
TUGboat, Volume 10 (1989), No. 2

Producing On-line Information Files

with MT@

Hubert Part1

Technische Universitat Wien

Several such drivers are available, most of them

in the public domain. My favorite is Crudetype

by R. M. Damerell (Royal Holloway and Bed-

ford College, Egham, UK).

Printed Documents and
On-line Information Files

Computer users nowadays expect that all necessary

information about the computer is available in two

forms: as printed documents, and as on-line infor-

mation files.

0 The printed documents are usually bought at

the EDP center's book shop. They may be any-

thing from short leaflets to complete books, and

in any case they should be as beautiful and as

readable as possible. Thus, ', together with

one of its macro packages like U r n , and a laser

printer are the ideal means to generate them.

0 On-line information files are ASCII files stored

on the computer itself. Whilst working on the

computer, users can access them directly from

the terminals on their own desks. Typically,

the files are viewed on a terminal screen, or

searched for certain keywords with an editor,

or printed on a nearby cheap line printer.

For the authors and maintainers of the information

texts, it is highly desirable that the same input file

can be used to generate both the printed and the on-

line versions. How can this be achieved in a I P '

environment?

There are driver programs available that gen-

erate line printer or ASCII output from a DVI file,

but these are aimed at proof-reading and preview-

ing: They try hard to show how the text will even-

tually be broken into lines and pages in the final

printed document. Their results as such are usually

rieither beautiful nor readable.

What we need is something different: We want

the text to be set as beautiful and as readable as

is possible in a simple line-oriented ASCII file, and

with a layout that is best suited for the purpose of

viewing on a terminal and printing on a line printer

(e.g. 72 characters per line, 60 lines per page, blank

lines to separate sections, and so on). We don't care

about any relation to the line and page breaks of the

printed version.

Obviously, we need two things to achieve this:

We need a IP' style or style option that will

set our text such that the ASCII file will be as

readable and as beautiful as possible.

This will be dealt with in the present article.

We need an ASCII driver that will convert our

DVI file into an ASCII file.

My First At tempt

Here is my first attempt for such a document style

option file, which I called screen. sty.

It is intended for generating ASCII file versions

of non-mathematical texts, usually descriptions of

computer programs and similar information.

Ideally, it should work like this:

0 The printed manual is generated the usual way,

with and with a laser printer driver.

0 The on-line version is generated by using a copy

of the I P W input file, in which the option

screen is added at the end of the option list

in the \documentstyle command, and by feed-

ing the resulting DVI file into an ASCII driver

like Crudetype.

Real life, however, is a bit more complicated: I usu-

ally have to apply several manual changes to the

copied version of the I P W input file and also to the

generated output file. But even so, this is much eas-

ier than maintaining two completely different text

files for the printed and on-line versions.

In spite of these drawbacks, I am presenting

my humble first approach to the TUGBOAT reader-

ship- hoping that some readers can use my ideas,

and that some will provide me with their ideas of

how to do it better!

Now, let us have a look at the contents of my

screen. s t y file:

Fonts

Only one "font" is available on a line printer, and it

is a mono-spaced one. With m, this means that

the whole document should be set in the typewriter

font (\ t t) .

The normal-size typewriter font is selected by

the following commands:

\normals i ze \ t t

This must be done at the beginning, so that

\baselineskip and the em and ex units have the

correct values for all length assignments to come.

All font changing commands are re-defined to

refer to the \tt font:

\let\rm=\tt \let\bf =\tt \ l e t \ i t = \ t t

\ l e t \ s l = \ t t \ l e t \ s f= \ t t \ le t \ sc=\t t

\let\em=\tt

Of course, this does not catch special fonts

loaded by the user, nor implicit font changes other

than \em, nor does it consider the mathematical

mode. If the I P w input file contains commands

to load special fonts, these should be \let to \tt,

too.

Font Sizes

Only one character size is available on a line printer.

All size changing commands are changed to refer to

\normalsize, and instead of switching to the \rm

font, they will switch to the \tt font.

First, we change the \normalsize command to

switch to \tt rather than \rm:

Then, all other size changing commands are re-

defined to this new \normalsize command:

Accents and Special Characters

Overprinting should be avoided in the ASCII file

generated, because it does not work when the file

is viewed on a terminal screen. All accented and
special characters have to be mapped to LLnormal"

ASCII characters or character sequences.

Most accents can just be omitted, i.e. 6 can be

printed as e, and so on.

\let\'=\relax \let\'=\relax \let\-=\relax

\let\c=\relax \let\-'=\relax \let\==\relax

\let\. =\relax \let\u=\relax \let\v=\relax

\let\H=\relax \let\d=\relax \let\b=\relax

\let\t=\relax

Various umlaut characters are to be replaced by

two-character sequences, e.g. a will be printed as ae,

% will be printed as ss, ce will be printed as oe, and

so on. Most of these changes are straightforward:

\def \ssCss> \def \aa(aa) \def \aeCae)

\def\oe(oe> \def\AA(Aa) \def\AECAe)

\def\OE(Oe> \def\oIoel \def\OCOe>

However, with the umlaut accent \", the following

has to be considered: The german umlaut characters

a, 6 , and ii are to be printed as ae, oe, and ue, but

with the other letters, the umlaut dots can just be

omitted, e.g. oe can be printed as oe, and ai' can

be printed as ai. Therefore, the \" command is

re-defined like this:

\def\"#l(\ifmmode #l\else

TUGboat, Volume 10 (1989), No. 2

Since we do not set any accents above letters,

the dotless i and j can be replaced by their normal

dotted versions:

\def \iCi) \def\jCj)

Language Specific Modifications

Non-English speaking I4m users may use some

modified versions of the I4m document styles. For

instance, the german style option is likely to be used

for german texts. In this case, some of the language

specific definitions may need similar re-definitions.

If the option file german.sty has been pro-

cessed, the active quotes character " must be re-

defined with respect to the umlaut characters, the

sharp s and the german quotes. The \Qifundef ined

command can be used to test whether the german

option has been specified.

Here is an example how the french quotes

("guillemets") can be re-defined:

\def \f lqq((\tt <<)) \def \frqqCC\tt >>)I

Mathematical Symbols

We do not consider the typesetting of mathemati-

cal formulae. However, even in non-mathematical

texts, some symbols of w ' s math mode are used,

e.g. dots, bullets, and arrows. These commands are

re-defined to print appropriate ASCII characters or

character sequences, switching to text mode and to

the \tt font:

\def \ldots(\mboxC\tt . . .))
\let\cdots=\ldots

\let\dots=\ldots

\def \timesC\mboxC\tt XI)
\def\bulletC\mbox(\tt *I)
\def \right arrow(\mbox(\tt ->)I
\def \Rightarrow(\mbox(\tt =>)I

\def \longrightarrow(\mboxC\tt -->)I
\def\Longrightarrow(\mbox(\tt ==>)I
\def \lef tarrow(\mbox(\tt <-)I
\def \Lef tarrow(\mbox(\tt <=I)
\def \longlef tarrow(\mbox(\tt <--1)
\def \Longlef tarrow(\mboxI\tt <==)I

Other symbols should be added to this list, if

needed.

Other Special Characters

Two conversion problems still need to be solved:

TUGboat, Volume 10 (1989), No. 2 243

In normal text, the character sequences -- and

--- produce long dashes. Since we have switched

to the \tt font, however, they produce two or three

hyphens, respectively. It would be nice to find an

automatic way that makes the character sequences

-- and --- print a single hyphen (-) only.

A similar problem exists for the opening and

closing quotes: In normal text, ' ' and ' ' are used

to print opening and closing quotes. Since we have

switched to the \tt font, they produce double apos-

trophes. Instead, we would like them to print one

double quotes character (").
I have not found a suitable definition yet that

would accomplish this within m. I assume that

it should involve \catcode to make the characters

active, and \@ifnextchar to look at the following

character. However, the hyphen sign and quotes

should not become "fragile", and the re-definitions

should not inhibit the use of hyphens within the

\hyphenation command nor the use of the grave

character within the \catcode command.. .
Perhaps, a better way would be to define liga-

tures for verb-, ' ' and ' ' in the TFM-File for

font cmtt 10. Of course, these ligatures should be

disabled in the verbatim mode, i.e. they should be

included in the \@noligs command.

Kerning, Raising and Lowering

Both the character positions within each line and the

line positions within each page are fixed in the line

printer file. Therefore, kerning, raising, and lowering

of characters must be avoided.

The following re-definitions make the - and ^

commands do nothing in mathematical mode:

\catcode'\-=\active \let-=\relax

\catcode '\^=\active \let ̂ =\relax

The following re-definitions generate appropri-

ate substitutes for the m and J4m logos:

\def\TeXCTeX) \def\LaTeX(LaTeX)

Similar re-definitions should be added for other logos

of this kind, if needed.

Vertical Skips

The files to be generated consist of discrete lines

(as opposed to arbitrary character placement on the

page). Therefore, all vertical skips must be inte-
ger multiples of the line height \baselineskip, and

they must not be stretched or shrunk.

The \baselinestretch factor must be 1:

\def\baselinestretchCi)

If paragraphs are indented with no vertical skip,

\parskip can be set to zero:

\parskip=Opt

If, however, they are not indented but is to be s e p

arated by a vertical skip, this skip should be one

blank line:

\parskip=\baselineskip

The predefined vertical skips are re-defined to

zero or one line, respectively:

\smallskipamount=Opt

\medskipamount=\baselineskip

\bigskipamount=\baselineskip

The sectioning commands are re-defined such

that the vertical skips and their stretching are mul-

tiples of the line height, and that the heading is

printed in \tt style:

\def\section(\Qstartsection

(section)(l)C\zQ3%

C-2\baselineskip plus -2\baselineskip)%

(l\baselineskip>%

(\raggedright\normalsize\tt 33
\def\subsection~\@startsection

Isubsection)C2)(\z@)%

(-l\baselineskip plus -l\baselineskip)%

(l\baselineskip)%

(\raggedright\normalsize\tt 33
\def\subsubsection~\Qstartsection

(subsubsection)(3)C\z0)%

(-l\baselineskip plus -l\baselineskip)%

(l\baselineskip)%

(\raggedright\normalsize\tt)>

Note that due to the \raggedbottom command (see

below), the stretchable glue in these skips will not

cause an actual stretching but will help to

find a suitable place for the page breaks.

The vertical skips used in all list environments

are re-defined, too. Here is an example that re-

defines them all to equal \parskip:

\def\QlistI(\leftmargin\leftmargini

\topsep\zQ \parsep\parskip

\itemsep\zQ)

\let\Qlisti\QlistI

\Qlisti

\def \Qlistii(\lef tmargin\lef tmarginii

\labelwidth\leftmarginii

\advance\labelwidth-\labelsep

\topsep\zQ \parsep\parskip

\itemsep\z@)

\def \Qlistiii(\lef tmargin\lef tmarginiii

\labelwidth\leftmarginiii

\advance\labelwidth-\labelsep

\topsep\zQ \parsep\parskip

\itemsep\zQ)

Of course, these re-definitions don't catch ex-

plicit \vspace and \ \ [length] commands that a p

244 TUGboat, Volume 10 (1989), No. 2

pear in the I4m input file. These may have to be

changed manually.

The \raggedbottom command makes sure that

vertical skips are never stretched:

\raggedbott om

Horizontal Skips

In an ASCII file, horizontal skips can only be ac-

complished by space characters which all have the

fixed character width. Therefore, all horizontal skips

must be multiples of the \tt font's character width.

Note that 1 em is 2 character widths in this font.

If paragraphs are indented, \parindent should

be set to something like:

\parindent=lem

If, however, they are not indented but are separated

by a vertical skip only, \parindent is set to zero:

\parindent=Opt

The indentation amounts of all list environ-

ments are re-defined like this:

\leftmargini=aem
\leftmargin=\leftmargini

\leftmarginii=2em

\leftmarginiii=2em

\leftmarginiv=2em

The dot distance in the dotted lines within the

table of contents has to be re-defined, too:

\def\Qdottedtocline#l#2#3#4#5I%

\ifnum #l>\cQtocdepth \else
\vskip \zQ plus .2pt

(\leftskip #2\relax \rightskip\Qtocrmarg
\parf illskip -\rightskip

\parindent #2\relax\Qafterindenttrue

\interlinepenalty\QM
\leavemode

\Qtempdima #3\relax

\advance\leftskip \Qtempdima
\hboxO\hskip -\leftskip

#4\nobreak\leaders\hbox(\tt ".-l\hfill
\nobreak \hbox to\Qpnumwidth

(\hf i l \ m #5)\par)\f i)

(This differs from the original definition only in the

argument of the \leaders command.)

Of course, these re-definitions don't catch ex-

plicit \hspace or \kern commands that appear in

the I4w input file. These may have to be changed

manually.

The \raggedright command is needed, be-

cause in the \tt font, the spaces have fixed width

and cannot be stretched for justification:

\raggedright

Page Layout

The line width is set to 72 characters per line:

The text height is set to 54 lines, which corresponds

to 9 inches if the print density is 6 lines per inch:

Other values (e.g. 80 characters per line) may be

chosen in a similar way.

The top margin (including the header area) is

set to zero:

\t opmargin=Opt

\advance \t opmargin by -\headheight
\advance \topmargin by -\headsep

The left margin, too, is set to zero for all pages:

The empty pagestyle is selected, because page

numbers are normally not printed in on-line infor-

mation files:

However, for long documents, page numbers may

be desirable. This can be accomplished by issuing

an appropriate \pagestyle command in the IP'QX

input file.

Future Work

I am well aware that what I have presented here is a

very first attempt only. Several extensions are cer-

tainly necessary to make it generally applicable. For

instance, I have included the most simple text ele-

ments and environments only, but did not consider

many other issues like footnotes, marginal notes,

rules, tables, figures, title pages, abstracts, bibli-

ographies, and so on. And I have completely omitted

mat hematics and pictures.

Furthermore, my re-definitions may contain

bugs and errors, and perhaps a completely different

approach would be much better.

It is my hope that many m p e r t s will now go

on with this topic and propose and discuss different

approaches - by e-mail, via the TeXhax mailing list,

and in future editions of TUGBOAT. I am looking

forward to many articles titled "Another approach

to producing on-line information files with Urn".

o Hubert Part1
EDV-Zentrum
Technische Universitat Wien
Wiedner HauptstraDe 8-10
A-1040 Wien, Austria
Bitnet: z3000pa@awituv01

