning the appropriate
section file to the logical name TPUSECINI.

To position the cursor at the correct point in
the text, a file is created in SYS$SCRATCH containing
the required TPU commands. This is executed as

Enhancements to on the VAX
the editor starts up and deleted as it exits. It
is possible to add commands to this initialisation

Adrian F. Clark file; this could be used for, say, loading m- re la ted
British Aerospace keypad definitions. To do this, the TPU commands

should be stored in a file and its name assigned This note describes two enhancements to rn
under VAXJVMS. These are believed to be equally to TeX$TPU-INI. The contents of the file are then

written into the TPU initialisation file before the applicable to the two VMS implementations, by
cursor-positioning commands. David Fuchs (the Stanford distribution) and by

As an example, the author uses the EVEplus Kellerman and Smith.
editor (available through DECUS) with an exten- The first enhancement allows to deter-
sion to provide an EDT-like keypad layout. The mine automatically whether or not it was invoked
commands to set this up are (on the author's VAX): by an interactive user. If it was, runs in

error-stop-mode, where it will prompt the user $ DEFINE TPUSECINI BAE$SYSTEM:EVEplus

for instructions if an error is detected. When $ DEFINE TeX$TPU-IN1 SYS$LOGIN:EVEplus.INI

used non-interactively, Tf$ runs in batch-mode;
errors are recorded in the transcript file but ex-
ecution is not affected. This facility was absent
from the last Stanford distribution received by the
author (T@ 1.3) while Kellerman and Smith use a
command line qualifier to set batch mode.

The interactive or batch nature of a job is de-
termined by testing whether the process-permanent
logical name SYS$INPUT translates to a terminal de-
vice. (SYS$INPUT is used because of the prompting
mechanism of LIB$GET-FOREIGN.) This means that,
when executed from a command procedure by an
interactive user, runs in batch-mode; this is
similar to other VMS utilities. The technique works
for "virtual" and networked terminals as well as

where EVEplus . I N 1 contains the line:

set-edt-keypad;

The enhancements are largely made via m ' s
VMS change file, although a little of the code
is contained in a separately-compiled file written
in Fortran. The change file is based on David
Fuchs' rn 1.3 implementation, modified by the
author for rn 2.0. The interaction-testing code
works on any VMS 4 version; the editor interface
was written under VMS 4.5 but should work on
VMS 4.2 and later systems. The files which
implement these enhancements are available to the
7$J community; they can be obtained, for those
with access to JANET, by MAILing a request to
UK.AC.KCL.PH.IPG::ALIEN.

178 TUGboat, Volume 8 (1987): No. 2

IBM VM/CMS Site Report

Dean Guenther
Washington State University

Back in January, a new IBM VM/CMS distribution
tape was made available through Maria Code. This
tape corrected one problem in the CMS version of
m. The problem showed itself in documents which
used \write statements. Specifically. a \write with
an argument of more than 256 characters was being
truncated. The max length has now been increased
to 2048.

On this tape were extensive corrections to the
drivers for the IBM 3812. 3820, 3800-3, 4250. and
APA6670 (Sherpa). Thanks for these are due to
Bob Creasy. These drivers now can imbed inline
GDDM or SAS/Graph graphic page segment. For
example,

\specialiIPS filename)

where filename has the filetype of PSEG3820. Refer
to the following article by Gil Pierson on creating
SAS files for imbedding into m. Thanks to Gil
for getting this going.

Another contribution from Bob was a utility.
PFS, which creates the Computer Modern font set
for the 3812, 3820, 4250, APA6670 or 3800-3. It
uses standard METAFONT and sets the blackness
and other parameters depending on which printer
it is creating fonts for. I t does take quite a bit
of CPU time, so I would recommend that you use
VM/Batch for this job.

Agnes Hsu added the missing filemode specifi-
cation in the CMS changes file for BIBTEX.

The CMS version of METAFONT now accepts
information from the command line. Corrections
were made to these MF files: CMBASE, CMTT12,
CMTTIO, CMRS, GREEKU; CMSS9, and CMSSI9. This
brings these 7 files up to date. A new MF file,
CMHINCH (half inch) has been included for those
printers that cannot handle CMINCH.

Other changes:
- A utility to convert old 2K TFMs to the new

1K format has been added;
- The changes file for INITeX is now included;
- Faster versions of the CMS + MVS transfer

programs (APART/TOGETHER);
- Finally, GFtoDVI now works properly on CMS.

The same week this tape was sent to Maria. the
message "It happened.. . " came across the network.
(See TUGboat, Vol. 8, No. 1. pg 6.) I didn't
have time to install the fixes to make 2.1
until April. Along with 2.1. this tape contains
a ChIS changes file for GFtoPK. The first tests of

GFtoPK seem to work fine. I also modified the
PSIZZL macros to use CI\t instead of AM fonts.
Finally, the file for testing IBM fonts (IBMFONT. TEX)
was fixed. As of May. Maria has the VM/CMS
T ' 2.1 distribution.

As for IBM font tapes. by the time this is
published, Maria will have MVS font tapes for the
IBM 3800-3. 3820, and 3812. Maria also has CMS
dump format tapes for the 3800-3. 3820, 3812 and
4250. No font tape is available for the APA6670.

Janene Winter has put together a collection of
mode-def settings that she has found to be optimal
for the IBM printers cited above. These settings
appear along with cornparable settings for other
printers in the overview beginning on page 132.

SAS Merged with

Gil Pierson
Washington State University

If you want to merge SASJGraph output into
m X output on the IBM printers. you can do so
fairly easily with the VM/CMS distribution driver
programs. First you build a SAS program with
the GDDMNICKNAME of IBM3820. Specify the
GSFNAME to be the filename of the input file.
The GDDMTOKEN must reflect the resolution of
the printer, in this case IMG240X. Consider this
example which uses the filename of DRLM3:

OPTIONS NOTEXT82;
GOPTIONS DEVICE=GDDMFAM4 GSFNAME=DRUM3
GSFLEN=264 GSFMODE=REPLACE
GDDMNICKNAME=IBM3820 GDDMTOKEN=IMG240X
NODISPLAY;
DATA A;

M=2; N=5; PI=3.1416;
DO Y=O TO 1 BY .02;

DO X=O TO I BY .02;
Z=2* (SIN(M*PI*X) *SIN(N*PI*Y)+

SIN(N*PI*X)*SIN(M*PI*Y));
OUTPUT ;
END ;

END ;
FORMAT Z 4.1; RUN;

PROC G3D;
PLOT Y*X=Z / CTOP=GREEN CBOTTOM=RED;
TITLE C=WHITE F=SIMPLEX 'M=2 N=5';

TUGboat, Volume 8 (1987), No. 2

Next. you must create a PROFILE ADMDEFS file
which must have the filename included, in this case
DRUM3.

NICKNAME NAME=IBM3820,
TONAME= (DRUM3, PSEG3820) ,
PROCOPT= ((CDPFTYPE, SEC) ,

(HRIFORMT,CDPF),
(HRISPILL ,NO) , (HRISWATH ,1) ,
(HRIPSIZE,30,30,TENTHS),
(PRINTCTL,6,0,l,66,0,0,0))

Then call SAS to create the file:
GLOBAL TXTLIB ADMGLIB ADMPLIB
SAS DRUM3

The file created is DRUM3 PSEG3820. which can
be included with a \special. It has the form.

\specialCIPS filename)

where filename is DRUM3 in this case. For example.
\no indent
. . . . in the graph illustrated below:
. . . in the graph illustrated below:

\special{IPS drum31
\vskip 3in
\no indent
Notice the values on the Y axis, they . .

vill print as:

..in t h e g r a p h i l lustrat ,ed below:

M = 2 N=5

Not ice t h e va lues on t h e Y axis, t h e y ...
The above sample was printed on a 240dpi IBM
3820.

U n i x m

Pierre MacKay
University of Washington

The most significant news for this Unix TEX site
report is that a System V port for the AT&T
3B2 has been completed by Lou Salkind of NYU,
and is now part of the regular Unix distribution.
This port depends on the System V version of
the BSD4.x pc compiler. and is still limited by
the fundamentalist rejection of the default. or
"others" case in Pascal case statements It is
therefore necessary to find a source for pxp (the
BSD4.x Pascal source prettyprinter) and to make
use of the still undocumented -0 -f flags which
wrap up every case staternent in a set-inclusion
test. We can now hope that other machine-specific
System V ports will follow. It is not clear yet
whether the version of Berkeley pc will migrate
to non-AT&T systems or whether we should look
for new ports perhaps developed with commercially
available Pascal compilers. In either case. the
System V barrier is at last dowc, and the other
half of the Unix world can now look forward to the
availability of QX.

A second approach to System V is Pat
Monardo's Common Tm in C. being developed
at Berkeley. Working versions of this are already
known at a number of sites, and it is currently being
upgraded to correspond with TEX Version 2.1.
Common TEX is coded in traditional C fashion,
without the rich documentation of a WEB source,
and without the convention of a pool file, but on
many architectures it is likely to produce somewhat
tighter and faster executable code. I t is not yet a
part of the Unix distribution.

The move from BSD4.2 to BSD4.3 on VKYen
has caused very few serious difficulties. Recompila-
tion is necessary owing to the change in the for~ndt
of a. out files, which also makes it impossible to use
the old version of undump.

On Suns. the changes are more radical. There
is a large gulf between Sun operating system 3.x and
its predecessors. This is further complicated by the
difference between Sun-2 and Sun-3 versions of the
new 0. S. Sun-3 users (68020 CPU) have no serious
trouble with any version of 0. S. 3.x. but Sun-2
users must upgrade to 0. S. 3.2 before trying to
compile T a . It is a measure of the breadth of the
Unix 7&X community that I first learned from Peter
Ilieve in Scotland of some possible improvements in
the Sun compilation. The pc that comes with the
new Sun 0. S. has adopted the "otherwise" heresy.
and provides some other nice features not formerly

TUGboat. Volume 8 (1987). Yo. 2

available. Moreover. the ..optimization" loop in the
assembler has been cleaned up. and compilation no
longer takes a week of elapsed time. It is now
possible to compile the output from tangle directly.
without the use of either pxp or the old sed script
for breaking up the source file.

We are still working to track down ports for
Celerity. Sequent. Intelligent Systems. Gould and
others.

Output drivers have remained stable. (Too
stable in the case of the dvi-to-Postscript driver.)
The best news is that Xlatt Thomas has rewritten
the LS03 driver to support all the varieties of
METAFONT output. His driver is now the standard
offering on the distribution tape. X good deal of
work has recently been done on dvi-to-Postscript
drivers. Richard Furuta is presently lookin, u at one
possible upgrade developed in Canada. and I am
looking at the Unix relevant parts of Nelson Beebe's
collection of drivers available from Utah. (The Utah
drivers are accompanied by a thorough manual
which can be read with profit by anyone concerned
with dvi output.) We hope to improve the Q X
devices directory in the summer by incorporating a
good part of the work mentioned here. Lye hope
also to offer the first genuinely open access to a true
high-resolution phototypesetter before the year is
out.

Contents of the distribution

Current versions of standard programs in the dis-
tribution:

(in the . / tex82 path)
- W Y 2.1 (implying use of the new cm fonts)

(plain.tex version 2.3)
- LATEX 2.09 (release of 19 April. 1986. with

corrections to 22 February. 1987)
(also SliTEX 2.09)

- tangle 2.8
- weave 2.9
- dvitype 2.8
- pltotf 2.3
- tftopl 2.5

(in the . /mf84 path)
METAFONT 1.3
chtopx 1
gftodvi 1.7
gftopk 1.3 (changes as published in TUGboat)
gftopxl 2.1
gftype 2.2
pktopx 2.3 (changes as published in
TUGboat)

- pktype 2.2 (changes as published in
TUGboat)

- pxtoch 1.1 (with change contributed by
11-illiam LeFebvre)

- pxtopk 2.3 (changes as published in
TUGboat 1

- mft 0.3 (a formatting program for METAFONT
source files)

Fonts
- Fonts in mf source format. The full Computer

Modern as released from Stanford. Utility
fonts for character proofs etc. (not made with
cmbase .mi) . LATEX and SliT&X fonts are also
supplied in mf source format.

- Fonts in gf format. Just about all standard
shapes and sizes in 118. 200. 210. and 300
gf (dpi) series. The gf files for the principal
LbGY symbol fonts are in a separate list. The
Euler fonts are supplied in gf format only. (If
you want [eu ler] . m f source files. you should
get in touch with the .American Xlathematical
Society. which will make these ava~lable under
license .)

- Fonts in pk format. 11515 f on tsCy r i l l i c . and
special symbols (created with old METAFONT-
in-SAIL) A11 but the * .590pxl. * . 1000pxl.
* . 1200pxl and * . l5OOpxl fonts are in * . *pk
format. The relelrant director~es include sh
scripts (e.g. makepx1300. sh) for expanding the
entire list. See the *.list files in each font
subdirectory for an idea of the size of the
expanded font directory.

- Fonts in p x l format. Only the bare minimum
set declared in p l a i n . tex . in 590 1000 1200
and 1500 sizes. as mentioned above. See also
mcyr. msxm. msyrn (amsfonts).

The distribution has grown to the point of needing
a small support organization. which has received
a grant from the National Endowment for the
Humanities to continue and expand the service
of softx-are distribution. Even so. it has become
necessary to raise the price slightly. Amateur
economists may be amused by the fact that this is
one area where volume does not bring lower costs.

TLGboat. Volume 8 (1987). KO. 2 181

How to order

To order a full distribution of T@Y. send $100.00
(foreign sites $110.00. to cover the extra postage)
payable to the Lniversity of LYashington to:

Pierre A. hIacKay
Northwest Computer Support Group. DLY-10
University of Washington
Seattle. Washington 98195

The normal distribution is a tar tape. blocked 20.
1600 bpi. If you need 114 inch streamer cartridges
for the SLY. be sure to tell us. Although we have
had problems previously with cartridge tapes. we
can usually hope to get them out quite fast now.

Typesetting
on Personal Computers

A Bug in WTURES v0.95 Prerelease

Gerhard F. Kohlmayr
Mathmodel Press

A B S T R ~ C T Using a current vers~on of T ~ T L R E S ~ ' ' a
discrepancy between Macintosh1 Plus screen display and
1 m a g e ~ r l t e r 2 printout is documented

The purpose of this note is to call attention
to an implementation error3 in T E ~ T c R E s " ~ . ~ ~
prerelease. The control sequences (see [lj and
121) ' \ne', '\neq'. ' \not='. . \not \eqmv' . . \ no t \m ' .
and ' \no t \subset ' are correctly displayed on
the Mac+ screen. but incorrectly printed by the
ImageWriter. For example. the correctly dzsplayed
inequality '1 # 2' is zncorrectly prznted as '1 = 2'
and the correctly dzsplayed negated membership
relation 'x @ y' is zncorrectly prznted as .x E y'.
(These symbols are. no doubt, of great interest to
the average mathematician.) No attempt has been

I wish to thank P. D.F. Ion for sending me a preliminary
version of the A@-7$J macro package for the hlacintosh
Plus and for his assistance over the telephone when I had a
problem getting &+S-TEX running. M - T E X ~ ~ ' American
Mathematical Society.

Macintosh is a trademark licensed to Apple Computer.
Inc.

ImageWriter is a trademark of Apple Computer. Inc.
Also called simply a bug.
0 1 9 8 7 Kellerman & Smith a T"Addison-Wesley.

made to find all control sequences which lead to
corrupted Imagewriter printouts.

How can one resist the temptation to intro-
duce the term WYSISALf-YG (what-you-see-is-not-
always-what-you-get)?

Barry Smith of Kellerman &L Smith has supplied
a work-around for this problem. as described in
the following note. I am grateful to him for
responding within a few days to a first draft of this
note by offering. over the telephone. a hands-on
demonstration of the ImageWriter bug-fix. I tried
it and it worked to my satisfaction.

1. Donald E. Knuth. -The %?(book.' American hlathe-
matical Society and Addison-Wesley Publishing Com-
pany. Providence. Rhode Island and Reading. 51a.s-
sachusetts. 1984.

2. M. D. Spivak. Ph.D. . "The Joy of ?$J.X." American
l lathematical Society. Providence. Rhode Island. 1986.

Work-around for an ImageWriter Problem
Affecting Output from WTURES

Barry Smith

The failure of the \not character to print in output
to the ImageiTriter is due to the Imagewriter's
improper handling of characters having zero width.
There are two such characters in the Computer
Xlodern fonts. both in cmsy the \not character
already cited (character "36) and the piece character
that forms the left end of the \mapsto symbol (H.
character " 3 7) .

The work-around is fairly straightforward. but
requires a special piece of software-a font editor:
either Resedit or Fontastic will do the job. The
change required to make zero-width characters ap-
pear is to reset their width to I pixel. This is
sufficient to avoid the ImageLTriter bug. but not
enough to cause problems with character positioning
or appearance.

If Apple ever gets around to handling zero-
width characters in a more intelligent manner. this
problem will go away.

182 TUGboat. Volume 8 (1987), No. 2

Update: Real Typesetting
from Your Personal Computer

Alan Hoenig and Mitch Pfeffer

In Vol. 7. No. 3, we listed some sources of typesetting
services for TEX users who need output from real
typesetting machines. Some new information has
turned up, and we are listing these new facts and
figures according to the same rules applied in the
original article: no favorites. And we ask the
same consideration from readers - if anyone knows
of other organizations that offer TEX typesetting
services. please get in touch.

American Mathematical Society, P 0 Box
6248, Providence, RI 02940; (401) 272-9500
The -4MS is now using an Autologic .4PS Micro-5
for its typesetting. At the present time the Society
has -4M. CM and Times Roman fonts available
and within the next few months it expects to have
many more typefaces from the Autologic library.
Turnaround time varies depending on the size of
the job but should be no more than a week for up
to a 500 page job.

The AMS has also simplified its pricing struc-
ture. The charge for producing typeset output from
your DVI file is $5 per page for the first 100 pages.
$2.50 per page for all additional pages. The mini-
mum charge for any job is $30. Files can be sent
on VAXJVMS tapes or on IBhI PC or Macintosh
diskettes (although no Postscript extensions can be
handled).

For scheduling purposes. the AMS asks that
you contact them before submitting any jobs; talk
to Regina Girouard.

Macros

Macros with Keyword Parameters

Wolfgang Appelt
Gesellschaft fiir Mathematik und
Datenverarbeitung. Sankt Augustin

TEX uses positional parameters for passing argu-
ments to a macro. This has. as it is usually the
case with positional parameters, two consequences:
When calling a macro. which was defined to have
parameters (#I, #2. . . .),

1. the order of the arguments is important, i. e.
it usually gives different results. if you write
\a{bHc) or \a{c)ib). and

2. the number of the arguments must match the
number of parameters in the definition of the
macro.

There are. however, sometimes situations where the
concept of keyword parameters is more adequate.
Consider, for example, a Setstyle macro which
may be used for modifying the formatting environ-
ment. The arguments, that can be passed to the
macro, can be selected from a set of predefined
keywords, say {RAGGEDRIGHT, BOLD, ITALIC. NOIN-
DENT. . . .). The order of the arguments shall be
unimportant and the number of the arguments shall
be variable, i. e. the macro may be used as

\SetStyle(ITALIC) or
\SetStyle(NOINDENT;ITALIC;RAGGEDRIGHT)

(If several arguments are present. they must be
separated by a delimiter, for example by a ";".)

The following macros solve the problem (expla-
nations afterwards) :

\newif\if@more@keywords
\newif\if@keyword@matched

\def\next@style@keyword #1;#2\end{%
\def\nextC#2)%
\ifx\next\empty\@more@keywordsfalse

\else\def\arguments{#2\end)\fi
\@keyword@matchedfalse
\compare@with@keyword #lcBOLDX\bf>%
\if@keyword@matched

\else\compare@with@keyword #1%
<RAGGEDRIGHT><\raggedright>\fi

\if@keyword@matched
\else\compare@with@keyword #1%

<ITALIC><\it>\fi
\if@keyword@matched

\else\compare@with@keyword #1%
<NOINDENT><\parindent=Opt>\fi

\if@keyword@matched\else
\message{Unknown keyword #l!)\fi)

TUGboat, Volume 8 (1987), No. 2

First we define two switches (\ i f QmoreQkeywords
and \ifQkeywordQmatched) which are used within
the macros. The \Se ts ty le macro has one pa-
rameter which is a keyword or a list of keywords,
separated by a ";". The argument passed to the
macro is saved in the macro \argument with a
";\end" added at the end. This will later on be
used to detect the end of the argument. Then the
macro starts calling \nextQstyle@keyword within
a loop as long as the switch \Qmore@keywords is
t rue . The argument to \nextQstyle@keyword is
expanded before the macro is actually called. i. e.
what the macro '.sees" is something like

NOINDENT;ITALIC;RAGGEDRIGHT;\end
The macro \next@style@keyword splits the list of
keywords into the first keyword. which is anything
up to the first ";", and into the rest, which is
anything up to the final \end. If the rest is empty.
the switch \QmoreQkeywords is set to f a l se . so the
loop in \Se ts ty le will stop. Otherwise the macro
\arguments is redefined to contain the rest of the
keywords with the "\end" added at the end again.

Then we start comparing the current keyword
#1 with the list of predefined keywords. This is
done by calling the macro \compareQwlthQkeyword
several times. each time with a different specific
keyword which is regarded a valid argument to
\Sets ty le . To avoid unnecessary calls of this macro
when the current keyword was already found, we
use the switch \QkeywordQmatched. If the current
keyword was not recognized at all. when the list of
the specific keywords is exhausted. an error message
is written. The macro \compare@withQkeyword
is called with three arguments: the current key-
word. a specific keyword and (usually) an action.
that is to be performed, when the current key-
word matches the specific one. The definition of
\compareQwithQkeyword is simple: The first two
parameters are compared. If they are identical.
the switch \Qmore@keywords is set to t r u e and the
third parameter is '*executed".

Expanding the set of valid keywords for the
\Se ts ty le macro is trivial: It is only necessary
to add furthers calls of \compareQwithQkeyword,
each time with a new specific keyword. within the
definition of \nextQstyleQkeyword. There is no
restriction on the number of keywords, that can be
used, i. e. the restriction, that a macro must
not have more than nine (positional) parameters,
does not hold for keyword parameters.

In some applications a slightly different kind
of keyword parameters is necessary. Consider, for
example, a \SetDimensions macro, which shall be

used for modifying some parameters controlling the
size and positioning of a page. The macro may, for
example, be used as
\SetDimensions(VSIZE=1.5\char92hsize) or
\SetDimensions(HSIZE=20pc;HOFFSET=1Opt)
Now each keyword has an associated value, which
shall be passed to some "attribute", denoted by the
keyword. This case can be handled by the following
macros:
\def\SetDimensions (#l){%

\def \arguments(#l ;\end)%
\@more@keywordstrue
\loop\expandafter\next@setdim@keyword

\arguments
\if@more@keywords\repeat)

\def\next@setdim@keyword #1;#2\end{%
\def\nextC#2)%
\ifx\next\empty\@more@keywordsfalse

\else\def\arguments{#2\end)\fi
\@keyword@matchedfalse
\compare@with@attribute #1%

<HSIZE><\hsize=\value>%
\if@keyword@matched

\else\compareQwith@attribute #I%
<VSIZE><\vsize=\value>\fi

\if@keyword@matched
\else\compareQwith@attribute #1%

<HOFFSET><\hoffset=\value>\fi
\if@keyword@matched

\else\compareQwithQattribute #1%
<VOFFSET><\voffset=\value>\fi

\ifQkeyword@matched\else
\message{Unknown keyword # l !)\f i)

The macros are rather similar to the previous
ones. The main difference to the example above is
the macro \compareQwith@attribute which is used
instead of the former \compare@with@keyword. The
macro is called with three arguments as in the
previous example. but it has four parameters in its
definition. the first two being separated by a "=".
This serves for splitting the first argument, which
might. for example. be

VSIZE=l.5\hsize

into the "attribute name" and the "attribute value".
If the attribute name matches the third parameter
(or - looking at the call of the macro - the second
argument). the switch \Qkeyword@matched is set to

TUGboat, Volume 8 (1987), No. 2

true and the meaning of \value is defined as the
attribute value.

Notice the macro \value: When it is passed
as an argument to \compareQwithQattribute it is
still undefined. In other words, we have the funny
case of a macro which- to some extent -defines
the arguments, that it receives, itself.

The two examples above show rather simple
applications of keyword parameters without great
practical value. They should primarily be regarded
as an explanation of the basic ideas how such macros
can be written. In practice further extensions may
be necessary. One extension may be the mixture
of positional and keyword parameters, another one
the definition of macros, where the keywords in the
argument list may have to be reordered before they
get interpreted.

The discussion on positional versus keyword
parameters has a long tradition in computer science
and common understanding is probably, that key-
word parameters are preferable to positional ones
in many cases. Also several document processing
systems, e. g. Reid's SCRIBE system (B. K. Reid:
SCRIBE -Introductory User's Manual, Unilogic
Ltd., Pittsburgh, 1980), make use of keyword pa-
rameters to some extent. (There are even a few
features in I4m which look like keyword parame-
ters though Lamport does not use this terminology.
See, for example, the options that can be given with
a \document style command.)

Using the concept of keywords parameters
can probably lead to macro packages with user
interfaces, which look quite different from existing
ones and might be preferred by many users. Maybe
even the writing of "bridgeware" macro packages
to other formatting languages. for example a macro
package that makes (at least certain classes of)
SCRIBE documents processable by 'QX, might
become easier.

When I first thought about keyword parameters
I was surprised, that it took only a few hours to write
down some macros that solved the problem. So,
if after all the examples above may show nothing,
they at least prove once again
power of W ' s macro language.

the flexibility and

\expandafter vs. \let and \def in Conditionals
and a Generalization of PLAIN's \loop

Alois Kabelschacht
Max-Planck-Institut fiir Physik

Conditionals with \expandafter

Sometimes the replacement text for a 7&X macro
should end with one or another macro call, depend-
ing on a condition. The trivial solution

. . . \if \aa \else . . . \bb \fi

works only if neither \aa nor \bb needs an argument.
Otherwise a more complicated construction such as
the following example from plain. tex is needed:

\def\ph@nt{\ifrnmode
\def\next{\mathpalette\mathphQnt3%

\else\let\next\makephQnt\fi\next)

There is the alternative:
\def\ph@nt{\ifmmode

\expandafter\mathpalett e
\expandafter\mathph@nt

\else\expandafter\makephQnt\fi)

which uses the fact that the expansion of both
\else . . . \fi and \f i is empty. This alternative
is definitely shorter (by 4 tokens) and as far as I can
see not slower. It has the further advantage that it
also works if expandable tokens are expanded but
no commands are digested (e.g. in the replacement
text for \edef). The alternative construction is
clearly even more economical in such cases where
one of the branches would otherwise contain a
'\let\next\relax'.

A generalization of PLAIN's \loop macro

Using the above idea one could e.g. replace PLAIN's
definition of \iterate (used in conjunction with
\loop):

\def\loop#l\repeat{\def\body{#l}\iterate}
\def \iterate{\body \let\next\iterate

\else\let\next\relax\fi \next}
\let\repeat=\f i % this makes

% \loop . . . \if . . . \repeat skippable

by
\def\iterate<\body

\expandafter\iterate\else\fi)

Finally, omitting the \else and rearranging things
a bit one obtains

\def\loop#l\repeat{\def\iterate
<#l\expandafter\iterate\fi)%

\iterate \let\iterate\relax]

TUGboat, Volume 8 (1987), No. 2

which allows constructions such as
\loop . . . \ i f \e lse . . . \ repeat
\loop . . . \ i f case . . . \or . . .

\e lse . . . \ repeat

The final ' \ l e t \ i t e ra te \ re lax ' throws away the
token list for the body of the loop which could be
quite long.

in t h e Commercial Env i ronment
Set t ing Mult i -Column Ou tpu t

Elizabeth M. Barnhart

A little more than two years ago, T V G U I D E
magazine started to investigate the possibility of
using the rn typesetting language to compose
both the national feature and local program-listing
sections of the magazine. The idea of vendor inde-
pendence was one of the most attractive attributes
of using this as our composition language.

Academic vs. t h e Commercial Env i ronment

As we started to get more involved, we discovered
that a large percentage of the m community
consisted of academic users of m in colleges and
universities around the country, but that few com-
mercial typesetting applications were using m.

The academic user is usually involved with
a relatively small quantity of output -from a few
pages to perhaps several hundred pages. In contrast,
T V G U I D E publishes over 100 editions in the
United States and Canada for each weekly issue.
The output comes to approximately 15,000 pages
per week, presenting quite a different processing
problem.

In the typical academic environment, one per-
son might key in text through a word processor
or PC editor and handle the style and output of
the text by the inserting of typesetting commands
directly into the text. In our environment, the same
keystrokes are captured once, and may repeat in
several areas and in many editions of the magazine.
No one single person enters the text that makes
up a page of the magazine. Editors for each local
station gather the programming information and
send it to the main office in Radnor, Pa. Output
is handled by feeding items through pre-defined
typesetting-specification files.

Specific Problems

Although 7QX has many positive features, we
have encountered some problems as we experiment
with a variety of the type elements that compose
T V GUIDE.

One problem is that was designed for
much wider columns than the ones called for by our
typesetting specifications. We have been able to get
around this with adjustments of the \ to lerance
and penalties that control the line breaking algo-
rithm in m. It would be infeasible to use the
defaults for these penalties, which would require
frequent interacting with the copy to eliminate the
many "ouerju11 boxes" that would occur.

Another problem is that TJ$ is a paragraph
setting composition language: all other composition
languages that our staff had been exposed to set
type line by line. In line-by-line systems, once
a line of type has been hyphenated and justified.
it is closed and will not be changed; l&X can
rework a paragraph completely differently when one
word is eliminated. This has been presenting some
problems in our environment, since knowing exactly
where a line breaks is important to us. Our text
often includes optional copy, and we need to know
how lines will fit together if optional copy in the
center of a paragraph is eliminated. Taking text
measurements from the longest version of the copy
has been our solution to this problem.

We have also encountered difficulties with the
fact that when TEX produces a . dvi file. the fonts
involved lose their identity. They are assigned a
number in the font table contained in the "postam-
ble" of the .dvi file. We need to be able to convert
the text back to the original format, so we must be
able to reconstruct the font calls made in the orig-
inal text. We are experimenting with dealing with
this problem by forcing system-specific font calls
into the . dvi file using the \spec ia l command.

Another one of the big problems we have
encountered is the complexity of defining page
layouts with "output" routines. Each section of
T V G U I D E is different and within those sections
each page can be different. One example would be
switching from a three-column to a two-column for-
mat within an article. Another layout requirement
is leaving drops for photographs or artwork that
occupy portions of more than one column of type.
We are experimenting using \parshape commands
within output routines to deal with this problem.
We may find ourselves developing a front-end page

description language to make this usable in a pro-
duction environment that has a short turn-around
time.

Input/Output Example

There are many different sorts of typeset items that
go into the production of TV GUIDE magazine,
for example, features, prime-time grids, program
listings, close-up articles, cable-movie guides, etc.
One of the problems encountered in our type of
application concerns the switching from a single
column format to a two, three or more column
format.

A multi-column format is presented here, that
can handle output from one to five columns. For
the sample page, the counts and dimensions referred
to in the commented section of the macro file are
defined as follows:

\global\dimen40=150pt \hsize value.
\global\dimen50=477pt \vsize value.
\global\dimen60=314pt Width of all columns.
\global\count30=2 Xumber of columns.
\global\count70=1 Turn on outside rules.
\global\count71=1 Turn on inside rules.
\pageno=16 First page of the batch.
\def \startpageI\pageno=16) Gets no running head.
\def \editdate(April 4, 1987) For running heads.

These values will set 2-column pages with
150-point columns and rules to either side of the
columns. Changing any one of these values will
affect the output. For example. changing \count30
from a 2 to a 3 will change the output to 3-column
pages. This will work without adjusting any of the
other values.

The macro file shown addresses only one aspect
of the typeset page. but the sample page shown
illustrates how each page must be tailored to cut
rules for photographs, use \parshapes to leave
areas to drop in photos and have figure-caption text
inserted. The handling of these problems is not
discussed in the macro-file listed below.

The 7$J input would have to be refined to
include these details before being used in a produc-
tion environment. Below is a sample of Tm input
for a multi-column output routine.

We are in the beginning stages of adopting l$J
into the editorial system that collects the feature
and program text that makes up the magazine.
We invite other commercial users to discuss
problems and solutions of their typesetting problems
in the TUGboat and would like to know if there
is interest in establishing a commercial users
group.

TUGboat, Volume 8 (1987), No. 2

Multi-Column Macros

COLRHRF.MAC
Multi-column layout for 1 to 5 columns,
with 2-piece running heads that switch
for odd and even pages, and an outside
edge folio for a running foot.

To use this macro-file, the following
definitions must be inserted at the top
of your input file:

\global\dimen40=00pt (Becomes \hsize value)
\global\dimen50=00pt (Becomes \vsize value)
\global\dimen60=00pt
\global\count30=1 (Used for 1 to 5 columns)
\global\count70=1 (rule on [I] , off [O])
\global\count71=1 (rule on [I] , off [O])
\pageno=l (Set to first page number wanted)

("startpage" will not get a running head)
\def\startpage{\pageno=l)

The next defmition is fed into
the running head calls in the output

\newdimen\pagewidth
%
% "fullhsize" is the full page width
% including the space between the rules

and the text, and the gutter space
% between columns.
%
\fullhsize=\dimen60
\pagewidth=\fullhsize
\hsize=\dimen40 % Column Width
\vsize=\dimen50 % Page Depth
\def\fullline{\hbox to \fullhsize)
\def \space{\
\def\TVG((\bf TV\GUIDE))
\def\arrow{(\sy\char65}}
%
% The tolerance is defined very high for
% narrow columns, it allows more hyphenation
% and bigger word-spacing.
%
\tolerance=10000

\hyphenpenalty=lOO
%
% These are in-house TV Guide fonts and
% must be changed if you want to use
% this macro file.

TUGboat, Volume 8 (1987), No. 2

\f ont\sy=tvg7pi at 7pt
%
% Running head layout definitions
% '(Blankheadline'' is used for the
% starting page. Only lefthand turnover
% pages get a "continued" line.
%
\def\bheadline{{\hsize=\dimen60

\leftline{\quad)))

\def\blankheadline{{\baselineskip=7pt
\vskipOpt\bheadline))

%
\def \lheadline{{\hsize=\dimen60

\leftline{\quad \runlight continued))}
\def\leftheadline{{\baselineskip=7pt\vskipOpt

\lheadline))
%
\def \rheadline{{\hsize=\dimen60

\leftline{\quad 1))
\def\rightheadline{(\baselineskip=7pt

\vskipOpt\rheadline))
%
% Running feet layout definitions.
%
\def\lfootline{\hsize=\dimen60

\line{\quad \runlight \folio\hfill
TV GUIDE \editdate\quad))

\def\leftfootline{{\baselineskip=7pt
\vskip 7pt{\runlight \lfootline)))

\%
\def\rfootline{\hsize=\dimen60
\line{{\quad \runlight TV GUIDE \editdate
\hfill \folio\quad))

\def\rightfootline{(\baselineskip=7pt
\vskip 7pt{\runlight \rfootline)))

%
% Define a BOX to hold each column while
% building the page.
%

\else\ifnum\count30=2
\output={\if A\lr

\global\setbox\onecolumn=\columnbox
\global\let\lr=B
\else \twoformat \global\let\lr=A\fi
\ifnum\outputpenalty>-20000
\else\dosupereject\fi)

%
\else\ifnum\count30=3
\output={\if A\lr

\global\setbox\onecolumn=\columnbox
\global\let\lr=B
\else\if B\lr
\global\setbox\twocolumn=\columnbox
\global\let\lr=C
\else \threeformat \global\let\lr=A
\f i\f i
\ifnum\outputpenalty>-20000
\else\dosupereject\fi)

%
\else\ifnum\count30=4
\output={\if A\lr

\global\setbox\onecolumn=\columnbox
\global\let\lr=B
\else\if B\lr
\global\seiL~~'~~~ocolumn=\columnbox
\global\let\lr=C
\else\if C\lr
\global\setbox\threecolumn=\colurnnbox
\global\let\lr=D
\else \fourformat \global\let\lr=A
\f i\f i\f i
\ifnum\outputpenalty>-20000
\else\dosupereject\fi)

%
\else\ifnum\count30=5
\output={\if A\lr

\global\setbox\onecolumn=\columnbox
\global\let\lr=B
\else\if B\lr
\global\setbox\twocolumn=\columnbox
\global\let\lr=C
\else\if C\lr
\global\setbox\threecolumn=\columnbox
\global\let\lr=D
\else\if D\lr
\global\setbox\fourcolumn=\columnbox
\global\let\lr=E
\else \f ivef ormat \global\let\lr=A
\fi\fi\fi\fi
\ifnum\outputpenalty>-20000
\else\dosupereject\fi)

\fi\fi\fi\fi\fi
%

TUGboat. Volume 8 (1987). So. 2

The output routines test for the
starting-page value and do not put a
running head on that page. All subsequent
lefthand pages will get a running head.
The running foot layout flips as you go
from odd page numbers to even page numbers.

The output routines also test to see if
you want to put rules between the columns
(\count71) and/or before and after the
first and last column (\count70).

%
\def\fourformat{\shipout\vbox{

\ifnum\startpage\blankheadline
\else \ifodd\pageno\rightheadline
\else \leftheadline\fi\fi
\noint erlineskip
\ f u l l l i n e { \ i f n u m \ c o u n t 7 0 = l \ o p e d e
\else\hfil\fi
\box\onecolumn\ifnum\count71=l\midrule
\else\back hfil\fi
\box\twocolumn\ifnum\count7l=l\midrule
\else\back hfil\fi
\box\threecolumn\ifnum\count7l=l\rnidrule
\else\back hfil\fi
\columnbox\ifnum\count70=l\closerule
\else \hfil\ fi)
\ifodd\pageno\rightfootline
\else \leftfootline\fi
\vfill)\advancepageno)

%
\def\fiveformat{\shipout\vbox{

\ifnum\startpage\blankheadline
\else \ifodd\pageno\rightheadline
\else \leftheadline\fi\ fi
\nointerlineskip
\fullline{\ifnum\count70=l\openrule
\else \hfil\ fi
\box\onecol~unn\ifnum\count71=l\midrule
\else \hfil\fi
\box\twocolumn\ifnum\count71=1\rnidrule
\else \hfil\fi
\box\threecolumn\ifnum\count71=l\midrule
\else \hfil\fi
\box\fourcolumn\ifnum\count71=l\rnidrule
\else \hf ll\f i
\columnbox\ifnum\count70=l\closerule
\else \hfil \fi)
\ifodd\pageno\rightfootline
\else\leftfootline \fi

\box\tuocolumn\ifnum\count71=l\midrule
\else\back hfil\fi
\columnbox\ifnum\count70=l\closerule
\else \hfil\ fi)

TUGboat. Volume 8 (1987). No. 2

W2400
Article Name: The Stoppers

c the bullpen because they nad lost
heir best stuff Today s re ieiers hcw-
2ver are a a~fferent breed yomg cocky
alented a i d f arrboyantiy s u c ~ e s s f ~ l
rhev ru? everv step of tne way from the
x p e n to the ~ o ~ n d to lei the batter
mow 'ney car t wait to face his pit iul

self Both they and the
b a k r know theirs is the
most mportant job on
every major ,eague
iea-n And they are paid
a c ~ c r d ~ n g l y Donn,e
Moore rhe Angels portly
fastballer s the h,ghest
paid on his club at $;
milion ayear Dan Quisen-
berry the Royals lacmc
s~b7;ar ner is second
only to George Brett on
his club Greg Harris of
the 9angers and Goose
Gossage of the Padres are
the second highest paid
on their teams LYiIlie Her-
naidez of the Tigers is his
team s third nighest paid
and Dave Righetti of the
Yankees is the fifth h,ghest
on his team

They are paid all that
money to stop the oppos-
tion s rallies Often they
appear in less than E0 in-
nings a season and yet
those are the most importaqt

80 inn~ngs each team
piays The game is in the
balance when they come
in Righetti for example
appeared in 74 games

last year winning eight and sav-
ing 46 a major-eaglie record That means
he had a significant influence on 54 of
the second-place Yankees 90 victories
Without Rags says Hal of Famer Whitey

Ford we would have finlshed fifth
In most cases relievers have been bred

to their task from their very first mlnor-
league pitch They have special talents
and strange ternperawnts that make them
w q u e among baseball players They are
ephemera! creatures noted more for brief

N GUIDE JUNE I ? 138'

lashes of briharce rather thaq for plod-
jing efficiency They see their ,OD in
erms of a smg e Innlig at most a s~ngle
latter eve? a single pitch Often that s
3 1) they ~ e e d one special pitch

R~ghetti Moore the Cubs Lee SmitP
3nd even Gossage in his b l ight years
ely primarily on exploding fastballs in

3 crunch Quisenberry and the Phillies
<ent Tekulve deliver their ace in the
l o e-a ris ng the? sinicing fastball-with
3n unaerhand delivery whicn according
o Quiz resembles the motion a motner
~ s e s to reach d o w ~ and sparlk a baby
iernandez was only a journeyma? lev-
ia ide r whei he developed an aimos:
~nhit table screwbail that made him
squally effeci~ve agans; right handed bat-
ters and leq-na~ders Roger McDowell
rhe Mets young stopper relies on a pitch
that is both a good fastoall and a great
sinker He ypiries the new breed of reIle?/-
ers He stands primly on the mound with
Pis feet together a pink-faced un-
emot~onal youth who looks like a choirboy
or maybe a Yupp,e stockbroker going
aboiit his business as if the conclusion
IS foregone A ground-ball double play

Releving s a serious b~siness now
says Righetti There s no more of that
fooling around on the mound or in the
bullpen like a few years ago Righetti
is referring to relievers of 10 years ago
who according io Whitey Ford were a
little flaky then He is referring 'o the
young Gossage who kept a pet goose
in the bullpel and to Sparky Lyle who
once appeared on the first day of spring
training with a leg cast to his hip to
terrify the Yankee brass There was A1
Hrabosky the Mad Hungaran with his
FIJ Manchu mustache and his stalking
and imprecations on the mound and
of course there was the irrepressible Tug
McGraw of the Phillies who when asked
if he preferred Astroturf to grass said
I do? t know 1 never smoked Astroturi

Such antics are a thing of the past for
today s big-bucks relievers who go about
the~r job in a more controlled manner

That doesnt mean they re not emo-
tional types says Rangers manager
Bobby Valentine They have to be -+

A7

Figure 1. Page of TV GUIDE set using COLRHRF. MAC

TUGboat, Volume 8 (1987), No. 2

Diglot Typesetting
by Charles Lehardy

The Summer Institute of Linguistics

This article describes T&X macros that print Scripture in parallel-column diglot form. The
program has been used to typeset the New Testament in the S a n Bartolome' Zoogocho dialect of
Zapotec, a language spoken in southern Mexico.

Diglot means "two languages". A diglot book contains a running translation of the primary
text in some secondary language. In the context of our work with the indigenous peoples of Mexico,
the primary text (the "idiom") is a language such as Zapotec, and the secondary text (the "diglot")
is Spanish. Printing the two languages side-by-side serves a number of purposes. It gives them
equal status, sometimes helping to settle questions about the "legitimacy" of one language or the
other. It helps speakers of one of the languages make comparisons to the other. And it has the
practical effect of producing shorter lines. which is important to those who are not skilled readers.

Traditionally, our parallel-column diglot versions of the New Testament were done largely by
hand. The idiom and the Spanish were typeset in two separate runs. The pages were created by
cutting the appropriate strips of the idiom and diglot copy and pasting them side by side. As might
be expected, the process was slow and quite expensive.

Because of a growing interest in diglot New Testaments, we have created macros that
page the two languages together automatically. What follows is a simplified description of how the
diglot.tex program does its work.

The basic feature of being exploited by diglot.tex is its ability to read from and/or write
to auxiliary files while typesetting. The Zoogocho Zapotec book of Matthew is contained in a single
325k-byte file. At the beginning of chapter one, the file contains the command \d f {svpmat l) .
This tells that the diglot material to be used with this portion of the idiom is found under the
filename svpmatl.tex.

The \df { diglot-filename) command opens the auxiliary input channel \ d i g l o t f i l e and
searches for svpmatl.tex. The Spanish Versi6n Popular edition of Matthew is a 200k-byte file.
We've found that smaller files are easier to handle, so we use chapter-sized files for the diglot text,
which for Matthew average a comfortable 7k-bytes each. A \df command placed in the idiom text
at the beginning of each chapter calls up the appropriate diglot file as typesetting progresses. After
\ d i g l o t f i l e is opened, verse processing begins.

Each time a new idiom verse is encountered, several things happen. First, the verse number
is saved. Verses are usually marked by a single number, but sometimes the translator elects to
create a synthesis of two or more verses, in which case the verses are marked by two numbers
separated by a comma or hyphen (e.g., 12-14). The verse command has the form \ i v m. n, where
m is the starting verse number and n is the (optional) ending verse number. m is compared to the
current verse number in an effort to guard against missing or duplicated verses. If all is well, the
\ g e t d i g l o t routine is called.

The listing below is a simplified version of the \ g e t d i g l o t routine. treats each verse
in \ d i g l o t f i l e as a unit. \ g e t d i g l o t pulls a verse from \ d i g l o t f i l e , increases the value of
\ d i g l o t v e r s e by one, makes an insert of the diglot verse, and compares the verse number of the
idiom text with the diglot. If the idiom verse was a synthesis of several verses, the routine repeats
until the verse counts for both the idiom and the diglot match. When \ g e t d i g l o t has finished
inserting the diglot material, the verse routine contributes the idiom text to the current page.

Pages are constructed using the routines called "marginal hacks" in the T f l b o o k (pp. 415-
416). The \ p a g e c o n t e n t s macro has been altered as shown below to place the diglot material

TUGboat, Volume 8 (1987). No. 2

%Get a v e r s e f romthe d i g l o t f i l e andmake an i n s e r t i o n o f it

\def\getdiglot{\loop\read\diglotfileto \ d ig lo t tex t

\ifeof\diglotfile\closein\diglotfile

\ e l s e

\advance\diglotverseby I

\insert\diglotins{\diglottext)

\f i

on the page as an insertion, much like a footnote. 'I'EX really sees the page as a fairly narrow
column of text with an extraordinarily large right margin into which we are dumping the contents
of \ d i g l o t i n s .

%Redef inepagecontents to allow f o r d i g l o t i n s

The new \ p a g e c o n t e n t s macro draws a horizontal line just below the header. It then stores
the height of \ d i g l o t i n s which is used to draw the vertical line between the columns. Next, i t
kerns to the right \hsize (the width of the idiom text column) and prints the vertical line (using
the \ t b a r macro) followed by the diglot text. After the diglot text is printed, \ p a g e c o n t e n t s
continues as i t would under normal conditions.

Because of the narrow columns used, line-breaks can become difficult. We help the program
along by allowing it to stretch the white space on a line a bit more than usual. We often avoid
hyphenation and justification because whole words and ragged margins are a help to beginning
readers. The Zoogocho Zapotec New Testament is an example of this style. Some languages,
however, have much longer words and are impossible to typeset without hyphenation. Had
hyphenation been required, i t would have been necessary to hyphenate the idiom and diglot texts
simultaneously using two sets of rules. Unfortunately, TEX was not designed t o hyphenate two
different languages at the same time. W ' s hyphenation rules (for English) could be changed
t o work correctly for Zapotec, but then the Spanish text would also be hyphenated using
Zapotec rules.

The easiest solution seems to be to combine the use of discretionary hyphens with penalties
that make hyphenation somewhat limited. Before typesetting, we run both texts through programs
that insert discretionary hyphens in each word according to the rules of that particular language.
In any word containing a discretionary hyphen, T'EX will suspend its hyphenation rules and break
the word where the user has indicated. This works, but we are looking for other solutions.

The sample shown here is a page from the Zoogocho Zapotec Matthew. Each column has
attr ibutes tha t can be altered independently of the other. These include: column width, typesize,
typestyle, leading, hyphenation (on or off) and justification (on or off).

TUGboat, Volume 8 (1987): No. 2

J' a3

San Mateo 13, 14

yodaol chegaquenl. Nal leca besyebande'
len xtiienl nal gosel Ijeiel:

-iGa jasedel yela1 sinal? nal
jnacxechenl chac chonel yelal guac
cat? 55 Nombialchonel, ie naquel xilin
bent chonSagiie1 yag. Nal xnelenal lie1
Maria, nal Jacobo, Josk, Sim6n nal
Judas zjanaquel benet bigel. 56 Nal lecze
begel zanel car nitel laicho nga. iNacxe
chaquenl chole diial cal nal chactel chonel
yela! guac?

57 Nal danl gosonel xbab nac
Jeslisenl con to begel gualai chegaquel, bi
gosaclaiel yesejlele she!. Nal go5 Jeslisenl
legaquel :

-Yogotze begel chonlalanel beget
choel xtiial Diosenl, perw benel
gualai chef nal begel 101 yolo she1 bi
chesonialager iel.

58 Naf to chopze yela1 guac ben
Jeslisenl Nazaretenl danl bitw gosejiele
chel.

Quingan' goc gosotel Juan
bent bzoa b e ~ e ' nis

(Mr. 6.14-29; LC. 9.7-9)

Nal ca tiempent Herodes benl 14 naquel gobernador ghe distritw
Galileanl, bendel diia' ca nac yogollol
dan' chon Jeslisenl. 2 Nach goiel xmosel
car:

-Benganl dal Juangal, bent bzoa
begel nis. Ba bebanel ladjo begel guat
car, dalnanl chaquel chonel yela1 guac.

3-4 Herodesenl gwnel cat danl benet
mandadw gosotel dal Juangal. Quinganl
goc: Herodesenl bequele Herodias ca
xo~ole~ ialczial Herodias naquef xolole
begel biSe1 Felipe. Nal Juangaf goiel
Herodesenl:

-Bi cheyalal soalen no101 che begel
bison'.

5 5 Pues este es el hijo
del carpintero, y su madre
es Maria. E s hermano de
Jacobo, JosC, Sim6n y
Judas,
56 y sus hermanas tambi6n
viven aqui entre nosotros.
iDe dbnde, pues, sabe todo
esto?

57 Por eso no quisieron
hacerle caso. Pero Jesds les
dijo:

-Todos aprecian a un
profeta, menos 10s de su
propia t ierra y 10s de su casa.

58 Y no hizo muchos mi-
lagros alli, porque ellos no
creian en 61.

La muerte de Juan
el Bautista

(Mr. 6.14-29; LC. 9.7-9)
14 1 En ese t iempo Hero-
des, el que gobernaba en
Galilea, tuvo noticias de
Jesds,
2 y dijo a 10s que estaban
con 61:

-Ese es Juan el
Baut ista, que ha sido resu-
citado de la muerte. Por eso
tiene este poder milagroso.

3 E s que Herodes habia
hecho detener a Juan y lle-
varlo atado a la cbrcel. Lo
hizo por causa de Herodias,
que era esposa de su herma-
no Felipe.
4 Juan habia dicho a
Herodes:

-No debes tenerla como
t u mujer.

TUGboat, Volume 8 (1987), No. 2

First Line Special Handling with Tfl

Anne Briiggemann- Klein
Instit u t fiir Angewandte lnformatik
und Formale Beschrei bungsverfahren

Pos tfach 6980
7500 Karlsruhe, West Germany

Jim Sterken in TUGboat 4, no. 2, and James Alexander in TUGboat 7,
no. 2, ask a question about fancy first line processing: Can automatically set the first
line of a paragraph in a special font? Yes, indeed, can! But before I tell you a solution,
let me describe some wrong ways I tried before, because this explains some assumptions and
restrictions I made. For short, I call paragraphs which have their first lines set in a special
font, special paragraphs, in contrast to the normal ones.

The first line problem in its strongest form means the following: Can 'I)-$
make optimal special paragraphs in the same sense as it does optimal line breaking for normal
paragraphs? In my opinion, the only solution for this strong form is to alter W ' s line breaking
algorithm, but this is strictly opposite to the spirit of the community.

Therefore I give a somewhat weaker formulation of the first line problem:
Can find an acceptable breakpoint for the first line af a special paragraph and then do
optimal linebreaking as usual for the rest of it? The question is now: How can you find an
acceptable breakpoint for the first line of the paragraph?

My first idea was to impose this job on w ' s line breaking algorithm:
First let T&Y set the whole paragraph in the special font for the first line and store it in a box
register. Then take the first line of this box as the first line of the paragrah, "unbox" the rest
of the box and set it again, but in the normal font.

This nice idea didn't work, and the reason is that TE;\C's digestive process
is a one-way street. There is no problem to set the whole paragraph in the special first line
font and store it in a box register, and you can easily detract the first line from this box by
a \vsplit-command. It's somewhat harder to "unbox" the rest of the box by the help of
the commands \ vsp l i t , \ lastbox, and \unhbox. But even suppose you can manage this, all
what you get is a list of character boxes, and there is no way to change this back into a token
list in order to set the stuff a second time, but in another font.

So I had to help 'I)-$ in finding the breakpoint for the first line. My idea
was to put one word after another into an \hbox, using the special font for the first line,
until - after some stretching or shrinking - the width of this box matches the \hsize. My
intention was to regulate the amount of the stretching or shrinking by testing the "badness"
of the according line. But unfortunately the badness of a line is only reported in your log-file.
You cannot use it as an internal parameter inside of w.

Therefore, I had to calculate explicitly whether the box fits into a line by
itself. For this purpose, I had to calculate the total stretchablility and shrinkability of the box.
By the help of \sf ac to r and f ontdimen3 and 4 this can be done.

TUGboat, Volume 8 (1987), No. 2

But I decided to make things easier. To me it seems not necessary to do
tricky spacing in a heading-like special first line. Therefore I set the first line in a \f renchspac-
ing style. Then I only had to count the spaces in the box and multiply \fontdimen3 and 4
of the first line font by this factor to obtain the stretchability and shrinkability of this box.

Now the algorithm which finds an appropriate breakpoint for the first line
works as follows. One word after the other is appended to a box until a feasible breakpoint
is found. When a word has been appended, a test is made whether the box fills a line: If
the width of the box is smaller than the \hs ize, we have two cases: In the first case the box
cannot be stretched to the \hsize. In this case the box is too short, i.e. another word must
be appended and the process is iterated. In the second case, when the box can be stretched
to the \hsize, this box will be the first line of the paragraph. In this case the glue set ratio
is less or equal 1, i.e. the badness of the line is less or equal 100.

If, on the other hand, the width of the box has become greater than the
\hsize, there are two cases again: In the first case, the box can shrink to the \hsize, and
again we have a badness less or equal 100 if we take this box as the first line of the paragraph.
In the second case the box is too large to shrink to the \hsize. In this case, the last word of
the box is removed, and the rest of the box is my first line. Then the badness of the line is
greater than 100, and it might be an underfull one.

The algorithm prefers to stretch the first line instead of shrinking it, which
fits well to the heading-like character of the application. It seems better to me to stretch the
first line than to hyphenate the last word of it (hyphenation could be included, but the user
had to indicate possible hyphenation points in the input). Furthermore. there is no problem
to multiply the stretchability and shrinkability of the first line by a factor to allow for a higher
badness.

Some features of Tj-jX don't work in the context of the macros described
here. One of these is migrating material from the first line (\vadjust , e.g.). Special caution
is necessary with macros. Spaces inside of macros and their arguments must be protected by
grouping symbols. Some macros; for example the \verbatim-macro from the W b o o k , don't
work at all near the beginning of a special paragraph, because the token converting process is
disturbed. Finally, my macros don't work if the paragraph doesn't take at least two lines of
text.

The "user interface" of the macros is very simple. You can use the commands
\f i r s t l i n e f ontI<f ilename>) to define the font for the first line of a special paragraph (de-
fault: \ f i r s t l i n e f ont{cmcsc10)) and \f irst l ineindent{<dimen>) to define its indentation
(default: \f i rst l ineindent{Opt)) . With \ i f f i r s t l i n e i n n e r you can test whether you are
in the first line of a special paragraph or not. and \f i r s t l i n e s p e c i a l in vertical mode starts
a special paragraph. \ f i r s t l i nespec ia l works also inside an \everypar-command. but be
shure to remove the indentation box first.

I f you are a mathematician (like me), these macros can add a playful or narrative
element to your severe subject. But if you are a philologist, why don't you improve the

aesthetic effect by combining fancy first line printing with fancy printing of initials?

TUGboat, Volume 8 (1987), No. 2

O O D O D LLLLL 0 e 0 0 0 LLLLL
P l O O O L k M FIRST LINE SPECIAL HANDLING WITH TeX O O O O P LLLLL
0 0 ~ 0 0 LLLLL o o o e o LLLLL
0 0 0 0 a 0 ~ ~ 0 0 0 ~ 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 ~ 0 0 0 LL

% These macros can set the first line of a paragraph
% in a special font. You can determine this font by the
% command \firstlinefont{<filename>).
% The default value is \firstlinefont{cmcsc10}.
% You can define the indentation of such a paragraph by
% the command \firstlineindent{<dimen>). The default value is
% \firstlineindent{Opt}.
% There is a if-register \iffirstlineinner, which is true if and
% only if you are in the first line of a special paragraph.
% Then start the paragraph with the command \firstlinespecial
% in vertical mode.

\catcode'\Q=ll % 'a' is used as a letter to hide command names
% from the user.

0 0 0 LLL Allocate some internal registers:
o a t The box \oldb@x contains the material which has been
0 0 0 collected for the first line so far.
o e o \newbOx tries to append another
0 0 0 LLL word to \oldb@x.
0 1 1 hkk The counter \spacec@unt counts the number of interword spaces
%%% in \oldb@x.
o e o LLL The dimen-register \firstlineind@nt stores the indentation of
0 0 0 / 0 / 0 / 0 the special paragraphs.
0 0 I The if-register \iffirstward stores whether the first word
0 0 0 LLL of the special line has been read already or not.
0 0 0 The dimen-registers \spacestretch and \sp@ceshrink store
0 0 0 the strechability and the shrinkability of the normal interword
0 0 0 LLL space in the font \firstlinef@nt.
0 0 0 LLL The dimen-register \boxw@dth stores the width of the box \newb@x.
0 0 0 The if-register \iffirstlineinner is true iff you are in the
0 0 0 / , / , / , first line of a special paragraph.

TUGboat, Volume 8 (1987), No. 2

0 0 0 /dL \firstlinefont determines which font has to be used
8 0 e LLL for the first line of a paragraph.
0 0 0 This font gets the internal name \firstlinefQnt.
8 P 0 A/ , / , Default is \firstlinefontCcmcsclO3.
0 0 s Lh/, \firstlineindent defines the indentation of a paragraph which
0 0 0 /,LA has been started with \firstlinespecial.
0 0 0 This dimension is stored in the register \firstlineindQnt.
* 0 0 h k Default is \firstlineindent{Opt).

1 0 0 LhL \firstlinespecial initializes some registers, stores the current
0 0 0 font, switches to \firstlinefQnt,
%%% and starts the command \n@xt which does the real work.

0 0 0 A/, / , The command \append copies \oldbQx to \newbQx and appends
8 0 0 ALL its argument to \newbQx, preceeded by a space, depending on
0 0 0 LLL \iff irstward.

8 1 0 The command \n@@xt is the heart of the whole. At the
8 0 0 LLL beginning of a \firstlinespecial-command, \n@xt has the
8 0 0 /./Oh Same meaning as \nQ@xt. When \nQQxt comes to work, \oldbQx
0 0 0 LLL contains the material which has been collected so far for the
1 1 0 / . / ,A first line of the paragraph, i.e.-\oldbQx is an initial part of
0 0 1 ALL the first line.
8 0 0 \nQ@xt reads the next word of the paragraph and appends it to
8 0 . A/, / , \newb@x, which is a copy of \oldb@x. As its last command, \nQ@xt
0 0 0 I!LL calls in \n@xt again, which iterates the process.

TUGboat, Volume 8 (1987), No. 2

0 0 0 /,/,A But how to stop the process? After \nQQxt has
0 1 0 / , / ,A appended a word to \newb@x, it makes a test: If the
%%% width of \newbQx is still less than \hsize we have two cases:
0 0 0 /,I!/, In the first one the line is still too short and the process must
0 0 P /,/,I! be iterated. In the second one, the interword glue of the box
0 0 0 A/ , / , can be stretched to match \hsize. In this case we can take
0 0 0 A/,/, \newbox as the first line of the paragraph, and \nQxt must be
P O 0 I!/,/, redefined to stop the process.
0 0 0 / , / ,A On the other hand, if the width of \newbQx has become greater or
0 0 0
/,/,/, equal to \hsize, we can try to shrink \newbQx to \hsize.
0 0 0 / ,Ah If \newbQx doesn't shrink to
0 0 0 / ,A / , \hsize, we have to remove the last word from \newbQx. In fact, in
0 0 0 /,A/, this case we return to \oldbQx and take it as the first line.
P O 0
/,/,/, Here you may get a message about an underfull \hbox. Then
0 0 0 /,/,/, the second line starts with the last word and \nQxt is
1 0 0 /,/,I, redefined as before.

\def\nQQxt#l 1% Note that the argument is delimited by a blank!
\app@ndC#l)%
\boxw@dth\wd\newbQx
\ifdim\boxwQdth < \hsize

\advance\boxwQdth by \spacecQunt\spQcestretch
\ifdim\boxw@dth < \hsize

% \message11)% not yet full enough
\else
\message12 1% stretchable to \hsize
\noindent\line1\unhbox\newb@x)\penalty -10000
\def\nQxt1\firstlineinnerfalse\let\nQxt\nQQxt3%
\oldf @nt
\f i

\else
\advance\boxwQdth by -\spacec@unt\spQceshrink
\ifdim\boxwQdth > \hsize

\messageC3 1% last word in next line, shrinkable
\noindent\line{\unhbox\oldbQx)\penalty -10000
\def\nQxtC\firstlineinnerfalse\let\nQxt\nQQxt)~
\oldf Qnt
#I % keep this blank!
\else
\message14 1% shrinkable to hsize
\noindent\line~\unhbox\newbQx3\penalty -10000
\def\nQxt~\firstlineinnerfalse\let\nQxt\nQQxt)%
\oldf Qnt
\f i

\f i
\setbox\oldbQx\box\newbQx
\n@xt)

\let \nQxt\nQQxt
\catcode ' \@=I2

198 TUGboat, Volume 8 (1987). No. 2

Contents of Style Collection
as of 17th June 1987

Ken Yap
University of Rochester

The LaTeX style collection now contains the files
listed below. They are available for anonymous ftp
from Rochester. Arpa in directory public/latex-
style. You should retrieve the file OOindex first
to obtain a brief description of current directory
contents.

File

OOdirectory
OOindex
OOreadme
a4. sty
a4wide.sty

*aaai-instructions
* aaai-named . bst

* aaai .sty

acm. bst
agugrl.sty

agujgr. sty

amssymbols.sty
biihead.sty

* ctex .readme
* ctex .sharl

. . .
ctex. shar9
cyrillic.sty

* dayofweek. tex

docsty. c
docsty. readme
doublespace.sty
drafthead. sty
dvidoc.shar1
dvidx.shar2

* dvidoc . sty

Description

Set page size to A4
Adjusts width too to suit A4
tex Instructions to authors
B i b m style to accompany

aaai . sty
Style file for AAAI

conference 1987
ACM B i b m style
AGC Geophysical Research

Letters style
AGU .Journal of Geophysical

Research style
Load AMS symbol fonts
Underlined heading
Notes on ctex
Sources to Pat Monardo's

C o m m o n - m in C
9 shar files

Load cyrillic font
Macros to compute day of

week and phase of moon
Examples of how to use TEX

arithmetic capabilities
DECUS Proceedings style
Paper that describes the

above
Program to convert .doc to

.sty by stripping comments
Double spacing in text
Prints DRAFT in heading
Sh archive of DVIDOC, DVI

to character device filter
for Unix BSD systems

Style file to substitute all
fonts with doc font

epic. sharl
epic.shar2
format. sty

f ullpage .doc
fullpage.sty
geophysics.sty
ieeetr .bst

* ist2l. sty

* latex. bug

Sh archive of extended
picture environment

Print FP numbers in fixed
format

Get more out of a page

Geophysics journal style
IEEE Transactions B i b w

style
IST21 document style option

for cover page
latest listing of bugs found in

VTEF
Prints nice diagram

1ayout.tex showing page parameters
1custom.tex Useful macros and definitions

for W m
If onts-ams .readme Use AMS symbols in IPw
If onts-ams .tex
1graph.shar Sh archive of data to graph

command filter in Pascal
* local. suppl Supplement to local guide:

describes a4, tgrind.
sf wmac. trademark,
lcustom. and vdm

natsci .bst Natural sciences generic
B i b m style

newalpha. bst Modified alphabetic B i b m
style

nopagenumbers .doc Remove page numbers
nopagenumbers.sty
remark.sty like newtheorem but no \it

* sc2l. sty ISO/TC97/SC21 document
style

sc21-wgl. sty option for cover page
* sfwrnac .sty Useful macros for Unix

document at ion
siam.bib SIAM B ibmy style
siam.bst
siam.doc SIAM style
siam. sty
siam.tex
siaml0. doc
siaml0. sty
siamll .sty
siaml2. sty
slem. doc Change \sl to \em
slem. sty
spacecit es .doc Modified to give spacing
spacecites .sty between citations
suthesis.doc Stanford U thesis style
suthesis.sty
texindex.doc Style file and processor
texindex . pas for index entries.
texindex.sty Works under VMS.

TUGboat, Volume 8 (1987), No. 2

texnames .doc
texnames. sty

* tgrind.sty

threepart. sty
* trademark. sty

uct 10. doc
uctll .doc
uctl2.doc
ucthesis.doc
ucthesis.readme
vdm. doc
vdm.sty
vdm. tex
ws87. p
wsltex. c

ws1tex.p
* xxxcustom. tex

* xxxslides .sty

Define a couple more
?IEX names

Tgrind macros for IPW
instead of T)jX

Three part page headers
Definitions of common

trademarks
U of California thesis style

Vienna Development Met hod
I4w style

Wordstar 8 bit filter
Wordstar to I4W filter,

C version
Wordstar to I4Tm filter
Supplementary macros for

xxx-tex. for some xxx
Supplementary macros

for S L ~ , includes
slides.sty

New entries since the last TUGboat listing are
marked with an *. More submissions are very
welcome. Send them to

Ken
LaTeX-Style@Rochester.Arpa
LaTeX-StyleQcs.rochester.edu
..!rochester!latex-style

Editor's note: People sending future submissions
should note that some gateways to Bitnet strip off
everything beyond 80 columns, and perhaps corrupt
some other data as well (ASCII tabs may or may
not remain intact). Please structure your file so
that it will survive.

For Internet users: how to ftp

An example session is shown below. Disclaimer: ftp
syntax varies from host to host. Your syntax may
be different. The syntax presented here is that of
Unix ftp. Comments in parentheses.

Non-Internet users: how to retrieve by mail

An archive server for G W files has been in-
stalled. Send a piece of mail to LaTeX-Style
(Qrochester . arpa, @cs .rochester . edu, via uucp
or your favourite gateway) in the following format.

- Subject line should contain the phrase "@file
request".

- The body of the mail should start with a line
containing only an Q (at) sign.

Important! The first line following the "at" line
should be a mail address from Rochester to you.
(Undeliverable mail will be silently dropped on the
floor.)

- Follow your return address by the names of the
files you want, either one to each line. or many
to each line, separated by spaces.

- End with a line containing only an Q sign.
- Case is not significant.

For example, if you are user at site. bitnet, this
is what you should send:

To: latex-style@rochester.arpa
Subject: Qfile request

Q
user%site.bitnet@wiscvm.wisc.edu
OOreadme
OOindex
Q

A word to the wise: it is best to fully qualify
your mail address. Our mailer knows about some
gateways but not all. Examples:

user%site.bitnet@wiscvm.wisc.edu
user%site.csnetQrelay.cs.net

Sample FTP session for Internet users

% ftp cayuga.cs.rochester.edu
. . .

user: anonymous
password: <any non-null string>
ftp> cd public/latex-style
ftp> 1s
. . .

ftp> get OOindex
. . .

ftp> quit

(a.k.a. rochester.arpa, a.k.a. 192.5.53.209)
(general blurb)

(where the files are)
(to see what is there)
(lots of output)

(more blurb)

200 TUGboat, Volume 8 (1987), No. 2

Do not include any messages in the mail. I t will not
be seen by human eyes. Be patient as the server is
actually a batch program run once a day. Files will
be sent in batches, each not exceeding lookbytes in
size.

IBM PC and clone users: how to get a
distribution

David Hopper of Toronto, Canada, is offering copies
of the style collection on diskettes. This is not a
commercial enterprise. David is doing this in his
own time as a favour to the '?$X community. The
entire set of style files, not including the C-'l&X
files, as of June lst , fits on one 1.2 MB diskette or
three 360KB diskettes. No subsetting, please. Send

Editor's note: Traffic on the network servers and
gateways has been very high recently, and in order
to provide improved service, there have been some
volunteers to maintain local "slave" repositories
of the style collection. There is usually a
geographic or network restriction requested, since
the idea is to cut down traffic, not add to it. The
following areas will be covered by the volunteers
listed.

Bitnet users: Texas A&M maintains a list-
and file-server which is already handling (with
TEX-L) much of the Bitnet distribution of
m h a x . An inquiry via listserv will retrieve a
list of all m - r e l a t e d files:
tell listserv at tamvml get tex filelist -

David United Kingdom, for users of JANET or uucp:
1. Formatted diskettes, Stephen Page. sdpageQuk. ac . ox. prg or
2. Indication of the format required, . . . !ukc!ox-prg!sdpage
3. A self-addressed mailer, and
4. A $5.00 donation per set of files, to cover European users of BITnet: Chr isto~h Gatzka,

postage and equipment wear & tear. (If you zrgc002Qdtuzdv5a.Bitnet
live outside North America, airmail delivery Additional volunteers should contact Ken.
will probably require more postage. You should
probably contact David for details.)

David's address:
David W. Hopper
446 Main Street
Toronto, Ontario
Canada M4C 4Y2
Thanks, David.

TUGboat, Volume 8 (1987), No. 2

Automated Index Generation for

Richard L. Aurbach
Monsanto Company
St. Louis, Missouri

Abstract

I 4 w includes partial support for the generation of an Index in a document. It contains
commands which enable index terms and the pages on which they appear to be captured
in an auxiliary file. However, special processing (external to IPW itself) is required to
translate this information into a pleasingly-formatted index.

The I d x w program provides this additional processing. and generates a file of I P W
source which may be included in a document to produce the desired index.

This paper describes how I d x w provides a full range of services for index generation and
discusses issues related to the development of programs which provide auxiliary processing
for I P W documents.

The I d x w Project

The I-FI'EX text formatting program is an extremely versatile tool for the generation of high-quality
documents. However, its handling of an Index is incomplete. I4QjX provides the \index command
which (in conjunction with the \makeindex command) generates an auxiliary file containing index
terms and references to the pages on which the terms appear. However, it is left to the writer to
develop this information into an appropriately formatted Index.

As part of a project to develop new document styles, I became interested in the automation of this
process of Index generation and developed the I d x w program1 to complement the capabilities of
I P w . The I d x w project had several goals:

0 to provide a fully-automated mechanism for Index generation which produces an Index with
the same level of quality as the I4W document in which it appears.

0 to help make indexing sufficiently easy to encourage authors to build effective and helpful
indices into their documents.

0 to provide a full set of indexing features, so that even complex indices (such as the Index of
The m b o o k 2) could be generated.

'The 1dxT~X program has been submitted to both the Users Group and to the DECUS Library for distribution
to interested parties. The distribution includes a Users Guide, which describes how to use the program, an executable
VAX/VMS image, and complete sources in the C language. Since the program uses VAX/VMS services, it will only
run in that environment. However, I believe that it could be ported t o other environments with modest effort.

2Knuth, Donald E., The Q X h k , Addison-Wesley and the American Mathematical Society, 1984.

TUGboat, Volume 8 (1987), No. 2

to provide support for all of the indexing capabilities inherent in I4W. such as three-level
indexing, without requiring any additional enhancements to I4W itself.

to include support for the generation of a Master Index fcr a set of documents.

The Indexing Problem

Generating an index in the I4w context provides a number of interesting challenges.

Index Levels IPW supports a three-level index (items. subitems, and subsubitems).
However. the \index command accepts only one argument. It is necessary
to adopt a convention within the text of its argument to specify the level
of the term being indexed. In I d x w . the > symbol is used to separate
the item from the subitem and the subitem from the subsubitem.

Spelling

Page Ranges

Obviously, the index must appear in alphabetical order. However, it must
be possible to include IP'I)@ commands within an index term. to optimize
the visual appearance of the Index. That is. an author should be able to
specify "\index{(\em Special\/) Commands)", for example, and have
the index item appear as expected. This means that I d x w must under-
stand I4W syntax, so that the term can be properly placed in alphabetic
order.

If an item is indexed on a series of consecutive pages. the index entry
should display the range of pages, rather than a list of consecutive num-
bers. That is, an item which is indexed on pages 11. 12. and 13, for
example, should appear in the index with a page reference of 11-13.

Cross References It is not uncommon to see an item in an index which refers to one or more
other items in the index. To support this. syntactic conventions in the
\index command and special processing are necessary.

Master Index To generate a Master Index. the program must be able to process more
than one auxiliary file, and keep track of which volume of the volume set
is associated with each item. The output of the program must include
labels which identify the volume associated with each index item.

The following sections provide insights into how each of these issues was resolved in Idx'I)@.

Indexing Conventions

The IPW \index command takes a single argument. In an automatic index generation environ-
ment, that argument represents the only mechanism by which the author can communicate informa-

TUGboat, Volume 8 (1987), No. 2 203

tion to Idxm about how the term should be handled. To allow for the multitude of index features
supported, it was necessary to impose a set of conventions on the use of this command.

Two principles were important to the design of these conventions:

1. The conventions should be (as much as possible) mnemonic, so that they are easy to remember.

2. The conventions should be easily recognizable as such. That is, the program must be able
to distinguish unambiguously between characters which are used as part of a convention and
characters which are part of the term being indexed.

Conventions were chosen which are not valid IPm syntax - they would generate I4w errors if
they occurred naturally. Since I d x w is sensitive to IPm syntax, this assures that there will be
no cases in which Idxw confuses a part of its conventions for legitimate text entry.

The following conventions are used in Idxw.

Level Separators The > character is used to separate items from subitems and subitems
from sub sub item^.^ For example,

specifies an index entry with an item of "Aaa". a subitem of "Bbb", and
a subsubitem of "Ccc" . Of course,

are also acceptable.

Page Reference
Highlights

The first character of an index entry may be used to specify special for-
matting for its page reference. The following table lists the capabilities
which are available.

Format I Meaning I Example
\index{^Foo} / boldface 1 Foo, 11
\index{-Foo) / underline / Foo, 11
\index{-Foo} I i t a h I Foo, 11
\index(#Foo} / "and followinn" 1 Foo, llff

Cross References Cross references are specified using the & character. For example,

will generate a cross reference of the form

"Aaa, see Bbb"

3Note that the RUNOFF text formatting system uses the same convention. Since we expected to convert a number
of RUNOFF documents, this choice was obvious.

TUGboat, Volume 8 (1987), No. 2

Master Index

Cross reference processing allows for a combination of real page references
and cross references, so that a combination of entries such as

will generate

"Aaa, 11: see also Bbb"

Master index processing uses a new type of auxiliary file to provide the
information I d x w needs to understand which document indices to use
when building the Master Index and what labels to use when displaying
information from different volumes. This will be discussed in more detail
below.

Data Structures

The Index of a large document or the Master Index of a large document set may be quite extensive.
To avoid limitations on the number of items which I d x w could handle. all internal data structures
are allocated from dynamic memory. Therefore, the size of an Index is limited only by the user's
virtual page quota.

Since the three-level structure of the index implies a tree-like organization, the basic data structures
selected for internal storage of index information in I d x w were linked lists. While linked lists
are not optimally efficient in this application, their simplicity compensates for the minor loss of
performance.4

The basic data structure for each index item, subitem, or subsubitem is called a XODE. Using the
notation of the C language, a NODE can be defined as

typedef struct node
C
struct node *link;
struct dsc$descriptor item;
struct dsc$descriptor spell;
struct node *subhead;
struct pgnode *pghead ;
struct pgnode *cfhead;
} NODE;

In this structure, l ink is the forward linkage pointer to the next node in the list; i t e m is a VAX/VMS
dynamic string descriptor5 which describes the text string associated with the index item; and spell
is another string descriptor for the spell-string. The spell-string is used when alphabetizing index

4Since I d x w is not run often, its cost is an inconsequential fraction of the total cost of generating a document.
'VAX/VMS dynamic strings were used (rather than the ASCIZ strings which are more natural in a C-language

implementation) because the VMS services which work with them handle all details of dynamic memory allocation
and deallocation.

TUGboat, Volume 8 (1987), No. 2 205

entries and helps resolve the spelling problems discussed previously. It is discussed in more detail
below.

The subhead is the listhead for a linked list of NODEs for any subitems associated with this index
item. The recursive nature of this data structure made handling the three levels of indexing simple.

The pghead and cfhead variables are listheads for linked lists of PGXODE structures. Each PG-
NODE structure includes information about a single reference to the particular index entry. The list
chained from pghead contains numeric page references, while the list chained from cfhead contains
cross references.

Using C language notation, a PGNODE has the following structure

typedef struct pgnode

struct pgnode *link;
struct dsc$descriptor *vol;
struct dsc$descriptor page-dsc;
char highlight;
) PGNODE;

Once again, l ink is the forward linkage pointer for the linked list. The vol variable is used in Master
Index processing to point to the dynamic string descriptor for the label to be associated with the
volume from which the reference came. The page-dsc describes the page reference string, while
highlight is a flag used to indicate what type of page reference highlighting is associated with this
page reference.

One virtue of this type of internal data organization is that each distinct item, subitem. or subsub-
item uses only a single NODE structure. If the entry has a number of page references, then one
PGNODE structure (which is fairly small) is used for each. If more than one index reference occurs
on the same page. only a single PGNODE is allocated. This approach conserves dynamic memory.

NODEs are linked together in alphabetical order (by spell-str ing). PGNODEs for numeric page
references are linked together in the order they appear in the auxiliary file produced by I P W ,
which automatically puts them into numerical order. PGNODEs for cross references are linked
together alphabetically. This means that the internal representation of the index is built in sorted
order, simplifying back-end processing.

Spell Strings and Alphabetization

As discussed previously, putting index entries into alphabetical order is a complex task, because
the entry may contain IP'Q$ commands which are meant to enhance the visual appearance of the
index, but which must not be included when the term is placed in alphabetical order. In I d x W ,
the concept of a spell-string was introduced to handle this problem.

The basic idea is that each NODE of the internal data structure contains descriptors for two copies
of the index entry - the i t e m and the spell-string.

TUGboat, Volume 8 (1987), No. 2

0 The item string contains the original form of the index entry. including all I P W commands.
It is used to generate the formatted output and is not used when placing the entry in proper
alphabetical order.

The spell-string originally contains a copy of the index entry. However, during spelling pro-
cessing, it is modified to remove everything which should not be included when the entry is
placed in alphabetical order. It is not used for any other purpose.

Therefore, spelling processing consists of a number of steps which recognize various forms of IP'I'EX
syntax and remove them from the spell-string. After this has been done, the spell-string is in a form
suitable for alphabetizing the index entry. while the item string remains untouched.

In some special documents, it may be desirable to place mX or I P W commands themselves in
the index.6 To accommodate this possibility, spelling processing skips any text contained within a
\verb or \verb* construct. This means, for example, that

\indexC\em Command)

will be treated as if it were spelled as "Command", but

\index(\verb+\em+ Command)

will be treated as if it were spelled as "\em Command"

The spelling processing performs the following operations (in order)

0 Accents are processed. All of the special characters associated with the accents are removed.
For example. in the spell-string, se\-(n)or is translated to senor.

Emphasis commands are removed from the spell-string. Examples of emphasis commands are
\rm, \bf , \ la rge, etc.

0 Grouping and mode commands are removed from the spell-string. That is. C,), and $ are re-
moved. However, \(, \), and \$ are retained. since they do not represent grouping commands.

Backslashes are removed from the spell-string. The logic which skips processing in \verb and
\verb* constructs prevents the "\" in "\verb3' from being removed.

\verb and \verb* constructs are cleaned up. For example, "\verb+foo+" is translated to
'<f 00,: .

The spell-string is converted to upper case, all unnecessary whitespace is removed, and a few
minor corrections are made to handle special cases.

For example, the spell-strings of index items which begin with non-alphanumeric characters
are adjusted so that all such terms will appear in the index before any items which begin with
any alphanumeric character.

60bvious examples of this axe the indexes of documents about text processing.

TUGboat, Volume 8 (1987), No. 2 207

Also, special logic is used to assure that any index term which begins with a \verb or a \verb*
is placed in the proper place in the index. This includes adjustments to the spell-string which
prevent references for items such as "input" and '.\verb+\input+" from being confused.

This approach has proven to be effective in developing an index which uses I4W commands liberally,
but retains proper alphabetical order. There are, however, aspects of spelling processing which can
be debated.

In The W b o o k . native T 'X commands are displayed with a leading asterisk, but are alpha-
betized as if the asterisk were not present. I d x w does not currently handle this case.

0 I d x w is case blind. That is. \index{Large) and \index{large) are considered two in-
stances of the same item.' The case displayed in the index matches that of the first item seen.
This is usually desirable - it prevents some typographical errors from generating unwanted
index entries. However. there may be some cases in which case sensitivity would be preferred.

Page Ranges

Another issue which appears simple, but has a number of interesting complications is the handling of
page ranges. Indeed, the simplest case (converting references on pages 11. 12, and 13, for example.
to a reference to "11-13") does not present any significant difficulties. However. the general case is
not that simple.

Since we support page reference highlighting, it is necessary that the system recognize that
11. 12, and 13 constitute a page range, but that 11, 12, and 13 must be handled differently.

A reference such as "20fP' represents a different type of page range. If a term is also indexed
on page 19, then the index entry should read "19fF' rather than "19. 20fP'.

Some document styles use chapter oriented (or other complex) page numbers. The algorithm
which determines whether pages are adjacent must be able to handle page numbers such as
"5-2" or "Glossary-4".

In a Master Index context, the algorithm must also be able to determine that a reference to
page 11 from Volume I is not adjacent to a reference to page 12 in Volume 11.

It turns out that solving these complications is unreasonably difficult during the initial building of
the internal data structures. Therefore, a special processing step is used to handle page ranges.

For each linked list of page references, an array of special data structures8 is dynamically allocated
and the information from the linked list is moved to the array. Each page reference text string is
parsed into a volume string. a chapter string (if any), a page number, and a highlight flag. Two pages
are adjacent if they have the same volume. chapter. and highlight. and consecutive page numbers.

71n fact, any items which have the same spell-string, according to the syntax rules above, will be considered instances
of the same item. The displayed text will be that of the first index reference seen.

8 ~ y thanks to my colleague: Donald R. Gurnmow, for suggestions concerning this internal array.

208 TUGboat, Volume 8 (1987)) No. 2

Page references which are parts of ranges are flagged as the beginning, middle, or end of the range.
Since the "and following" notation is handled internally as a highlight, it is relatively easy to handle
special cases involving this type of page reference within a page range.

Once this analysis is complete and one or more page ranges is discovered in the list of page references,
the initial list is deleted and a new page reference list is built based on the information in the array.
Since this approach concentrates all of the page range logic in one place, the routines which format
the output require no special logic. Also, given the amount of information stored in the array, it is
trivial to provide special touches, such as formatting a range of simple page numbers as "11--13",
while handling a range of complex page numbers as "2--6 t o 2--10".

Other Features

A number of other features of the program deserve some mention

Cross References Handling cross references turned out to be surprisingly easy, once I real-
ized that they should be segregated from page number references in their
own linked list. This allowed multiple cross references to be listed in al-
phabetical order, and eliminated problems associated with mixtures of
page number references and cross references for the same term.

At present, I d x m does not check to verify that an index entry actually
exists for each cross reference, but this desirable feature could be added
without great difficulty.

Master Index

Output Format

Some special processing is required to generate a Master Index.

0 There must be a mechanism to inform Idx'l$X of which auxiliary
files to process to build the Master Index (and in which order to
process them). This problem was solved by creating a new auxiliary
File (an . mdx file) which lists the . idx files to be processed. A special
qualifier to the IdxTeX command is used to specify that Master Index
processing is to be performed.

0 For the Master Index to be useful, it is necessary that the formatted
index include labels which identify the volumes from which the page
references come. The .mdx file is the obvious place for these labels
to be defined. As noted above, a pointer to these label strings is
included as part of the PGNODE structure, so that the labels may
be easily included in the output.

Since the internal data structures contain all of the information needed
to generate the Index, creation of the output file is a simple matter. All
that is necessary is to walk the linked lists, generating appropriate I 4 T)
code as we go.

The most interesting problem which occurs during output generation con-
cerns the headings which precede the index entries which begin with a new
letter of the alphabet. In the first version of the program, the heading

TUGboat, Volume 8 (1987), No. 2 209

for a new letter could appear at the bottom of one column, with the first
entry for that letter appearing at the top of the next column. This was
clearly undesirable.

To solve this problem. I defined a new I P W indexing command

\makeat le t ter
\def \indexhead#1#2#3{\par\if @nobreak \everypar{)

\else\addpenalty{\@secpenalty)\addvspace{#l~\fi
\begingroup #3\par \endgroup \@xsect{#2))

\makeat o ther

I d x w includes this code at the beginning of every output file it gener-
ates.

This macro was derived from IPl&X1s section processing logic, where the
same type of orphan problem exists. The first parameter is the amount of
space to leave before the heading. The second parameter is the amount
of space to leave after the heading. The third parameter is the text used
to generate the heading. This macro uses \nobreak. \everypar. and
\clubpenalty to produce the desired effect.

Summary

The I d x w program has been used to generate indexes in a substantial number of documents at
Monsanto. We have found that its indexes are effective and attractive - well in keeping with the
general quality of the documents in which they appear. It has no difficulty handling large indexes
- in fact, I estimate that a document containing 25.000 \index commands should be well within
the virtual page quotas normally found on VAX/VMS systems optimized for scientific computing
environments.

While I d x w has basically met its design goals. a simple change in the IP7'E;\i document styles
(which was beyond the scope of this project) would allow it to do even more. At the beginning
of the start of the Index to The W b o o k . for example, there are several paragraphs of one-column
text which describe how to use the Index. The current definition of \begin(theindex) precludes
this type of usage. I believe that a simple change to the definition of this environment (taking
advantage of the optional argument of the \twocolumn command) would contribute to even better,
more effec tive indexes.

Of course, I d x w fails to deal with the most difficult part of building an Index that communicates
effectively - it does not insert the \ index commands in the document. I leave that part of the
problem to the A1 experts.

210 TUGboat, Volume 8 (1987), No. 2

Problems

Problem for a Saturday Morning - A Solution

Donald E. Knuth
Stanford University

% Problem for a Saturday Morning --- A Solution

\newdimen\z \z=Opt
\font\big=cmbxlO scaled \magstep5
\newbox\query \setbox\query=\hbox{\raise6pt\hboxC\big\thinspace?\thinspace~~
\newdimen\leftedge \newdimen\rightedge
\leftedge=\hsize \advance\leftedge by-\wd\query \divide\leftedge by 2
\rightedge=\leftedge \advance\rightedge by\wd\query
\parshape 10 \z\hsize \z\hsize \z\hsize

\z\leftedge \rightedge\leftedge \z\leftedge \rightedge\leftedge
\z\leftedge \rightedge\leftedge \z\hsize

\newbox\partialpage \newcount\n
\newdimen\savedvsize \savedvsize=\vsize
\newtoks\savedoutput \savedoutput=\output
\newdimen\savedprevdepth \savedprevdepth=\prevdepth
\output={\global\setbox\partialpage=\vbox{\~vbox255\unskip}}\vfill\bre&
\topskip=\ht\strutbox \vsize=\topskip
\n=245 % we will store nine lines of text in boxes 246--254
\output={\global\advance\n by 1

\ifnm\n<255 \global\setbox\n=\box255
\else \unvbox\partialpage \prevdepth=\savedprevdepth \vskip\parskip

\box246 \box247 \box248
\box249 \vskip-\baselineskip \box250
\box251 \vskip-\baselineskip \box252
\box253 \vskip-\baselineskip \box254
\vskip-\baselineskip \rnoveright\leftedge\hbox{\smashC\box\query>}
\box255 \global\vsize=\maxdimen \fi)

\noindent This puzzle was suggested to me by Sape Mullender, of the Centre for
Mathematics and Computer Science in Amsterdam. He told me his belief that
"the general design of \TeX\ is better than that of {\it troff}, but the
real guru can make {\it troff\/) do things that you could never do in \TeX."
As an example, he showed me a page on which {\it troff\/} had typeset a
picture in the middle of a paragraph, with the text going around the picture.
"It's not pretty, but it can be done, and that's what counts," he said.
Well, I have to admit that I didn't think of a simple solution until the
next Saturday morning; and I didn't finish debugging it until that
Saturday afternoon. Can you guess how I typeset the paragraph you're
now reading? (The answer will appear in the next issue. It doesn't
demonstrate the superiority of \TeX\ to {\it troff}, but it does have
some interesting and instructive features.)

\savedprevdepth=\prevdepth
\output~\global\setbox\partialpage=\vbox{\unvbox255\unskip>>\vfill\bre~
\vsize=\savedvsize \output=\savedoutput
\unvbox\partialpage \prevdepth=\savedprevdepth
% Improvements to this solution are welcome!

TUGboat, Volume 8 (1987), No. 2

'l&X Does Windows -The Conclusion

Alan Hoenig

In the last issue, readers were invited to think about creating T@ macros to 'Ldo windows"-have TEX
leave rectangular cutouts horizontally centered within paragraphs and in which you can insert artwork, or
whatever. The solution I discuss in this issue differs significantly from the one I had in mind at the time I
threw down the gauntlet last time. The window macros have become leaner and more robust. (I am grateful
to my colleague Mitch Pfeffer who supplied me with one crucial idea, and to Barbara Beeton for a valuable
insight. Barbara also helped keep me honest.) I present the macros below, as well as two extensions. which
allow TEX to set rectangular cutouts which aren't horizontally centered. and which force Q X to set cutouts
of arbitrary shape. I do make several limiting assumptions: the cutout fits entirely within a single paragraph,
and the \baselineskip remains constant within that paragraph. I believe you can modify these macros
with little additional work, however. There is one known bug, which I was unable to fix in time to meet the
submission date. When the ratio of baselineskip to design font size reaches decreases to a certain critical
value, the cutout is not properly formed. You'll be okay if you keep the baselineskip at least 2 points greater
than the design size.

Using the Macros
Here's how to use the macros. First, some anatomy. The several lines of material above the window

we'll call the lintel. The material below it is the sill. and the text to its right and left form its sides. (Of
course. some of these regions may be empty depending on your placement of the window.)

We'll talk about the macro that generates a horizontally-centered window first. Before you invoke the
window-making macro. place the code which reserves the registers that the macros use. These definitions
form figure 1.

\newcount\l \newcount\d \newdimen\lftside \newdimen\rtside \newtoks\a
\newbox\rawtext \newbox\holder \newbox\window \newcount\n
\newbox\finaltext \newbox\aslice \newbox\bslice
\newdimen\topheight
\newdimen\ilg % InterLine Glue

FIGURE 1. The boxes. counts, dimens, and so on you need for the window-making macro.

Next, place the actual macro definitions in your document file. There are a slew of such macros-you'll
need them all. They appear in figure 2.

\def\openwindow\down#l\in#2\for#3\linesi%
% #1 is an integer---no. of lines down from par top
% #2 is a dimension---amount from left where window begins
% #3 is an integer---no. of lines for which window opening
% persists.
\d=#l \1=#3 \If tside=#2 \rtside=\lf t side \a=()
\createparshapespec
\d=#l \1=#3 % reset these
\setbox\rawtext=\vbox\bgroup
\parshape=\n \the\a)

%
\def\endwindowtext(%
\egroup \parshape=O % reset parshape; end \box\rawtext
\computeilg % find ILG using current font.
\setbox\finaltext=\vsplit\rawtext to\d\baselineskip
\topheight=\baselineskip \multiply\topheight by\l
\multiply \topheight by 2
\setbox\holder=\vsplit\rawtext to\topheight
% \holder contains the narrowed text for window sides
\decompose\holder\to\window % slice up \holder
\setbox\finaltext=\vboxC\unvbox\finaltext\vskip\ilg\mvbox\window%

TUGboat, Volume 8 (1987), No. 2 212

ber

\vskip\ilg\unvbox\rawtext)
\box\finaltext) % finito
7 0

\def \decompose#l\to#2{%
\loop\advance\l-1
\setbox\aslice=\vsplit#l to\baselineskip
\setbox\bslice=\vsplit#l to\baselineskip %get 2 struts
\prune\aslice\lftside \prune\bslice\rtside
\setbox#2=\vbox{\unvbox#2\hbox
to\hsize~\box\aslice\hfil\box\bslice}~
\if num\l>O\repeat
3
%
\def\prune#l#2{ % take a \vbox containing a single \hbox,
% \unvbox it, and cancel the \lastskip
% put in a \hbox of width #2
\unvbox#l \setbox#l=\lastbox %\box#l now is an \hbox
\setbox#l=\hbox to#2{\strut\unhbox#l\unskip}
3
%
\def\createparshapespec{%
\n=\l \multiply \n by2 \advance\n by\d \advance\n by1
\loop\a=\expandaf ter{\the\a Opt \hsize}\advance\d-1
\ifnum\d>O\repeat
\loop\a=\expandaf ter{\the\a Opt \If tside Opt \rtside)\advance\l-1
\ifnum\l>O\repeat
\a=\expandafter{\the\a Opt \hsize)
3
%
\def\computeilg{% compute the interline glue
\ilg=\baselineskip
\setboxO=\hbox{ (3 \advance\ilg-\htO \advance\ilg-\dpO
3

FIGURE 2. The window-making macros which generate horizontally centered rectangular windows
in a paragraph of text.

Apart from identifying the window text, there are 3 parameters you need to determine: The num- . -

of lines down for the the top of the paragraph (that is, the thickness of the
lintel), the amount in from the left (the width of the sides), and the number of
lines for which the window persists (the thickness of the sides). If w is the width of the side (the value of
parameter #2 in the openwindow macro), then the width of the window is hsize - 2w. You see in figure 4
the exact way in which I created the window in this paragraph.

\openwindow\down l\in 15pc \for 2\lines
Apart from identifying . . .

. . .window in {\sl this) this paragraph.
\endwindowtext

FIGURE 3. Opening up a window in text.

Horizontally Centered Windows
Here is the basic idea behind these macros. We seek to use the command \parshape to create an

odd-shaped paragraph consisting of a top portion identical to the lintel, a bottom portion identical to the
sill, and a lengthy and narrow middle portion with the width of the side text. Then, take this typeset text,
and slice it like a roast beef. These "slices " will contain lines of text in \vboxes which we rearrange to get

TUGboat, Volume 8 (1987), No. 2 213

the text we want, cutout and all. In figure 4, you see the intermediate position of some text before and after
this rearrangement.

Only a few macros require any special comment. Macro \createparshapespec computes the value n
that the \parshape command looks for. Next, it builds up a token \a which contains the 2n line lengths
and indentations. (I take all the indentations to be Opt, but varying this can add to your palette of special
effects.) Some of this token manipulation is a tad tricky. You construct tokens by enclosing the token list
in braces, but if you don't prefix this with an \expandafter, l$$ will construct \a out of the component
names. rather than out of their meanings. The last line is necessary because of the way \parshape works.
If the paragraph is sufficiently long, uses the final line length for the remainder of the text. If we set
the final line length to be \hsize. then this is what we need to set the sill text.

Note that these macros use \ s t r u t s to help maintain proper vertical line spacing. If you use type at
other than the usual 10 point design size, make sure to redefine the \ s t r u t to reflect this change.

London. Michaelmas Term lately over, and the Lord Chancellor sitting in Lincoln's Inn Hail. Implacable Novem-
ber weather. As much mud in the streets, as if the waters had but newly retired from the face of the earth, and it
would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn
Hill. Smoke lowering down
from chimney-pots, making a
soft black drizzle, with flakes
of soot in it as big as full-
grown snow-flakes-gone into
mourning, one might imag-
ine, for the death of the
sun. Dogs, undistinguishable
in mire. Horses, scarcely better; splashed to their very blinkers. Foot passengers, jostling one another's umbrellas.
in a general infection of ill-temper, and losing their foot-hold at street-corners, where tens of thousands of other foot
passengers have been slipping and sliding since the day broke (if this day ever broke), adding new deposits to the
crust upon crust of mud, sticking at those points tenaciously to the pavement, and accumulating at compound interest.

London. Michaelmas Term lately over, and the Lord Chancellor sitting in Lincoln's Inn Hall. Implacable Novem-
ber weather. As much mud in the streets, as if the waters had but newly retired from the face of the earth, and it
would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn
Hill. Smoke lowering down from chimney-pots, making a
soft black drizzle, with flakes of soot in it as big as full-
grown snow-flakes-gone into mourning, one might imag-
ine, for the death of the sun. Dogs: undistinguishable
in mire. Horses: scarcely better: splashed to their very blinkers. Foot passengers, jostling one another's umbrellas,
in a general infection of ill-temper, and losing their foot-hold at street-corners. where tens of thousands of other foot
passengers have been slipping and sliding since the day broke (if this day ever broke), adding new deposits t o the
crust upon crust of mud, sticking at those points tenaciously to the pavement, and accumulating at compound interest.

FIGURE 4. The window macro generates a funny-looking paragraph (top) using the 'parshape'
command, which it then rearranges to form the window (bottom).

The actual "deli slicing" is done by the \decompose macro, and the slicing mechanism is done via the
\ v s p l i t primitive. Decomposition also calls for the \pruneing of each slice-removing the glue T@ places
on the right of a short, \parshape line.

On Beyond Centering: Off-Center Windows
All the hard work in cutting out windows is already present in these macros. It's almost trivial to

generalize to the case where a rectangular window is to be off-center. The only real change is to the
definition of \openwindow to allow for another parameter-the width of the right side of the window. Here,
in figure 5 . is the way I've redefined the beginning of \openwindow.

FIGURE 5. The opening for the openwindow macro to account for windows that can be off-centered
horizontally. Parameter 3 is now to be the distance from the right margin.

214 TUGboat: Volume 8 (1987), No. 2

On Beyond Rectangles: Arbitrary Shapes
The most interesting part of writing these macros was their extension to windows of arbi-

trary shape. Users specify the "shapespec" for their cutout by creating a list of the right and
left line lengths. each of which is separated by a doable backslash \\: this list is then

T h e area of passed to the macro as a single param- a c,,,,, ,, a ,,,, eter. Changes to the macros to han-
dle this shape spec are localized to a t~Ope",'Ut;,":a~,,"e,",",";l",r ","ill,

few places. As before, the beginning
\openwindow statement needs modi- g0.3 of whrch one clrcumscrlbes it fying to accept a different parame-

and t h e o the r 1s Isopenrnetr tc x l t h
ter list. The \pxshape specifica- ,, I , t h e are of the circle tions are built up in a slightly dif-

1s less t h a n t h a t of anv c i rcurnscr~bed ferent way' and \createparshape- polygon and greater t h a n t h a t of an,
spec is itself slightly different. The

most extensive changes are in the l sopenmet r l c polygon ~ n d fur ther of \decompose macro. which uses the
these c~ rcumscr ibed polggons t h e one

\lop macro (of Appendix D in the t h a t has t h e greater number of sides has TMb00k) to chop off the individ-
ual line lengths from the shape spec. 4,",e~1~,":~~:: 'c :Eet,","',t","e";","a","da At the risk of appearing repetitious.
all the listings for all the macros in t h e ' w m 1 m e " ~ c ~ o l ~ g o n t h a t has

t h e greater number of s ~ d e s 1s
this version of \openwindow appear

in figure 6. The shapespec itself is t h e larger [Gal+- 163b handled as a list, a la the suggestions
of Appendix D. pages 378-380. in The m b o o k . The general shapespec is of the
form \\ll\\rl \\lz\\rz\\. . . \\l,\\r,\\ where there are n lines in the cutout area. Each 1,
should be the length of the left side. and each r, is the length of the right side for the ith line of the cutout.
Note well the double backslash which both begins and ends the shapespec. The shapespec for this paragraph
i s \ \ 168\x \ \ 168\x \ \ 154\x \ \ 154\x \ \ 145\x \ \ 145\x \ \ 138\x \ \ 138\x \ \ 134\x \ \ 134\x
\ \ 132\x \ \ 132\x \ \ 131\x \ \ 131\x \ \ 132\x \ \ 132\x \ \ 134\x \ \ 134\x \ \ 138\x \ \ 138\x
\ \ 144\x \ \ 144\x \ \ 154\x \ \ 154\x \ \ 168\x \ \ 168\x \ \ where \x is a special \dimen register
containing the value 1.22pt.

%
% Special registers
%
\newcount\l \newcount\d \newdimen\lftside
\newdimen\rtside \newtoks\a \newtoks\b
\newbox\rawtext \newbox\holder \newbox\window \newcount\n
\newbox\finaltext \newbox\aslice \newbox\bslice
\newdimen\topheight
\newdimen\ilg % InterLine Glue
\newtoks\c
%
%
% Here are the special WINDOW MACROS.
%
\long\def\openwindow\down#l\for#2\linesand#3as~shape~spec{%
% #I is an integer---no. of lines down from par top
% #2 is an integer---no. of lines for which window opening
% #3 is the shapespec token list
\d=#1 \1=#2 \def\b{#3) \def\tail{\hsize 3
\edef \\CO pt3
\createparshapespec
\d=#l \1=#2 % reset these
\setbox\rawtext=\vbox\bgroup
\parshape=\n \the\c \b \tail
3
%
\def\endwindowtext{%
\egroup \parshape=O
% reset parshape; end \box\rawtext
\computeilg % find ILG using current font

TUGboat, Volume 8 (1987), No. 2

\setbox\finaltext=\vsplit\rawtext to\d\baselineskip
\topheight=\baselineskip \multiply\topheight by\l
\multiply \topheight by 2
\setbox\holder=\vsplit\rawtext to\topheight
% \holder contains the narrowed text for window sides
\decompose\holder\to\window % slice up \holder
\~etb~x\finaltext=\vbox(\unvbox\finaltext\vskip\ilg\unvbox\window%
\vskip\ilg\unvbox\rawtext)
\box\finaltext} % finito
%
\def\lop#l\to#2(\expandafter\lopoff#l\lopoff#1#2}
\long\def\lopoff\\#l\\#2\lopoff#3#4C\def#4{#1}\def#3{\\#2~~
%
\def\decompose#l\to#2~%
\loop\advance\l-1
\lop\b\to\lft \lftside=\lft
\lop\b\to\rt \rtside=\rt
\setbox\aslice=\vsplit#1 to\baselineskip
\setbox\bslice=\vsplit#1 to\baselineskip %get 2 struts
\prune\aslice\lftside \prune\bslice\rtside
\setbox#2=\vbox{\unvbox#2\hbox
to\hsize~\box\aslice\hfil\box\bslice))
\ifnum\l>O\repeat
1
%
\def\prune#1#2(% take a \vbox containing a single \hbox,
% \unvbox it, and cancel the \lastskip
% put in a \hbox of width #2
\unvbox#l \setbox#l=\lastbox %\box#l now is an \hbox
\setbox#l=\hbox to#2~\strut\unhbox#l\unskip}
1
%
\def\createparshapespec(%
\n=\l \multiply\n by 2
\advance\n by1 \advance\n by\d
\ c=O
\loop\c=\expandafter{\the\c Oin \hsize}\advance\d-1
\ifnum\d>O\repeat
J
%
\def\computeilgC% compute the interline glue
\ilg=\baselineskip
\setboxO=\hbox{O \advance\ilg-\htO \advance\ilg-\dpO
1

FIGURE 6. These are the macros you will need to generate cutouts of arbitrary text within your
document.

A few final comments. Use these macros sparingly: it's difficult and mighty uncomfortable to read across
a large gap in text. If you do use these macros, try not to let the width of the sides get too narrow or you'll
have lots of 'overfull' messages. You may therefore want to up the \tolerance of your document. Also. the
use of these macros may greatly increase the TEX compilation time. This may be especially noticeable on
microcomputers like an IBM PC. Wait a good few minutes before you decide the system has hung and it's
time to re-boot.

216 TUGboat. Volume 8 (1987); No. 2

Comment on ''W Does Windows"

Jim Fox

The emphasis of the "window paragraphs" article in the March TUGboat seems to be somewhat mis-
directed. It is not so big a deal that TEX can be made to format such paragraphs, indeed the 14th
and 15th chapters of the w b o o k describe com- pletely and in detail the means both to specify
paragraph shape and to split off parts of said paragraphs-thereby rendering these holed para-
graphs essentially trivial. Nor should the em- phasis be placed on the paragraphs themselves
(the hole being distracting and making the para- graphs hard to read, especially when the hole
produces not only a gap between words but a hy- phenated word across the gap as well. The em-
phasis instead belongs on the itself, and the very fact that it can format such idiosyncratic para-
graphs with ease. And one should note that the holes can be of arbitrary shape. and there can be several
of them in the paragraph.

Queries

Editor's note: When answering a query, please
send a copy of your answer to the TUGboat editor
as well as to the author of the query. Answers
will be published in the next issue following their
receipt.

The following items, which appear elsewhere in this
issue, are in response to, or otherwise relevant to,
previous queries.

- First-line special handling (James Alexander,
Vol. 7, No. 2. page 110), see page 193.

- Indexing with (Jim Ludden, Vol. 7,
No. 2, page 111): see page 201.

- Setting parallel texts (John Stovall, Vol. 2,
No. 2, page 57), see page 190.

Time Line Macro

This query elicited no response when it was pub-
lished in w h a x , so I will try the TUGboat
audience. In addition to being quite useful for its
(admittedly specialized) purpose, it would seem to
be a challenging exercise for an expert -something
along the lines of some of the esoteric exercises
in the m b o o k or the tree-making macro of last
year's TUGboat. I offer it as such a challenge.

I would like a macro which makes a "time line".
It would read a file which consists of entries of the
form

(d a t e) (even t)
(presorted if necessary) and produce a vertical line
of some preassigned length with tick marks so that
the top of the line represents the first date (or #I in
the macro call) and the bottom represents the last
date (or #2). Down the line, with vertical spacing
mimicking (and that is the key point) time intervals,
the dates and events are printed horizontally out
to the right. One problem is to do something
intelligent when two or more of the dates cluster
too closely (e.g. two events on the same date). One
can see the general idea, but also many W n i c a l
details. Alternately (perhaps less interestingly). one
could write a preprocessor in C or Pascal.

Sometimes the time scale is linear (e.g. for the
history of the USA): sometimes a logarithmic scale
is appropriate (e.g. cosmological events since the
beginning of the universe-as much happened in
the first second or so as since-or, compressing
in the opposite direction, the chronology of life on
earth). Such time lines are a useful semi-pictorial
way of presenting chronologies, but are somewhat
awkward to create with conventional typesetting.
Any takers?

James Alexander
University of Maryland

TUGboat, Volume 8 (1987), No. 2

Reply: Printing Out Selected Pages

In TUGboat Vol. 7, No. 3. Helen Horstman asked.
"Is there some way by which one can select only a
page (or pages) of printout?"

I recently put some new lines, shown below, into
MANMAC (the macros of Appendix E that generated
Volumes A and E), so that I could put only selected
pages into the DVI file. The method should work if
you use it at the end of almost any macro file. (Or.
if necessary, at the front of a source document.)

The idea is to make w look for a file called
pages. tex. If such a file doesn't exist, everything
works as before. Otherwise the file should contain
a list of page numbers. one per line, in the order
they will be generated. After the last page number
has been matched, all further pages will be printed.
Thus, if you want to print page 123 and all pages
from 300 onwards, your file pages. tex should say

123
300

Using the Windows Environment

We currently run on IBM PC/XT and AT'S
and have recently adopted Microsoft's Windows
environment to provide us with a Mac-like interface.
At present M i c r o w will run without modification
under Windows but without pull-down menus and
the like. I would be very interested to hear from
anyone who either has a .DVI file previewer that
will work under Windows or who is interested in
developing such a previewer (or any product
that runs under Windows).

As Windows is about to be upgraded and will
form the presentation manager of OS/2 for the
new range of IBM Personal System computers. this
would seem to be where the future is for those of us
who live in the world of IBM compatibility.

Mike Black
Kingsdown Publishing Ltd.
London 816 7DP

but if you want to print pages 123 and 300 only
the, file should say, e.g.,

123
300
-9999999999 % impossible number

so that the end of file will never occur.
You should rename the pages. tex file after

you're done with it; otherwise it will continue to
affect the output.

The macros cause 7&X to announce that fact
that it's doing something special.

Donald Knuth
Stanford University

Macro for printing out selected pages

\let\Shipout=\shipout
\newread\pages \newcount\nextpage \openin\pages=pages
\def\getnextpage{\ifeof\pages\else

{\endlinechar=-l\read\pages to\next
\ifx\next\empty % in this case we should have eof now
\else\global\nextpage=\next\fi)\fi)

\ifeof\pages\else\message(0K, I'll ship only the requested pages!}
\getnextpage\fi

\def\shipout{\ifeof\pages\let\next=\Shipout
\else\ifnum\pageno=\nextpage\getnextpage\let\next=\Ship~ut

\else\let\next=\Tosspage\fi\fi \next)
\newbox\garbage \def\~oss~a~e{\deadcycles=0\setbox\garbage=~

TUGboat, Volume 8 (1987), No. 2

TEX Users Group
University of Washington, Seattle, Wash.

August 23 - 26, 1987
Program as of June 25. 1987

Sunday - August 23

6:30 - 10:15 pm Dinner/Cruise - Lake Washington1

Monday - August 24

7:45 - 9:00 am Registration
8:OO - 9:OO Introduction to and TUG for new users - Bart Childs
9:OO - 9:15 Introductions: officers, site coordinators, others
9:15 - 1O:OO Publishing ventures for linguistics and the humanities - Christina Thiele

1O:OO - 10:30 Burton's Anatomy of Melancholy - Dean Guenther
10:30 - 10:45 Break
10:45 - 11:30 Classical Greek - Silvio Levy
11:30 - 1:00 pm Lunch
1:00 - 2:OO Publishing in Turkish - Walter Andrews and Pierre MacKay
2:OO - 3:OO Japanese T# [J'QX] - Yaski Saito
3:OO - 4:15 Developing T# DVI driver standards - Robert McGaffey
4:15 - 4:30 Orientation - things to do in and around Seattle
6:OO - ??? Barbecue - entertainment provided by the Seattle Banjo Club

hosted by Addison -Wesley

Tuesday - August 25

9:00 - 10:30 am Output device manufacturer/exhibitor presentations2
Addison-Wesley Publishing Co.: ArborText, Inc.:
Computer Composition Corp.; FTL systems Inc.;
Imagen Corp.; Kellerman & Smith; Personal 7$X:
Talaris Systems Inc.; mYnology, Inc.

10:30 - 10:45 Break
10:45 - 11:30 am Site Coordinators' status reports (preliminary listing)

DG MV8000, Prime 750 - Bart Childs: HP 3000 - Lance Carnes;
IBM VM/CMS - Dean Guenther; UNIX - Pierre MacKay:
V.4X (VMS) - Barry Smith

11:30 - 1:00 pm Lunch
1:OO - 1:45 Building a modular DVI driver - Xelson Beebe
1:45 - 2:45 Using 7$X in a non-academic environment - Elizabeth Barnhart
2:45 - 3:OO Break
3:OO - 3:45 CWEB - Silvio Levy
3:45 - 4:OO Update from the standards committee
4:OO - ??? Birds-of-a-Feather sessions
5:OO - ??? Wine & cheese - hosted by Personal 7&X

Wednesday - August 26

9:00 - 9:30 am Q X as the standard for Maryland lawyers - Allen Dyer
9:30 - 1O:OO PostScript outline fonts from METAFONT - Les Carr

1O:OO - 11:30 TUG business meeting
ll:3O - 1:00 pm Lunch
1:OO - 2:OO problems help session - Barbara Beeton et al.
2:OO - 3:30 Report from the standards committee
3:30 - 4:OO General wrap-up and closing - Bart Childs et al.

Barbecued Salmon or Cajun Shiskabob, along with baked potato, salad, dessert, beer, wine
and soft drinks will be served.
Preliminary listing. Representatives are scheduled to be available throughout the meeting.
Exhibit rooms will be open from 10:30 am, Tuesday, until 3:00 pm, Wednesday.

An IBhl PC and floppy discs will be available so that members might exchange software.

Program coordinator: Dean Guenther, Washington State University

TUGboat, Volume 8 (1987), No. 2 219

Calendar

1987

University of Exeter, England

Intensive BeginningIIntermediate
w
Advanced m / M a c r o Writing

* * * * *
International Conference on Text and
Image Processing, Hotel Maritim,
Wiirzburg, Federal Republic of
Germany: several sessions by l&X
users.

Advanced w / M a c r o Writing;
University of Kern1 Mexico.
Albuquerque

Rijksuniversiteit Groningen,
The Netherlands

Intensive BeginningIIntermediate
w
Advanced w / M a c r o Writing

* * * * *
TEX Wizard Course: TV Guide
Magazine Headquarters. Radnor. Pa.

SIGGRAPH. Anaheim, Calif. For
information. contact the ACM
Conference Office. Chicago, Ill.:
312-644-6610

Rutgers University, Busch Campus,
Piscataway, N. J.
Aug 3 - 4 Macro Writing

Aug 5-7 MTFJ Style Files

Aug 10 - 14 Beginning w
Aug 10 - 14 Intensive Beginning/Intermediate

w
* * * * *

Aug 4-7 Sixth International Conference on
Mathematical Modelling, Washington
University, St. Louis, hlo.;
TEX exhibits and presentations.

Texas A & M University, College Station
Aug 10 - 14 Beginning 7QX
Aua 10 - 14 Intensive Beainninn/Intermediate

Users Group 1987 Conference
University of Washington, Seattle
Aug 17- 21 Beginning
Aug 17 - 21 Intensive Beginning/Intermediate

w
Aug 24 - 26 TUG Annual Meeting

preliminary program, page 218

Aug 27-28 Short course: Macro writing

Aug 27-28 Short course: Output routines

Stanford University, Palo Alto
Aug 17- 21 Intensive Course in L A '

Aug 24 - 28 Beginning IPW
* * * * *

Aug 28 - American Chemical Society, National
Sep 4 Meeting, New Orleans, La.; two

symposia on problems of journal
publication: "Methods for the
electronic submission of manuscripts
for publication", and "Problems
and solutions in the generation
of scientific manuscripts". For
information on the symposia! contact
Peter Lvkos, Illinois Institute of
Technology. 312-567-3430.
Bitnet: chempgl@iitvax.
9&X exhibits and presentations.

Sep 9 - 12 Seybold Seminars' Desktop
Publishing Conference. Santa Clara.
Calif. For information. contact
Seybold Seminars, Malibu. Calif.;
213-457-5850

Sep 14 TUGboat Volume 8, No. 3:
Deadline for submission of
manuscripts

Status as of 15 June 1987

220 TUGboat, Volume 8 (1987), No. 2

University of Illinois, Chicago PROTEXT IV

Sep 14 - 18 Intermediate TEX Boston, Massachusetts
Sep 14- 18 Advanced Q$/Macro Writing 20-22 October 1987

Bergen Scientific Center, Norway

Sep 21-25

Sep 28-
Oct 2

Sep 28-
Oct 1

Oct 8-9

Oct 19- 22

1988

Jan 5-9

Intensive BeginningIIntermediate
Q$
Advanced Q$/Macro Writing

* * * * *
Conference on Electronic/Desktop
Publishing, San Francisco, Calif.
For information, contact National
Computer Graphics Association,
Fairfax, Va.; 703-698-9600

Annual meeting, Deutsche
T@-Interessenten, University of
Miinster, Federal Republic of
Germany; for information, contact
Joachim Lammarsch, University of
Heidelberg (33DHDURZI .BITNET),
or Wolfgang Kaspar, University of
Miinster (URZ860DMSWWUlA. BITNET)

Protext IV, Boston, Mass.;
Q$ Seminar, Monday, Oct. 19 (see
announcement, page 220)

Joint Mathematics Meeting, Atlanta,
Ga. Short Course, Tuesday,
Jan. 5

Apr 20 - 22 International Conference on
Electronic Publishing, Document
Manipulation and Typography, Nice,
France (see announcement, TUGboat
Vol. 8. No. 1, page 78)

Jul 18 - 20 Conference, University of
Exeter, England.

For additional information on the events listed
above, contact the TUG office (401-272-9500, ext. 232)
unless otherwise noted.

The Fourth International Conference on Text Pro-
cessing Svstems will be held in the Boston Park u "

Plaza Hotel and Towers. The conference is being
held under the auspices of the Institute for Numeri-
cal Computation and Analysis, which is a non-profit
research corporation licensed under the laws of the
Republic of Ireland. Six related short courses will
be offered on the day preceding the conference. 19
October 1987; except as noted below, the short
courses are held under the same auspices.

Conference, 20-22 October 1987

The conference provides a forum for discussion of
the latest research on computer-aided generalized
text processing. Keynote speakers include

John Collins (Bitstream, Cambridge)
Richard Furuta (University of Maryland.
College Park)
Shiu Chang Loh (Chinese University.
Hong Kong)
Pierre MacKay (University of Washington.
Seattle)
Marc Nanard (CRIM, Montpellier)
Luis Trabb Pardo (Imagen Corporation,
Santa Clara)
Xuan Wang (Peking University, Beijing)

The Programme Committee is headed by John
Miller (Trinity College, Dublin) and Robert Morris
(University of Massachusetts/Boston).

Short Courses, 19 October 1987

The following one-day short courses are being held
in parallel on the day before the conference begins.

A Issues in Generalized Text Processing
Richard Furuta, Shiu Chang Loh,
Pierre MacKay. Marc Nanard

B 'J&X for Scientific Documentation
Bart Childs (Texas A&M University, College
Station) in cooperation with the Users
Group

TUGboat, Volume 8 (1987), No. 2

C An Introduction to SGML
W. W. Davis (Internal Revenue Service,
Washington, DC)

D Issues in Digital Typography
Richard Rubenstein (Digital Equipment
Corp., Hudson, MA)

E Introduction to Postscript - A Graphics
Solution
Yvonne Perry (Adobe Systems, Palo Alto,
CAI

F Document Databases and Technical
Publishing
Geoffrey James (Honeywell Information
Systems, Los Angeles, CA) under the
auspices and organized by the University
of Massachusetts/Boston and University of
California/Los Angeles Extension Programs
(to be confirmed)

Further Information

To obtain further information. request a form from
the Conference Organizer:

Paulene McKeever
Conference Management Services
P. 0. Box 5
51 Sandycove Road
D h Laoghaire
Co. Dublin, Ireland

($353-1) 452081
Telex: 30547 SHCN EI (Ref. Boole)

Please note that there is an early rate that applies
to all fees received by the Conference Organizer
before 1 September 1987. Reservations for accom-
modations must be made directly with the hotel
before 15 September 1987 to ensure availability;
a block of rooms has been reserved at a special
conference rate for participants. Details of all fees
and other arrangements will be on the form.

6th German TEX Meeting

On October 8th and gth. 1987, German T$$ Users
and other people interested in TEX will meet in
Munster (Westphalia) at the University Computing
Centre.

For the first day we plan - for people who just
had their first contacts with m- in t roductory
lectures about installing m and using I4W and
other macro packages.

The second day we want to give information
about further developments related to m. Also.
we are going to deal with problems specifically
concerning the German language.

During both days demonstrations will be of-
fered on several Output Device Drivers and 'l$J
Implementations on workstations and PCs.

For further information. please contact:
W. Kaspar
Univ of Miinster
Computing Center
Einsteinstrafie 60
D-4400 Munster
Fed Rep Germany

Late-Breaking News

SGML and TEX

Lynne A. Price
Hewlett-Packard, Palo Alto, CA

T h e Standard General ized Markup Language, SGML,
is defined in Internat ional Standard 8879, published
i n October. 1986. T h i s paper gives a n overview
of SGML, discussing i ts relationship w i th other
text processing tools such as Thy, Postscr ip t , and
W Y S I W Y G systems. I t gives examples of applica-
t ions for SGML. I t concludes wi th a descr ipt ion of
the way S G h f L and are used together i n one
part icular env i ronment .

222 TUGboat, Volume 8 (1987), No. 2

What is SGML?

The Standard Generalized Markup Language (SGML)
is a notation for representing documents and mak-
ing their inherent structure explicit. Various forms
of automatic processing can be performed on doc-
uments coded in SGML; they can be formatted,
loaded into online databases, or analyzed for var-
ious linguistic properties. SGML is defined in
International Standard 8879.

SGML evolved from macro-based word-process-
ing and text-formatting tools. Like a macro
package, it encourages a writer to use descrzptzve
markup, identifying structures within a document,
rather than procedural markup. specifying process-
ing. For example, "this is a section heading" is
preferred to "center this line in boldface". As the
word "generalized" implies, documents prepared
with SGML can be processed in various ways. For
example. the same markup tags used to prepare
a book's index might also be used by an informa-
tion retrieval application to locate text relevant to
selected terms.

SGML views a document as a hierarchy of
structural elements. For example, a manual may be
composed of front matter, some chapters, optional
appendices, and an index. Similarly, a chapter may
be a series of sections, while a section is composed
of text and optional figures, tables, lists, and so on.

No finite set of structural elements can account
for the vast flexibility permitted in written texts.
SGML therefore provides features for defining types
of documents and then coding particular docu-
ments that belong to the defined types. Possible
document types include reference manuals. journal
articles, term papers, short stories, third-grade book
reports, memos, letters. and employee performance
evaluations. A document type is formally defined
with a document-type definztzon that itemizes the
structural elements permitted in documents of that
type and defines the contexts in which each element
can occur. Most document-type definitions are
prepared by a small group of individuals for many
more people to use with a large number of docu-
ments. Thus. most users of SGML are concerned
with creating and maintaining documents rather
than document-type definitions.

Document-type definitions frequently distin-
guish elements that are formatted in similar fashion.
For example, newly introduced terms and titles of
books may both be typeset in italics. However,
logically they are different structures. Markup that
distinguishes between them enables software that
supports glossary and bibliography maintenance.

Context-Sensitive Interpretation of Markup

The document-type definition can control context-
sensitive interpretation of parts of a document.
For instance, an asterisk may be interpreted as a
code for the multiplication symbol inside a math-
ematical formula but as a footnote indicator else-
where. Context-sensitive knowledge of valid docu-
ment structure also permits various abbreviations
of SGML constructs. called markup mznzmzzatzon.
If it is known. for example. that every chapter
begins with a chapter title. the SGML processor can
recognize the first words in a new chapter as the
title whether or not the writer has explicitly coded
them as such.

Most SGML markup consists of identifying the
beginning or end of structural elements. The most
common convention (which can be overridden) is to
mark the beginning of an element with the element
name enclosed in angle brackets and to mark the
end of an element similarly, but with the element
name preceded with a slash. These delimiters are
illustrated in the (deliberately verbose) example
shown in Figure 1.

This example assumes that the document-
type definition specifies rules for creating glossaries.
Glossaries in this context are assumed to have
titles and to contain multiple entries. Each entry
has a term followed by a definition. Definitions
may contain cross-references to other terms in the
glossary.

The document-type definition may also specify
context-sensitive text-entry conventions. For exam-
ple. glossaries may be defined so that the title and
terms never extend past the end of a line and that
entries are separated by blank lines. With these
definitions. SGML treats the example in Figure 2
exactly like the more complete forln in Figure 1.

Since SGML knows which document-type defi-
nition is being used. the start-tag <glossary> can
be omitted. The start-tag <title> is optional
because all glossaries must start with a title. The
end-tag < / t i t l e > is optional because the title can-
not extend for more than one line. The blank line
after the title is ignored because no text charac-
ters have been encountered to start the element
expected after the title. At the word "aardvark",
SGML recognizes that one or more start-tags have
been omitted. The start-tag <entry> is implied
since <entry> is the only element allowed after a
title. The start-tag <term> is then implied since
every entry begins with a term. The term can-
not extend past the end of the line, so the material
on the next line must be something else. Since every

TUGboat, Volume 8 (1987), No. 2

entry consists of a term followed by a definition, this
must be a definition and SGML infers a cdef ini-
tion> start-tag. The blank line after the definition
ends both the entry and the definition contained
within it. The end-tag </glossary> is implied by
the end of the input file.

SGML's knowledge of context can also be used
in some forms of error checking. Most TEX users can
sympathize with the user who inadvertantly omits
the closing brace after an emphasized phrase and
generates several pages printed in a boldface font
or who neglects to close an indented list and dis-
covers the rest of the document in narrow columns.
SGML, referencing the appropriate document-type
definition, knows that an emphasized phrase can-
not span multiple paragraphs and that an indented

list cannot cross a chapter boundary. When such
markup occurs, the effect can be limited to a single
paragraph or chapter and appropriate error mes-
sages issued. This context-checking is an inherent
property of SGML rather than something that must
be laboriously built into individual macros.

SGML and Other Tools

SGML is used with classes of related documents,
rather than one-of-a-kind texts. The language is
carefully and deliberately defined independently of
any application. The International Standard spec-
ifies possible input of SGML source files without
the corresponding output. Unlike TEX and various
what-you-see-is-what-you-get systems. the purpose

<definition>The first animal listed in a
dictionary.</definition>

<entry>
<\it Cat>\/)
<definition>A carnivorous mammal long domesticated and kept by

man as a pet or for catching mice (Webster's New
Collegiate Dictionary, 1973) .

<definition>
<entry>

{\it Dog\/)
<definition>A domesticated <xref>canine</xref>.</definition>

</entry>
. . .

</glossary>

Figure 1. Example of glossary data with full markup

Glossary of Animals

Aardvark
The first animal listed in a dictionary.

Cat
A carnivorous mammal long domesticated and kept by
man as a pet or for catching mice (Webster's New
Collegiate Dictionary, 1973).

Dog
A domesticated <xref>canine</xref>

. . .
Figure 2. Example of glossary data after markup minimization

224 TUGboat, Volume 8 (1987), No. 2

of SGML is not to determine how to arrange char-
acters on paper. Nor is SGML a page-description
language like Postscript. The purpose of SGML is
to describe the logical structure of a document in a
way that can be used by different processes.

Of course, individual uses of SGML have a par-
ticular goal, which may be document formatting or
page layout. Software to support these applications
from SGML can be written. The advantages of doing
so are the advantages of context-sensitive markup
described above and the ability to use the same
source file for other applications as well. These ad-
vantages can be preserved whether the application
code is written specifically for use with SGML or
SGML is used as a front-end to independent tools.

Applications of S G M L

Although little SGML software is commercially avail-
able as yet, there are several ongoing development
efforts. A project is under way at the Institute of
Computer Sciences and Technology at the National
Bureau of Standards (NBS) to develop an SGML
validation suite. The validation suite is being built,
along with a public-domain SGML parser, under the
Computer-Aided Logistic Support (CALS) program
of the Department of Defense. While the purpose of
the test suite is to validate SGML parsers intended
to process documents that conform to Department
of Defense SGML requirements, its examples of
correct syntax may also be useful to individuals
learning the language.

The Association of American Publishers has
defined several SGML document-type definitions for
use by authors using machine-readable media to
submit books and articles for publication. The
Chicago Guide to Preparing Electronic Manuscripts
(University of Chicago Press, 1987) describes simi-
lar markup for use by authors submitting material
to the University of Chicago Press. Their guide-
lines also form a template for publishers defining
their own requirements for submission of electronic
material.

One particular publisher beginning to use
SGML is the Internal Revenue Service. Potential
SGML applications at the IRS include embedding
the text of relevant sections of the tax code in
explanatory material. The tax code can then be
printed by an application that generates copy for
legal review, but suppressed by the application that
prints the information for the taxpayer. SGML can
also be used to supply text to tax information ser-
vices that can in turn distribute it to tax preparers
and taxpayers with no government expense.

S G M L as a Preprocessor for

Over fifty independent writing departments located
throughout the world produce user guides and
reference manuals for Hewlett-Packard computers,
software, and electronic instruments. Electronic
interchange of material between departments is
often desirable: for example, a manual written in
one country may be translated to the local language
in another. Interchange is complicated by the
assortment of text processing tools used (which
includes TEX) and the corresponding differences in
markup as well as by the diverse hardware on which
the tools are installed. The same problems hamper
communication between the staff of different writing
groups.

SGML supplies a means of standardizing markup
conventions throughout the company, thereby al-
lowing interchange of files without requiring replace-
ment of all existing text processing software and the
corresponding hardware. A shared markup tech-
nique also provides a vehicle for discussion among
writers in different groups.

As an internal tool to aid in the production of
user documentation, Hewlett-Packard has therefore
developed an SGML parser and application gener-
ator called MARKUP. MARKUP allows SGML to
be used as a front-end to other text-processing sys-
tems. A document-type definition that represents
the structure of Hewlett-Packard user documen-
tation has been developed and successfully com-
pared to segments of different published manuals.
The first MARKUP application, scheduled for beta
testing mid-summer of 1987, uses to print
documentation from source files coded in SGML.

A MARKUP application is specified by a table
which indicates the processing to be performed
for each instance of every element included in the
document-type definition. Table entries specify
actions to be taken at the beginning of the element,
within it, and at its end. When the MARKUP
application generates a w source file analogous
to the original SGML input, the actions usually
consist of the Q j X markup corresponding to the
SGML construct. For example, the string ''{\itn
might be generated at the beginning of a book title,
an introduced term, or a variable component in a
computer command, while "3" is generated at the
end of these structures. When a quotation mark
occurs within normal text. the w open-quote
convention """ is generated; when a quotation
mark occurs within a quote element, the close-quote
sequence "' ' " is output.

TUGboat, Volume 8 (1987), No. 2 225

When necessary, actions can also be entered
as C code to be executed when the corresponding
structure occurs. For example, C code is used to
process forward and backward cross-references and
to verify that every term introduced in the text is
entered in the glossary.

Use of with MARKUP differs from use
of by itself. For example. consider the
code used to start a chapter. Should a macro be
defined for this purpose? Kot necessarily. Macros
are used to give a convenient label to sequences
of instructions that are needed repeatedly. In this
case. the code is isolated in the start-chapter cell of
MARKUP'S definition table. MARKUP invokes it as
often as needed and. in effect. it has already been
given a logical name (start-chapter).

However, debugging is simplified when macros
are used; the source file generated by MARKUP
is more readable when it contains macro calls. The
macros are not parameterized as they would be if
the calls were user-written instead of automatically
generated. For example, suppose that the chapter
title is normally printed on the inside margin of
the page header. but that the user can specify
a different header if the chapter title is too long
to fit in available space. User-invoked macros
should be designed for the usual case. The chapter
macro needs one parameter, the chapter title. To
override the default page header. the user can call
a second macro. When macros are automatically
invoked, however. the chapter macro can have
two parameters, the chapter title and the header
specification. even though the values are usually
identical. This repetition is not tedious to the
user, since he enters the chapter title only once.
Furthermore, there is no risk that two copies
intended to be identical will in fact differ.

TUG a n d t h e S tandards Commun i ty

In the United States, standards work on SGhlL
began in ANSI Committee X3J6 and then moved
to X3V1. TUG has maintained liaison with these
committees since 1982. and TUGBoat regularly
publishes liaison reports. Larry Beck is the current
representative.

When TUG first sent me to an X3J6 meeting in
January, 1982. my goal was to explain concepts
such as boxes and glue to committee members. I
would like to belatedly thank TUG for my current
involvement with SGML and am delighted to take
this opportunity to convey information in the other
direction.

TUG Business

Treasurer 's Repo r t

For the first time, TCG's financial statements
have been audited. We invited the firm of Deloitte
Haskins & Sells to examine our records. DH&S have
stated their conclusions in the report which appears
on the following pages. The report shows that cash
receipts during 1986 exceeded cash disbursements
by $98.000. The auditors' letter reflects their
opinion that TUG's accounts might be more fairly
stated were they reported on an accrual, rather
than a cash basis, a change TUG plans for its 1987
reports (for example. although TUG did have an
excellent year in 1986, a large portion of the ending
cash balance represents 1987 membership dues, paid
in advance during 1986).

It should be noted that one of TUG's fiscal
goals is the building of an available reserve equal to
one year's operating budget. a policy consistent with
the practice of other non-profit societies. including
the American Mathematical Society. Cash reserves
at the end of 1986 totaled $143.000. as compared
with operating expenses of $306,000.

Samuel B. Whidden. Treasurer

Deloitt e

TUGboat, Volume 8 (1987). No. 2

Certified P ~ l b l l ~ Accountants

AUDITORS' REPORT

1501 Hosp ta l Trust Tcirver
Providence. Rhode Island 02903-2452
(401) 861 -0740
ITT Telex. 499571 5

TEX Users Group:

We have examined the statement of cash receipts and
disbursements of the TEX Users Group for the year ended
December 31, 1986. Our examination was made in accorGance with
generally accepted auditing standards and, accordingly,
included such tests of the accounting records and such other
auditing procedures as we considered necessary in the
circumstances.

The statement of cash receipts and disbursements is a summary
of the cash activities of the Group and does not include
certain transactions that would be included if the Group
prepared its financial statements on the accrual basis as
contemplated by generally accepted accounting practices.

In our opinion, the accompanying statement presents fairly the
cash receipts and disbursements of the Group for the year ended
December 31, 1986.

May 28, 1987

TUGboat. Volume 8 (1987). No . 2

TEX USERS GROUP

STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS
FOR THE YEAR ENDED DECEMBER 31. 1986

RECEIPTS:
Dues ...
Meetings and courses .
Publications
Advertising .

.................................... Royalties
Interest .a*.. .
Miscellaneous .
Total ..

DISBURSEMENTS :
Newsletter .* . .a
Meetings and courses .
Cost of publications
Administrative costs .
Contribution Refunds
Exhibits
Total ..
EXCESS OF RECEIPTS OVER DISBURSEMENTS
CASH BALANCE. BEGINNING OF THE YEAR
CASH BALANCE. END OF THE YEAR

See note to statement of cash
receipts and disbursements .

NOTE TO STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

The TEX Users Group is a not-for-profit membership
organization which provides information and technical
assistance to the users of TEX, a sophisticated typesetting
computer application .

TUGboat , Volume 8 (1987). No. 2

Institutional
Members

Addison -Wesley Publishing
Company, Reading, Massachusetts

The Aerospace Corporation,
El Segundo, California

Allied-Signal Canada, Inc.,
Mississauga, Ontario, Canada

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc., A n n Arbor,
Michzgan

ASCII Corporation, Tokyo. Japan

Aston University. Bi rmingham,
England

California Institute of Technology.
Pasadena? California

CALMA. Sunnyvale, California

Calvin College, Grand Rapids.
Michigan

Canon, Inc., Office System Center.
Tokyo, Japan

Carleton University, Ottawa,
Ontario, Canada

CDS/WordWorks, Davenport, Iowa

Centre Inter-Ritgional de Calcul
~ l e c t r o n i ~ u e , CNRS, Orsay, France

Centro Internacional De
Mejoramiento De Maiz Y Trigo
(CIMMYT), Me'xzco, D.F., Mexico

City University of New York,
New York, New York

College of St. Thomas, Computing
Center, St . Paul, iMinnesota

College of William & Mary.
Department of Computer Science,
Wil l iamsburg, Virginia

Columbia University. Center for
Computing Activities, New York,
New York

COS Information, Montreal, P. Q.,
Canada

DECUS, Marlboro. Massachusetts

Data General Corporation,
Westboro, Massachusetts

Digital Equipment Corporation,
Nashua, New Hampshire

Dowel1 Schlumberger Inc.. Tulsa!
Oklahoma

Edinboro University of
Pennsylvania, Edinboro.
Pennsylvania

Electricitit de France, Clamart,
France

Environmental Research Institute
of Michigan, A n n Arbor, Michigan

European Southern Observatory,
Garching bei Miinchen, Federal
Republic of Germany

Ford Aerospace & Communications
Corporation, Palo Alto, California

Forsvarets Materielverk.
Stockholm, Sweden

FTL systems Incorporated,
Toronto, Ontario, Canada

General Motors Research
Laboratories, Warren, Michzgan

Geophysical Company of Norway
A/S, Stavanger. Norway

Grinnell College. Computer
Services, Grinnell: Iowa

Grumman Corporation. Bethpage,
New York

GTE Laboratories, Wal tham,
Massachusetts

Hart Information Systems, Aust in ,
Texas

Hartford Graduate Center,
Hartford, Connecticut

Harvard University. Computer
Services, Cambridge, Massachusetts

Hewlett-Packard Co., Boise, Idaho

Hobart & William Smith Colleges,
Geneva, New York

Hutchinson Community College,
Hutchinson, Kansas

Humboldt State University, Arcata,
Calijornza

IBM Corporation, Scientific
Center, Palo Alto, California

Illinois Bell Telephone, Chicago.
Illinois

Illinois Institute of Technology,
Chicago, Illinois

Imagen, Santa Clara, Calzfornza

Institute for Advanced Study.
Princeton. New Jersey

Institute for Defense Analyses.
Communications Research
Division. Princeton, New Jersey

Intergraph Corporation, Huntsvil le,
Alabama

Intevep S . A.: Caracas: Venezuela

Iowa State University. Ames, Iowa

Istituto di Cibernetica, Universita
degli Studi, Milan, Italy

Kuwait Institute for Scientific
Research. Safat, Kuwait

Los Alamos National Laboratory,
University of California.
Los Alamos, New Mexico

Louisiana State University, Baton
Rouge, Louiszana

Marquette University, Department
of Mathematics, Statistics, and
Computer Science, Milwaukee.
Wzsconsin

Massachusetts Institute
of Technology, Artificial
Intelligence Laboratory,
Cambridge, hlassachusetts

Mathematical Reviews: American
Mathematical Society. A n n Arbor,
Michzgan

Max Planck Institute Stuttgart,
Stuttgart, Federal Republic of
Germany

McGill University, Montreal.
Quebec, Canada

McGraw-Hill. Inc., Englewood,
Colorado

National Research Council
Canada. Computation Centre.
Ottawa, Ontarzo, Canada

New Jersey Institute of
Technology, Newark, New Jersey

New York University, Academic
Computing Facility, New York,
N e w York

TUGboat, Volume 8 (1987), No. 2

Northeastern University. Academic
Computing Services, Boston,
Massachusetts

Online Computer Library Center,
Inc. (OCLC), Dublin, Ohzo

Pennsylvania State University,
Computation Center. University
Park, Pennsylvania

Personal T#, Incorporated.
Mil l Valley, California

Purdue University, West Lafayette.
Indiana

QMS: Inc. Mobile, Alabama

Queens College, Flushing.
New York

Research Triangle Institute,
Research Triangle Park,
Nor th Carolina

RE/SPEC, Inc., Rapid City.
South Dakota

Ruhr Universitat Bochum.
Bochum. Federal Republzc of
Germany

Rutgers University, Hill Center.
Piscataway, New Jersey

St. Albans School, Mount
S t . Alban. Washington, D.C.

Sandia National Laboratories,
Albuquerque: New Mexico

SAS Institute, Cary,
Nor th Carolina

Schlumberger Offshore Services.
New Orleans, Louisiana

Schlumberger Well Services,
Houston, Texas

Science Applications International
Corp., Oak Ridge, Tennessee

I .P . Sharp Associates. Palo Alto.
California

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Sony Corporation, Atsugz. Japan

Space Telescope Science Institute,
Balt imore? Maryland

Springer-Verlag, Heidelberg, Federal
Republic of Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University, Computer
Science Department, Stanford,
California

Stanford University, ITS Graphics
& Computer Systems, Stanford,
Calzfornza

State University of New York.
Department of Computer Science,
Stony Brook, New York

Stratus Computer, Inc., ftfarlboro,
Massachusetts

Syracuse University, Syracuse.
New York

Talaris Systems, Inc., S a n Diego.
California

Texas A & M University,
Department of Computer Science.
College Stat ion, Texas

Texas A & M University,
Computing Services Center:
College Stat ion. Texas

Texas Accelerator Center,
T h e Woodlands, Texas

TRW, Inc., Redondo Beach,
California

Tufts University, Medford,
Massachusetts

T V Guide, Radnor, Pennsylvania

TYX Corporation. Reston,
Virginza

UNI.C> Danmarks EDB-Center,
Aarhus, Denmark

University of Alabama, Tuscaloosa,
Alabama

University of British Columbia.
Vancouver, Brztish Columbia,
Canada

University of Calgary, Calgary,
Alberta, Canada

University of California, Berkeley,
Computer Science Division.
Berkeley, California

University of California. San
Diego, La Jolla, Calzfornia

University of California, San
Francisco, Sun Francisco,
California

University of Chicago,
Computation Center, Chicago,
Il l inois

University of Chicago, Computer
Science Department, Chicago,
Illinois

University of Chicago, Graduate
School of Business, Chicago,
Illznois

University of Delaware, Newark:
Delaware

University of Glasgow. Glasgow,
Scotland

University of Groningen,
Groningen, The Netherlands

University of Illinois at Chicago,
Computer Center. Chicago, Il l inois

University of Kansas, Academic
Computing Services, Lawrence,
Kansas

University of Maryland. College
Park, hfaryland

University of Massachusetts,
Amherst , Massachusetts

University of North Carolina,
School of Public Health,
Chapel Hill, Nor th Carolina

University of Oslo, Institute
of Informatics, Blindern, Oslo,
Norway

University of Ottawa, Ottawa,
Ontario. Canada

University of Southern California,
Information Sciences Institute.
Marina del Rey , California

University of Tennessee a t
Knoxville, Department of
Electrical Engineering, Knoxvzlle,
Tennessee

University of Texas a t Austin,
Physics Department, Aust in , Texas

University of Texas a t Dallas,
Center for Space Science, Dallas,
Texas

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Nedlands! .4ustralia

University of Wisconsin, Academic
Computing Center, Madzson,
Wisconsin

Vanderbilt University, Nashville,
Tennessee

Vereinigte Aluminium-Werke AG:
Bonn, Federd Republic of German,y

Villanova University. Vzllanova.
Pennsylvanza

Washington State University.
Pullman, Washzngton

Widener University. Computing
Services. Chester, Pennsylcanza

Worcester Polytechnic Institute.
Worcester, Massachusetts

TUGboat, Volurne 8 (1987). No. 2

Yale University, Department of
Computer Science, New Haven,
Connecticut

T ' Users Group 1987 Membership Form

Request for Information

The Q Y Users Group maintains a database and
publishes a membership list containing information
about the equipment on which members' organiza-
tions plan to or have installed 'J&X, and about the
applications for which TEX would be used. This list
is updated periodically and distributed to members
with TUGboat, to permit them to identify others
with similar interests. Thus. it is important that
the information be complete and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of Tj$ and the hard-
ware on which it runs or is being installed. (Oper-
ating system information is particularly important
in the case of IBM mainframes and VA)(.) This
hardware information is used to group members in
the listings by computer and output device.

If accurate information has already been pro-
vided by another TUG member at your site, you
may indicate that member's name, and the infor-
mation will be repeated.

If your current listing is correct, you need not
answer these questions again. Your cooperation is
appreciated.

0 Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.A.

0 For foreign bank transfers
direct payment to the TEX Users Group,
account #002-031375. at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.h

General correspondence
about TUG should be addressed to:

T@ Users Group
P. 0. Box 9506
Providence. Rhode Island 02940-9506. L.S A

Kame: -

BUS , Address.

1 1 TGGboat back issues. 1980 1981 1982 1983 1984 1985 1986 I
$15.00perissue(16), (v.1) (v.2) (v.3) (v.4) (v.5) (v.6) (v.7)
circle issue(s) desired: #1 #1, 2, 3 #1. 2 #1, 2 # I j 2 #l. 2? 3 #1, 2, 3

Air mail postage is included in the rates for all subscriptions
and memberships outside North America. TOT,4L ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required)

AMOVNT QTY

Membership List Information

ITEM

1987 TUGboat Subscription/TCG hlembership (Jan.-Dec.) - North America
New (first-time): [] $30.00 each
Renewal: [] $40.00: 1] $30.00 - reduced rate if renewed before January 31,1987

1987 TUGboat Subscription/TLG Membership (Jan.-Dec.) - Outside North America
New (first-time): [] $40.00 each
Renewal: i 1$35.00: 1 1 $40.00 - reduced rate if renewed before January 31,1987

Institution (if not part of address):

Title:
Phone:
Ketwork address: [j ilrpanet [] BITnet

[] CSnet [) uucp

Specific applications or reason for interest in m:

Date:
Status of TE);: [] Under consideration

[] Being installed

[] Up and running since
-4pproximate number of users:

Version of mY: [] SAIL
Pascal: [] m 8 2 [] m y 8 0
[] Other (describe)

My installation can offer the following software or From rzihonl obtained:
technical support to TUG:

Hardware on which is to be used:
Operating Output

Please list high-level '@X users at your site who would not Conlputer(s) systemjs) device(s)
mind being contacted for information; give name. address. and
telephone.

Users Group 1987 Membership Form Page 2

Please answer the following questions regarding output devices used with 'Is
if this form has never been filled out for your site, or if you have new information.

Use a separate form for each output device.

S a m e Institution

A. Output device information
Device name
Model

Knowledgeable contact at your site
Name
Telephone
Device resolution (dot,s/inch)
Print speed (average feet/minute in graphics
mode)
Physical size of device (height. width. depth)

Purchase price
Del ice type

[] photographic i] electrostatic
[] impact [] other (describe)

Paper feed [] tractor feed
j j friction. continuous form
[] friction. sheet feed [] other (describe)

Paper characteristics
a. Paper type required by device

[] plain [] electrostatic
[] photographic [] other (describe)

b. Special forms that can be used [] none
[] preprinted one-part [j multi-part
[] card stock [] other (describe)

c. Paper dimensions (width. length)
maximum
usable

9. Print mode
[] Character: () .4scii () Other
[] Graphics [] Both charlgraphics

10. Reliability of device
[] Good [] Fair [] Poor

11. Maintenance required
[] Heavy [] Medium [] Light

12. Recommended usage level
[j Heavy [j Medium [] Light

13. Manufacturer information
a. Manufacturer name

Contact person
Address

Telephone
b Delivery time
(Service [] Reliable] L-nrel~able

R. Computer to which this device is interfaced
1. Computer name
2. 1Iodel
3. Type of architccturct*
4. Operating system

C. Output device driver software
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

D. Separate interface hardware (if any) between host
computer and output device (e.g. 280)

1. Separate interface hardware not needed because:
[j Output device is run off-line
[1 O/D contains user-programmable micro
[] Decided to drive O/D direct from host

2 . Name of interface tevice (if more than one.
specify for each)

3 hlanufacturer mforrnatmn
a hlanufacturer name

Contact pelson
Address

Telephone
b. Delivery time
c. Purchase price

4. Modihcations
i] Specified by Stanford
I] Designedlbuilt in-house
j] Other (explain)

5. Software for interface device
[] Obtained from Stanford
[] Lvritten in-house
[] Other (explain)

E. Fonts being used
[] Computer Modern

[] Fonts supplied by manufacturer
[j Other (explain)

1. From whom were fonts obtkined?

2. XreyouusingMetaforit'! [] Yes [j Ko
F . \That are the strong points of your output device?

G. What are its drawbacks and how have you dealt
with them'?

H. Comments - overview of output device

'3&X Users Group 1987 Membership Form

Request for Information

The Users Group maintains a database and
publishes a membership list containing information
about the equipment on which members' organiza-
tions plan to or have installed w, and about the
applications for which T@ would be used. This list
is updated periodically and distributed to members
with TUGboat. to permit them to identify others
with similar interests. Thus. it is important that
the information be complete and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of 7$jX and the hard-
ware on which it runs or is being installed. (Oper-
ating system information is particularly important
in the case of IBM mainframes and \.'AX.) This
hardware information is used to group members in
the listings by computer and output device.

If accurate information has already been pro-
vided by another TUG member at your site. you
may indicate that member's name. and the infor-
mation will be repeated.

If your current listing is correct, you need not
answer these questions again. Your cooperation is
appreciated.

0 Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

'l&X Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.4.

0 For foreign bank transfers
direct payment to the B Y Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

o General correspondence
about TUG should be addressed to:

TJ@ Users Group
P. 0. Box 9506
Providence, Rhode Island 02930-9506. U. S. A .

Name:
Home 1
BUS i Address:

1987 TUGboat Subscription/TUG Membership (Jan.-Dec.) - North America
New (first-time): [] $30.00 each
Renewal: [] $40.00: [] $30.00 - reduced rate if renewed before January 31.1987

1987 TUGboat Subscription/TUG Membership (Jan.-Dec.) - Outside North America
New (first-time): [] $40.00 each
Renewal: [] $45.00: [j $40.00 - reduced rate if renewed before January 31.1987

TUGboat back issues. 1980 1981 1982 1983 1984 1985 1986
$15.00 per issue (16), (v. I) (v. 2) (v. 3) (v. 4) (v. 5) (v. 6) (v. 7)
circle issue(s) desired: #1 # I , 2. 3 #I. 2 #1, 2 #I. 2 #I. 2) 3 #1, 2, 3

Air mail postage is included in the rates for all subscriptions
and memberships outside North America. TOTAL ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required j

Membership List Information

Institution (if not part of address):

Title:
Phone:
Network address: [] Arpanet [] BITnet

[] CSnet [] uucp

Specific applications or reason for interest in TEX:

My installation can offer the following software or
technical support to TUG:

Please list high-level TEX users at your site who would not
mind being contacted for information: give name, address, and
telephone.

Date:
Status of n Y : [j Under consideration

[] Being installed

i] Up and running since
Approximate number of users:

Version of m: [] SAIL
Pascal: [] w 8 2 I 1 TEY- 80
[j Other (describe)

From whom obtained:

Hardware on which '!&X is to be used:
Operating Output

Computer(s) system(s) device(s)

Revised 8/86

'J&X Users Group 1987 Membership Form Page 2

Please answer the following questions regarding output devices used with TEX
if this form has never been filled out for your site, or if you have new information.

Use a separate form for each output device.

Name Institution

A. Output device information
Device name
Model

Knowledgeable contact a t your site
Name
Telephone
Device resolution (dotslinch)
Print speed (average feet/rniiiute in graphics
mode)
Physical size of device (height. width, depth)

Purchase price
Device type

[] photographic [] electrostatic
[j impact [] other (describe)

Paper feed [] tractor feed
[] friction, continuous form
[] friction. sheet feed [] other (describe)

Paper characteristics
a. Paper type required by device

[] plain i : electrostatic
[j photographic 1] other (describe)

b. Special forms that can be used [j none
[] preprinted one-part [] multi-part
[] card stock [] other (describe)

c. Paper dimensions (width, lengt,h)
maximum
usable

9. Print mode
i] Character: () Ascii () Other
[] Graphics [] Both charlgraphics

10. Reliability of device
[] Good] Fair i ! Poor

11. Maintenance required
[] Heavy [] Medium [] Light

12. Recommended usage level
1] Heavy [] Medium [] Light

13. Manufacturer inforinatiori
a. Manufacturer narne

Contact person
Address

Telephone
b. Delivery time
c. Service [] Reliable [] Unreliable

B Computer to which t h ~ s device 1s interfaced
1 Computer name
2 hIodel
3 Type of architecture *
3 Operating system

C. Output device driver software
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

D. Separate interface hardware (if any) between host
computer and output device (e.g. 280)

1. Separate interface hardware not needed because:

[] Output device is run off-line

[] O/D contains user-programmable micro

1 ; Decided to d r i ~ e O/D direct from host
2. Name of interface device (if more than one,

specify for each)

3. Manufacturer information
a. Manufacturer narne

Contact person
Address

Telephone
b. Delivery time
c. Purchase price

4. SIodifications
[] Specified by Stanford
[] Designed/built in-house
[] Other (explain)

5 . Software for interface device
[j Obtained from Stanford
[] Written in-house
i] Other (explain)

E. Fonts being used
;] Computer Modern

i] Fonts supplied by manufacturer
[] Other (explain)

I . From whom were fonts obtained?

2. Are you using Metafont? [j Yes [] No
F blhat are the strong points of your output device?

G. What are its drawbacks and how have you dealt
with them?

H. Comments - overview of output device

* If your comput.er IS "software compar ,b le" w i t h a n o t h e r
t y p e (e g Arndah l w i t h I B h l 3 7 0) . i n d i c a t e t h ? t y p e here .

Revised 8; 86

TUGboat. Volume 8 (1987), Yo. 2

Order Form

The current versions of the public domain software, as produced by
Stanford University, are available from Maria Code by special arrangement
with the Computer Science Department.

Several versions of the distribution tape are available. The generic ASCII
and EBCDIC tapes will require Pascal compiler at your installation. Each
tape contains the source of T@Y. and WEB (a precompiler language in which

is written). and METAFONT. It also contains font descriptions for
Co~nputer Modern. macros for AJIS-TEX. L-X. Sl imy and HP 7$X. some
sample "change files". and many other odds and ends.

Ready-to-run versions of are available for DEC VAX/VMS. IBM
VM/CSIS and DEC 20/TOPS-20 formats. They contain everything on the
generic tape as well as the compiled programs. This means that you will not
need a Pascal compiler unless you want to make source changes. Order these
tapes if and only if you have one of these systems.

The font tapes contain GF files for the Computer Modern fonts. While it is
possible to generate these files yourself, it will save you a lot of CPU time to
get them on the tape.

The price of the tapes now includes the cost of the tape reels. Either 1200'
or 2400' reels will be used depending on the needed capacity. If you order
a distribution tape and a font tape. they will most like11 be put on a single
2400' foot reel A11 tapes are 1600 bpi.

Please take care to fill in the order form carefully. Note that postage (other
than domestic book rate, which is free) is based on the total weight and
postal class which you select. Sales tax is added for orders with a shipping
address in California.

The order form contains a place to record the name and telephone number
of the person who will actually use my. This should not be someone in the
purchasing department.

51ake checks payable to Maria Code. Export orders must send checks which
are drawn on a LTS hank. International money orders are fine. Purchase
orders are accepted if your company has a policy of prompt payment (30
days maximum).

khur order will bc filled with the current versions of software and manuals
at the time it is received. Since some versions are "pre-announced", please
indicate if you want to wait for a specific version.

Telephone calls are discouraged. but if you must call, please do so between
9:30 a.m. and 2:30 p.m. LYest Coast time. The number for Maria Code is
(408) 735-8006. Do not call for advice or technical assistance since no one is
there who can help you You may try Stanford or some other of the helpful
people whose names appear in TLGboat.

TEX Order Form

TUGboat, Volume 8 (1987), No. 2

Distribution tapes:
ASCII generic format
EBCDIC generic format -

Jr14,Y/VMS Backup format -
DEC 20/TOPS-20 Dumper format
IBM VM/CMS format Tape prices: $92 for first tape,

- $72 for each additional tape
Font tapes (GF files):

2001240 dpi CJ l fonts
300 dpi CM fonts

Documents:
lJjXbook (vol. A) softcover
TE)C: The Program (vol. B)
METAFONTbook (vol. C) softcover
METAFONT the Program (vol. D)
Computer Modern Typefaces (vol. E)
WEB language *
TpXware *
B i b m y *
Torture Test for *
Torture Test for METAFONT *
Is\mY - document preparation system

* published by Stanford University

-4110~ 2 lbs shipping weight for -
each tape ordered.

Price $
25.00
37.00
22.00
37.00
37.00
12.00
10.00
10.00
8.00
8.00

25.00

Payment calculation:
Number of tapes ordered Total price for tapes
Number of documents ordered Total price for docunients

Add the 2 lines above
Orders from within California: Add sales tax for your location

Shipping charges: (for domestic book rate, skip this section)
Total weight of tapes and books Ibs.
Check type of shipping and note rate:

domestic priority mail: rate $1.00/lb.
- air mail to Canada and Mexico: rate $1.50/lb.

export surface mail (all countries): rate $ 1.00/lb.
air mail to Europe. South America: rate $4.00/lb.
air mail to Far East. Africa, Israel: rate $6.OO/lb.

Multiply total weight by shipping rate. Enter shipping charges:

Total charges: (add charges for materials, tax and shipping)

Methods of payment: Check drawn on a US bank. Make payable to Maria Code
International money order.
Purchase order (maximum 30 days allowed for payment)

Send order to: Maria Code. Data Processing Services,
1371 Sydney Drive, Sunnyvale, CA 94087

Name and address for shipment:

Contact person (if different from above):

Telephone.

9 86

TUGboat, Volume 8 (1987), No. 2

Output Devices

Index to Sample Output
from Various Devices

Camera copy for the following items in this issue
of TUGboat was prepared on the devices indicated.
and can be taken as representative of the output
produced by those devices. Some items (noted
below) were received as copy larger than 100%;
these were reduced photographically using the PMT
process. The bulk of this issue has been prepared at
the .American Mathematical Society, on a VAX 8600
(VMS) and output on an APS-p5 using a newly-
installed set of resident CM fonts.

Apple Laserwriter (300 dpi):
Alec Dunn, Using Postscript with m,
pp. 1718; VAX 111780 (VMS).
FTL systems Inc. advertisement, cover 3.
ArborText advertisement, p. 244.
Autologic APS-p5 (1440 dpi):
Donald E. Knuth, Digital halftones,
pp. 1358, except for the last two pages, which
were set at AMS; DEC 10 and DEC 2065.
Canon CX (300 dpi):
Metafoundry advertisement, p. 252.
Corona LP300 (300dpi):
Personal l$$ advertisement, p. 238.
IBM 3820 (240 dpi):
Gil Pierson, SAS merged with 3&.X,
p. 178; Amdahl 470V/8 (MVS).
Imagen 81300 (300dpi):
Donald E. Knuth, some of the illustrations
(as marked) in Digital halftones, pp. l35ff.
Charles Lehardy, Diglot typesetting, pp. 1908
(article reduced to 95%; example reduced
to 90%); Integrated Solutions 6810 (Unix).
Yasuki Saito, Report on m: A Japanese
m, pp. 103ff; DEC 2065.

1 Coming next issue

Generating an APL font

0 1 2 3 4 5 6 7

H I J K L M N O 01
a b c d e f g

h i j k l m n c

p q r s t u v w

x y z { l)

Personal w T

Now for the PC!
'IjjX 2.0, METAFONT L O !

lnc . . . now offers a list of software, fonts and hardware so that we can be
your complete 'JJjX outfitter for P C and AT workstations. We have joined forces with ArborText,
n2 Computer Consultants, the Metafoundry, FTL Systems, and Aurion Technology to bring you
these products:

P C m Q A full w 8 2 , version 2.0, including INITEX, bw 2.09, b'QjX User's Guide,
A N S - w , and Mike Spivak's P C T n Manual and VAKILLA macro package.
33% faster than version 1.01! Runs ~ T E X in 512K RAM! $ 2 4 9 .

P CmMF A full METAFONT, version 1.0, for the PC/XT, AT and compatibles. Includes
T h e METAFOKTbook and a complete set of Computer Modern typeface description files.
Useful for scaling existing fonts and creating new ones. $ 1 9 5 .

P CD OT Device drivers for dot-matrix printers. $95. each.
P Ckaser Device drivers for laser printers, including HP LaserJet Plus and Postscript

devices. $175. to $225. each.
Preview ArborText's popular Preview for the PC, now with a host of new features,

including side-by-side page viewing and vertical scrolling through a document. $175.

MAXview A new screen preview program, written by Max Diaz of Aurion Technology.
This program has a good basic set of features and works with 13 different graphics adapters,
including CGA, EGA and Hercules. $125.

DVISCRN A new screen preview program from n2 Computer Consultants. This
program also has a good basic set of features, and works with a variety of graphics adapters,
including CGA, EGA and Hercules. $125.

Mac= l)i$ for the Macintosh, from FTL Systems. Includes Editor, Preview and
Postscript driver. $750. plus $100. for each additional license.

M F Medley C h e ~ fonts (Computer Helvetica, shown here), and Copperplate, Black
Letter and Schoolbook headline fonts. $100.

HARDWARE:

Cordata Laser Printer Includes P C m Y , driver and fonts. Only $2695.

JLASER Makes any Canon LBP-CX laser engine a TEX device. From $699.

Join thousands of satisfied P C W users. Write or call us today for complete product informa-
tion. Inquire about educational and corporate discounts and site licensing.
P C W Bulletin Board: (415)388-1708. 300/1200/2400 baud.
System requi rements: D O S 2.0 o r la ter , 512K R A M . 10M hard disk. Screen preview programs require appropr ia te graphics adapter .
Corona Laser P r in te r requires addi t ional 512K RAM disk. Prices a re fo r U.S. on ly a n d do not ii iclude s l i i p p i ~ ~ g . Orders outs ide the
U.S. must be placed th rough distr ihr i tors listed helow. M a s t e r c a r d , Visa accepted.

lnc

12 Lladrona Street
Mill Valley, CA 94941

(415) 388-8853 Telex 510-601-0672

Dist r ihntors : C a n a d a : D o c i ~ s o f t , Vancouver, (G04) G87-0354; U K : Un i '& ,X S y s t e ~ n s , Sheffield, (0742) 351 489;
G e r m a n y : Ke t t l e r EDV-Consult ing, Leng.gies, (08042) 8081: F r a n c e : P robe In for inat ique, Trappes, (01) 30G2 2G03;
I r e l a n d : UniTpjY. Dnbl i i l . 772041 ~ 1 0 8 3 : A u s t r a l i a : T h e Wordworks, A C T , (062) 572803:
M e x i c o : Aurion, Mexico City. (905) 531-9748; S c a n d i n a v i a : In terbase, Vedhiek D K , (02) 891847.

Trade1nai .k~: pc'&X, Persoiial mX. I n c . . MacT@, FTL Systems; m y , American Matl ieinat ical Society. Manufactnrer 'a product
l lalnes are trailetiixrks of iiiiiividual ii iallufactiirers.. Th i s ad produced using P C W , a n d pr in ted on a Corda ta LP-300.

M a c r o w Table Making . . .
\verticallines
\horizontallines
\autosizetable
This is&Autosizetable\cr
The VJidthkof Each Column\cr
is automatically determined&
by the width of the
contents. \cr
\endautosizetable

\horizontallines
\vert icallines
\autowraptable(. 5\hsize)
(.S\hsize)*
This is&Autowraptable\cr
Contents of each column will
automatically wrap within
the column.&
As you see in these
examples\dots\cr
\begincode
Verbatim text can
be included
- % - a \
\endcode
&Display Equations :
$$\lambda=\lambda' +i\lambda
\eqno((3 . 4) 3$$\cr
\aut ocent er
Autosizetable and
Aut owrapt able
will

continue over
many pages
automatically
\endaut oc enter
&Macro\TeX\ Listing:
\beginlist(\outline)
\list*
Here is a
\list* Tiny List

More things
\endlistlevel
Back again
\endlist\endautowraptable

I The Width I of Each Column I
This is

I is automatically determined I by the width of the contents. I

Autosizetable

This is

Contents of each col-
umn will automati-
cally wrap within the
column.

Verbatim text can
be included
- % - k \

Autosizetable and
Autowrapt able

will

continue over
many pages

automatically

Autowraptable

As you see in these examples. . .

Display Equations:

x = X' + i X (3.4)

M a c r o w Listing:

I. Here is a

A. Tiny List

B. More things

11. Back again

A 'QX toolkit, containing Macros for Book and Software
Documentation Formats, Table of Contents generation, In-
dexing, Cross-Referencing, Glossary production, and many
more.

For information and order form, please write or call
Amy Hendr ickson
57 Longwood Avenue, Brook l ine MA 02146
(617) 738-8029

nology Inc.

A Gourmet Guide to Typesetting
with the AMS -TEX macro package

M. D. SPIVAK, Ph.D.

The J o y of l&$ is the user-friendly user's
guide for AMS-TEX. an extension of TJ$.
Donald Knuth's revolutionary program for
typesetting technical material. &S-TJ$
was designed to simplify the input of math-
ematical material in particular, and to for-
mat the output according to any of various
preset style specifications.

There are two primary features of the
TEX system: it is a computer system for
typesetting technical text, especially text
containing a great deal of mathematics:
and it is a system for producing beautiful
text, comparable to the work of the finest
printers.

Most importantly. w ' s capabilities are
not available only to w p e r t s . While
mathematicians and experienced technical
typists will find that TEX allows them to
specify mathematical formulas with great

accuracy and still have control over the fin-
ished product. even novice technical typists
will find the manual easy to use in helping
them produce beautiful technical w t .

This book is designed as a user's guide
to the A M S - w macro package and details
many features of this extremely useful text
processing package. Parts 1 and 2. entitled
"Starters" and "Main Courses," teach the
reader how to typeset most normally en-
countered text and mathematics. "Sauces
and Pickles." the third section. treats more
exotic problems and includes a 60-page dic-
tionary of special m n i q u e s .

Exercises sprinkled generously through
each chapter encourage the reader to sit
down at a terminal and learn through ex-
perimentation. Appendixes list summaries
of frequently used and more esoteric sym-
bols as well as answers to the exercises.

4gM!M~+ ISBN 0-8218-2999-8, LC 85-7506
e T ' 290 pages (softcover), 1986 $0 AMS Indw Memb $26, AMS Ins; @ Memb $30, Llst prlce $33 ?e&;p To order speclfy JOYTIT

''\i%'\ Shlppmg/Handlmg 1st book $2, each
add'l $1 max $25 by a x , 1st book
$5, each add'l $3, max $100

PREPAYMENT REQUIRED. Order from
American Mathematical Society
P O Box 1571
Annex Station
Providence, RI 02901-9930

or call 800-556-7774 to use VISA or Mastercard

Prices subject to change

anci service
I ant,

uality typeset ou
We're the leader in offering low prices and in provid-
ing fast turnaround for your DVI files. We can process
your work for as little as $2.50 per page with overnight
turnaround.

Available soon. TmSource will be able to output your
CMR files on high quality resin-coated (RC) paper.

an proofing
Text with math. See your Times Roman output on your
laser printer or screen previewer before you send it to us
for high quality output. We provide pixel (.pxl) and T m
font metric (.tfm) files.

Call for more information about
our products and services.

3333 West Alabama, Suite 1 1 1 1 Houston, Texas 77098
W S o u r c e is pleased to announce that it is represented in Scan-
dinavia by KAOS A/S in Oslo, Norway. Mr. Bruce Wolman is the
person to contact and he can be reached at the following address:
KAOS .4IS, Box 3 169 Elisenberg. 0208 Oslo 2, NORWAY
Telephone: 2-59-02-94

The copy for this ad was set at W S o u r c e using Times Roman fonts.

C O M P L E T E

S E R V I C E S
TYPESETT

If you are creating your book files with TEX,
puter C o position Corporation can now offer

NG

the followi g services:

- Converting T@ DVI or source files to the fully paginated
typeset page in either Computer Modern (from DVI files)

es Roman typefaces (from source files).

- Providing 300 dpi laser-printed page proofs (when source
files are submitted) which simulate the typeset page

- Keyboardin services, from traditionally-prepared
manuscripts via the T p processing system.

- Camera work services, including half-tone, line-art,
screens, and full page negatives.

Call or write us for sample pages in both
Computer Modern and Times Roman.

C O M P U T E R C O M P O S I T I O N C O R P O R A T I O N

1401 WEST G I R A R D M A D I S O N HEIGHTS, MICHIGAN 48071 (31 3) 545-4330

P.O. Box 4448, Ithaca, NY 14852 (800) 482-4438, ext 15, in NYS (800) 435-4438, ext 15

MathWriter, the elegant tool for creating mathematical expressions, has just become more useful
to TUGboat readers. With the new Macintosh desk accessory, MW2TeX, you can automatically
translate the 'wysiwyg' MathWriter data structures into standard TeX code! These two programs
provide the much-needed visual tool for creating TeX code for mathematical expressions. Imagine
being able to learn to produce TeX code for complex expressions in a few hours!

Features:
Point and click or key-stroke entry of expressions in conventional notation

* Immediate visual feedback with interactive screen refresh
Greek and user-selected alphabet on-screen
Automatic handling of font sizing and character placement
Automatic sizing of parentheses, braces, brackets, etc. t-lath'w'ritcrR~'
Up to 10 expressions can be stored for repeated usage

* Extensive editing capability
Choice of output printed : Imagewriter, Laserwriter
Choice of external storage: clipboard, MacDraw, MacPaint and MathWriter files, and
with MW2TeX you can also produce ASCII files of TeX code.

6 File Edit Trig Pa le t tes Oiac. Fonts FontSize Style TeH

$$V=\sumA{m=\ in f tyMm= 1 l\sumA{n=\inftyl-{n=
1)A-{m,nl\sqrt{{ \s inh\pi(c-z)\sqrt{{mm2\over
a'2)+InA2\over b*2}l\over \sinh\pl
c\sqrt{ im^2\over aA2}+W2\over b'2lill

INEXPENSIVE - $99.90
license ($49.95 each) in-
cludes UPS ship~ing within
US, 100+ page manual,
Switcherm, and system
files including printer
drivers. Macintosh 512K
and larger; a Mac I1 version
is also available. US $; NYS
residents include tax.

MathWriter and MW2TeX are trade-
marks of Cooke Publications. TeX is a
trademark of the Amer. Math. Soc.

With The PublisherTM, what you see is a great
deal more than with other publishing systems.
On the

to the left, all tags marking document structures
are suppressed. In the middle window, most
tags are replaced by icons. The right window
displays all tags. When you want to see the ex-
act representation of the document on-screen,
just format it and a second window will show you
the fonts and character placement as they will
appear on the printed page. You can even edit
or change style options while your document is
formatting.

The Equation Maker

The main feature of the What-You-See-ls-What-
You-Get Equation Maker pictured below is a sep-
arate Equation Edit Window that allows you si-
multaneously to enter symbols and to view your
equation. Among other options provided are a

POP-UP
screen, menu
you see from
a full which
func-
tion,
sophisticated composition system with WYSI-
WYG math and tables, general purpose paint
and draw software, an easy-to-use editor with
mouse and keyboard commands, and a flexible
set of style options for complex page layouts. On
the printed page, you see T@'s high quality ty-
pography, top notch hyphenation, complicated
page layouts, and Postscript fonts.

Hidden from most users of The Publisher, T@
provides a level of sophistication and device in-
dependence in formatting that very few systems
can match. The Publisher uses a version of TEX
that is upwardly compatible with all standard im-
plementations of Ti+ and produces standard .dvi
output files; however, The PublisheJs version of
TEX allows for interactive page-by-page process-
ing and faster document production.

Editing

The Publisher features an easy-to-use, full-featured,
unpaginated WYSIWYG editor. Within the edi-
tor, you can choose how the formatting tags are
displayed-whether they are off, on, or repre-
sented by icons. In the left window of the graphic

YOU
can se-

lect a wide range of mathematical symbols and
functions, and a customizable character palette.
Standard keyboard characters can be used in
the Equation Maker as well. When you exit from
the Equation Maker, the equation appears in the
Edit Window.

The Table Maker

The What-You-See-Is-What-You-Get Table Maker
allows you to design complex tables for your
Publisher documents that can be edited and re-
edited with the click of a mouse button. Now for
the first time, complex tables can be created by
everyone without entering a single backslash.
You design your WYSIWYG table and let The
Publisher take care of the rest.

The Table Maker features a separate window
in which to choose any number of rows and
columns, design the appearance of the rules,
and enter and edit text. To widen a cell while
creating a table, just hold the left mouse button
down with the mouse arrow over a vertical rule
and

Special Offer

During the beta period, we are offering The Pub-
lisher

"drag" at half
the rule off the
left or regular
right price.
using
the on-screen ruler as a width gauge. The fin-
ished table is automatically placed in-line in the
Publisher Edit Window.

Graphics

The Publisher features integrated, full function
paint and draw programs. YOU can rotate, shade,
merge, and imporuexport graphics; draw circles,
squares, curves, and arcs; magnify images; de-
sign your own patterns and brushes; and label
your drawings with Postscript fonts. And the list
goes on. Also included is Pubgrab, a program
that allows you to "grab" any region of the Sun
Workstation screen and include it in your docu-
ment. The Publisher can then resize'the graphic
to your specified magnification.

This of-
fer ends when we officially release version 1.0
in the fall. If you are interested in The Publisher,
just call or send in the form below.

TEX is a trademark of the American Mathematical Society. Postscript
is a trademark of Adobe Systems. Inc. Sun is a trademark of Sun
Microsystems, Inc.

Yes, I am interested In receiving:

Ga call. G literature.
Name

Title

Address

City State Zip

Country

Business Phone (1

Computer Hardware

Why to lose time and to find you have made a mistake?

Today TEX can be easier to use

easyT$ Release 1 .O.
the interactive Formula Editor running on PC-IBM compatibles

saving formulae typesetting time using TEX.

TE CO GRAF Via Plinio. 11 20129 Milano ITALIA. Tel. 02 208150 - 278063. Telex 340160 Per
Tecograf.

Please send me more information about easyT@.
. Name

.
. Address

.

This tec

People don't like to tear up their copies of TUGboat. They're
much too valuable. But don't let that deter you from ordering
our products, includmg TEXT~JRES v.1.0 and the new CM Drivers
for MicroT~X.

So please, take this coupon to your nearest copier and zapf a
copy to us. Or give us a call at 617-944-6795.

ISON-WESLEY
EMS D~v~s ion , Read~ng, MA 01867

Site Licensing, Network Licensing,
Training, Service, and Support.

Addison-Wesley T@ Products Order Form
To order TEXTURES? MicroTEX, or related products, fill out the following information and return this form. For further
information call (617) 944-6795. Send this form to Addison-Wesley, 12 Jacob Way, Reading, MA 01867, Attn: EMSD Sales.

TEXTURES'" Professional Typesetting for the Macintosh
. TEXTURES $495.00

TEXTURES Style Masters (Macro packages with pre-defined formats):
LAT~X Style Masters (Available summer 1987). $44.95

13 AMS-TEX Style Masters (Available summer 1987) . $44.95

MicroT~X Professional Typesetting SystemT" for the
IBM PC and Compatibles

MicroT'X, Preview and an EpsonIIBM dot-matrix printer driver . $469.95

MicroT~X, Preview and one laser printer driver below. $595.00
0 Postscript printer driver
17 HP LaserJet+ printer driver
O QMS QUIC printer driver
O Imagen Impress printer driver

Additional drivers may be purchased separately:
. PostScript printer driver $300.00

. C: HP Laserjet+ printer driver $300.00
. 0 QMS QUIC printer driver $200.00

. O Imagen IMPRESS printer driver. $200.00
. O IBMIEPSON printer driver. $100.00

. Preview driver $250.00
MicroT~X Style Masters (Macro packages with pre-defined formats):

O LAT~X Style Masters. $44.95
U A ~ ~ S - T E X Style Masters (Available summer 1987) . $44.95

MY CHECK OR MONEY ORDER IS ENCLOSED
Addison-Wesley will pay postage and handling (please include local sales tax).

CHARGE IT TO MY CREDIT CARD
I'd like to charge my order. I understand I'll be charged for local sales tax, plus shipping and handling.

VISA MasterCard American Express Acct #

(Mastercard Interbank #) Exp. Date

Signature

PURCHASE ORDER ENCLOSED

PLEASE SHIP VIA: UPS US. Mail Phone (-1

Name Title

Address

Company

City State Zip

ages to Make Work Easier
Polyglot, h e . has solved those annoying little probl&s that prevent you from being

maximally efficient when using TEX with foreign languages.

Hy-TEX " - The Multilingual Hyphenator
To-TEX "- The Multilingual Accentor

JET:SPELL- The Multilingual Spelling Checker
A series of advanced linguistic products from Polyglot

Hy-TEX correctly hyphenates files in 13 languages, acting as a filter between the editing stage and the TEX
stage. Hy-TEX reads your TEX file from standard input, inserts soft hyphens (\-) at the appropriate places in
all words longer than 5 characters, and writes the result in standard output. And Hy-TEX works completely
transparently for the user without modifying your input fde. Available for:

American-English British-English French Qutbtcois-French Italian
German Spanish Dutch Danish Swedish
Norwegian Finnish Portuguese

To-TEX converts accented characters as well as Greek and Mathematical symbols allowed by the IBM
extended character set, into valid TEX control sequences.

The only standalone multilingual spelling checker available anywhere, JEESPELL is so fast and powerful that
one reviewer thought it wasn't even working! The program uses sophisticated morphological analysis to
provide accuracy and completeness of verification far beyond what most spelling checkers can offer. In
addition to its eleven languages, JET:SPELL includes nine user-tailorable dictionaries in which to store names
and terminology particular to your work. Available for:

American-English British-English French QutbCcois-French Italian
German Spanish Dutch Danish Swedish
Norwegian

All Polyglot programs run on any IBM-PC or truly compatible computer and are accompanied by complete
user instructions. Hy-TEX needs 256KB of RAM; JET:SPELL needs 384KB of RAM.

ORDER NOW PAYMENT
Hy-TEX ... $49.95Panguage e VISA, Mastercard, checks; for overseas orders
(20% discount on orders of five or more languages) we accept bank drafts in US$ on a US bank.
To-TEX .. $29.95 Colorado residents add appropriate sales tax.

JETSPELL .. $109.95 All prices include standard shipping to cities
(Multilingual System disk, one language dictionary) within the continental United States. Rush
JETSPELL Dictionaries $59.95/language delivery and overseas airmail, add $10.

ADDRESS INQUIRIES AND ORDERS TO:
Polyglot, Inc., 2450 Central Avenue, Suite P4, Boulder, Colorado 80301 USA
Tel: 3031449-7002; Telex: 353069; Telecopier: 3031449-2897; MCI Mail: 266-0370
TEX is a trademark of the American Mathematical Society.
JETSPELL and Polyglot are registered trademarks of Polyglot, Inc.

Tfi Typesetting Services

The American Mathematical Society can produce typeset pages from your DVI or source
files. Features of our services include:

a QUALITY - We use an Autologic APS a SPEED - Turnaround time is no more
Micro-5 typesetter. than one week for up to a 500 page job.

a FONTS - We ofFer AM. CM and Times a EXPERIENCE - I f you have a problem
Roman. Several more Autologic typefaces with a DVI or source file, we can usually
will be added in the near future. solve i t with our staff who are trained in

a LOW-COST - We charge only $5 per T ~ X .

page for the first 100 pages: $2.50 per page a FULL-SERVICE - We also offer keyboard-
for additional pages. ing, camera work, printing and binding ser-

vices.
I

For more information, or to schedule a job please contact Regina Girouard
3

American Mathematical Society (401) 272-9500
PO BOX 6248 800-556-7774
Providence. RI 02940

TV GUIDE, the nation's best-selling weekly magazine, is on the front edge of an exciting
adventure in the use of TEX in a commerical environment. The suburban Philadelphia-based
publishing company is looking for applicants with T~XpertiSe to create, via TEX, an
automated operation supporting the varying page formats and layouts of the magazine.
As such, the individual will be involved in:

creating TEX macros;
building fonts and television listing grids;
creating a page description enviroment to interface with and support the feature
and listings sections of the magazine;
automation of page layout functions, integrating images and text;
building interfaces to TEX which will allow its operation in a production environment

I The successful applicant will be someone who:

has extensive T~xperience, including use of PC TEX;
has programming experience, perferably in C or PASCAL;
is familiar with micrc computer technology;
has had exposure to and use of Metafont and other TEX add ons.

I A B.S. in computer science, or the equivalent, is required. Salary will be commensurate
with experience. Please send resume, including salary requirements to:
Margaret A. Beard, Personnel Administrator, TV GUIDE, Radnor, PA 19088.

NEENl E BILLAWALA M e t a f o n t Consul t ing

(41 5) 965-0643 2014 Coon i . 23 hlt View C 4 04043

I ndex o f Advert isers

248
240, 251

244
247
242
243

cover 3
252
252
238
250
246
239
241
251

Addison- Wesley
American Mathematical Society
ArborText Inc.
Cahners Exposition Group
Computer Composition Corporation
Ccoke Publications
FTL systems Inc.
The Metafoundry
Neenie Billawala
Personal
Polyglot. Inc.
Te Co Graf
w n o l o g y , Inc.
?"&YSource
TV Guide

V

@T The Newest in T@-Compatible Fonts

WERE MAKING
HEADLINESa

Dublin - Metafoundry fonts are making headlines,
invitations, mastheads, newsletters and a myriad
of other documents, without giving up any of the
power and precision of T@. First, there are our
complete families (including math symbols, math
italic and extensible) in a crisp sans serif and in
a Roman that is lighter and more compact than
CMR.

In addition, we are now proud to offer a Deco-
rative package made up of specialty fonts and
symbols to add spice to your T@ creations. Out-
line fonts. Black letter fonts. Even a Copperplate
script font.

Finally, we offer a Slavic package of Cyrillic and
slavic characters in Roman and sans serif styles
compatible with our English fonts.

These fonts are useabie with most versions of
TEX. All are supported for 300 dpi positive imaging
machines.

We think you'll be impressed with the quality and
versatility of our fonts. For more information, con-
tact one of these companies who distribute to
members of the TEX users group:

ASCII Corporation
Tokyo, Japan

Comp-U-Calc, Inc.
Great Bend, Kansas

Personal T@, inc.
Sunnyvale, California

UniT$ Systems
Sheffield, England

To receive copies of our four product catalogues,
send a check (payable to OCLC, Inc.) to cover
shipping and handling to The Metafoundry, 6565
Frantz Road, Dublin, Ohio 43017. Cost is $6.00 if
shipping address is in the U S . or Canada, $1 5.00
elsewhere.

The MetafoundryTM
Digital Typography & Font Design

