
186 TUGboat, Volume 9 (1988), No. 2

Some Problems with the

INRSTJ~~X Table Making Macros

Michael J. Wichura
University of Chicago

The I N R S W table making macros distributed
with W n i q u e s Number 2 greatly simplify the task
of making ruled tables in W . There are, however,
some (admittedly uncommon) circumstances under
which the macros don't work as advertised or have
adverse consequences. This article brings to light
several such problems and suggests ways to correct
them. Be forewarned that the issues here are fairly
W n i c a l - the kind of material that is marked with

I

dangerous bends in The m b o o k .

1 A problem with \ l e f t , \ r i gh t , and \-

The I N R S W macros break what I would propose
as the first commandment for authors of macro
packages: Thou shalt not redefine a l&Y primitive.

\ l e f t and \ r i gh t are TEX primitives that are used
to make variable size delimiters in math mode.
Within the table environment, however, I N R S W
preempts the meanings of \ l e f t and \ r i gh t to
control the positioning of items within columns.
The original meanings of \ l e f t and \ r i gh t are
gone, and macros, such as Plain W ' s \big, \bigg,
\Big, and \Bigg, that rely on those meanings being
in force won't function properly. You'd be in for
'big' trouble if you tried to make a table whose
entries involved some heavy math.

There's a similar problem with \-, which INRS-
TEX uses to draw horizontal lines in tables. \- is
w ' s primitive for a discretionary hyphen. If
you planned to make a table having (presumably
narrow) paragraphs as entries, you might well want
to use \-'s to assist W in hyphenation.

These difficulties wouldn't exist if I N R S W
had chosen slightly different names, say ' \Left7,
'\Right7, and ' \ H r ' , for its commands. Name
changing is not a feasible option at this point

because the macros are already widely used. The
macros can and should be supplemented by a
command which i,,akes the original meanings of
\ l e f t , \ r i gh t , and \- available within the table
making environment. The command \restore-
TeXprimitives (\rTp for short) defined below does
just that.

\ le t \TOXleft=\ lef t
\ let\TOXright=\right
\let\TOXdiscretionaryhyphen=\-

\let\rTp=\restoreTeXprimitives

This code should be inserted at the end of the
I N R S W macros, just before the line that reads
'\catcode\Q=12'. With this code in place, you
could, for example, typeset the expression

in a column with a display-style math template by
entering '\rTp \ l e f t ({a-l\over b-13 \ r ight) ' .
It's not necessary to enclose such usages of \rTp in
a group ({ ...)), since an I N R S W table is created
with an \ h a l i p and since rn automatically enters
an additional level of grouping when it works on
each individual entry to an \ h a l i p .

There's a related problem concerning I and \ I,
which Plain W uses as delimiters in math mode,
but which I N R S W preempts to draw vertical
rules in tables. One could augment the definition of
\restoreTeXprimitives to cover I and \ I as well,
but there's a good reason not to do so. The table
making macros set things up so that I and \ I signal
the end of a data column. If you were to restore the
original meanings of these control sequences with
\rTp, then you would have to enclose every usage
of \rTp in a group. That's a greater burden than
having to use Plain m 7 s synonym \ver t for I,
and \Vert for \ I.

2 Problems with \zerocenteredbox

The command \zerocenteredbox (\zb for short)
centers its argument vertically in a box of zero height
and depth. I N R S W provides this feature as a
means of doing some makeshift vertical spanning
within tables. The manual asserts that \zb works
correctly "even with display math templates". This,
however, is not the case. The problem arises
because display math templates have the form
$\displaystyle{#)$ (and so should more properly
be called display-style math templates), whereas
\zb uses an \ i f type test for display math mode
(what you get between pairs of $$'s). There is, in

fact, no \ i f type test for display style. One has
to use, instead, a \mathchoice or \mathpalette
construction, as explained on page 151 of The
m b o o k . The following code (re-)defines \zb
correctly, in the way Plain W defines \phantoms
and \smashes.

TUGboat, Volume 9 (1988), No. 2 187

The \relax on the second line of the code is
important, for reasons explained on page 240 of The

W b o o k . There's no such \relax in INRSTQX's

definition of \zb, and that version of the macro

malfunctions when it appears as the first token

in a table entry for a column with a math- or

display-style math template.

3 Problems with \modif ystrut (alias \mst)

and \sa

These very useful commands allow you to fine

tune the vertical and horizontal spacing in a table

through appropriate struts. The commands, how-
ever, don't work in math modes. The I N R S W

manual sidesteps this issue by using constructions

like '\mst{\int){Opt){3pt)'. In a column with

a math template it would be preferable to enter just

'\mst (\ int){Opt)(3pt)'. The following macros

(re-)define \modif ystrut and \sa so that they

work in math modes as well as in horizontal mode.

The idea is to again use a \smash-type construction;

the macros for \mst are a little more complicated

because they have to take into account additional

arguments (e.g., the 'Opt' and '3pt' in the example

above).

\def\modifystrut#1#2#3{%

% #I = original

% #2 = add to height

% #3 = add to depth

\relax

\if m o d e

\def \next {%

\mathchoice

{\m@thmst\displaystyle{#1){#2){#3~~

(\m@thmst\textstyle~#1~~#2~{#3~~

The INRSQX manual states that the first
argument to \mst can "even be a duplication of

the row, as long as the row contains no explicit

& characters and excluding the commands \br and

\er." This assertion is correct if you use just

the simple \left. \right, and \center templates.

and if. as in all the examples in the I N R S W

manual. \mst appears as an argument to \br or

\er. Otherwise, the assertion may be false, since

\mst doesn't take templates into account, and since

the definitions of the active characters I and "
involve t ' s when INRSQX is working between \br

and \er.

4 A problem with \use

\use{<number of data columns>) is asserted to

"merge the next <number of data columns> into

one and use the format or template of the last

one." And so it does, unless <number of data

columns> is one: '\use{l)' results in an error

message from TEX. According to the intended use

of \use, '\use(1)' should be the same as (null). To

achieve this, \use should be (re-)defined as follows:

TUGboat, Volume 9 (1988), No. 2

5 Problems with \thrule

The command \thrule{<height>) is supposed to

insert a horizontal rule of thickness <height> across

an entire data column. But if you enter, say.

. . . \thrule(2pt)(. . .
no rule is drawn; the rule is drawn if you enter

. . . \thrule(2pt),l . . .

This puzzling discrepancy arises because \thrule

uses a \leaders construction, and because INRS-

makes I an active character whose expansion

begins with \unskip when INRSmX is working

between \br and \er. \unskip removes any

glue item that immediately precedes it; this is

what allows the I N R S W manual to state that the

command I "removes spaces to its left." (Remember

that TEX treats two or more spaces the same as

one space. and that a space is (normally) a glue

item.) Leaders, however, are themselves a special

kind of glue, so in the first example above the

\unskip removes the leaders and no rule is drawn.

By contrast. in the second example the \unskip

removes just the , and the rule is drawn. The

way to solve this problem is to place an invisible

non-glue item after the leaders, as in the following
re-definition of \thrule:

\def\thrule##li%

\omit \leaders

\hrule height ##l\hfill\null)

This will also fix similar problems that occur with

constructions such as '\use{3) \- I '.
There is another problem with \tnrule. When

INRSTEX's \midtabglue is non-zero, the horizontal

lines \thrule draws across data columns don't join

up with vertical lines in neighboring rule columns,

since the horizontal lines don't span the tabskip

glue. Unfortunately, there's no easy way to modify

\thrule so as to fix this problem.

6 A problem with \everycr

Within the table making environment. the INRS-

macros set the \everycr token list to

\noalign (\global \aQlignstate=O)

Consequently. if you use an ordinary \halip within
a table, you'll throw off I N R S W ' s accounting and

the table won't come out right. To get around

this problem. you should use Plain W ' s \ialign

in place of \halign: moreover, you should specify

\normalbaselines (minimally) before the \ialign

since I N R S W turns off normal line spacing with

\off interlineskip.

7 A problem with \sp and \om

At the end of the INRSTEX macros. \sp and \om

are \let equal to \span and \omit, respectively.
This is not mentioned in the manual. nor are

these abbreviations used anywhere in the macros

themselves. Since they serve no useful purpose.

they are best deleted.

8 A test table

When the I i K R S W macros are modified in the
ways suggested above, this little contrived table

Here's an 1 ialign 1 [s] 1
results from the following code:

\begintable

\def\P(\vtop(\normalbaselines

\hsize=.5in \raggedright \noindent

\restoreTeXprimitives

hy\-phen\-at ion))

\def \PP(\P \msti\P3(3pt3{3pt33

\def'\M{\restoreTeXprimitives

\left [CA+1 \over B+1) \right 1)
\def\MM(\M \mst(\MH2OptH5pt))

\def\I~\vbox~\normalbaselines

\ialign(##\hfil\cr

Here's an\cr

ialign\cr)))

\begintablef ormat

\center " \displaymath\center
\endtablef ormat

\ -

\br(3 " \saC\M\M) \eri)
\brC I3 \PP I \eri l)
\br(l3 \useC13 \-I \zbC\M) \er{l)

\brill \I I \MM \eri 13
\ -

\endtable

