
Methodologies for Preparing and Integrating PostScript Graphics

J.T. RENFROW

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
TRENFROWQjpl-pds.jpl.nasa.edu

ABSTRACT

Graphical material represented in the Postscript language can be incorporated into
'I)$-based documents and ultimately printed on a printer having a PostScript interpreter.
Successfully completing this incorporation process requires an understanding of PostScript
and its use in programs to generate graphics and in programs associated with document
preparation. It also requires an understanding of the particular DVI-to-Postscript trans-
lator program being used. PostScript concepts such as a stack of dictionaries, commands
such as "translate", "rotate", "scale", and the idea of saving the state of virtual mem-
ory must be mastered. Different graphics generation programs use somewhat different
mechanisms to produce the PostScript description of a graphic object. The graphics
programs Adobe Illustrator, Cricket Draw, and MacDraft illustrate the diversity of pos-
sible PostScript output files. Text manipulation programs, such as AWK, can be used
to examine these PostScript output files, establish the correct origin for these files when
incorporated into documents, and prepare them for inclusion in m - b a s e d documents.
A number of special cases need to be considered depending on the use of landscape or
portrait modes in both the l)$-based document and the graphic object.

1. Introduction
Incorporating PostScript code into a document being processed by is challenging initially but once
the techniques and approach are worked out you will be able to incorporate PostScript code produced
by graphics programs very rapidly and easily. To set up the process initially may require someone
who is willing to "hack" or experiment a little. After this, anyone who can use TEX should be able to
incorporate this type of PostScript code into a document with relative ease.

In this paper I will illustrate how to incorporate PostScript code representing graphical figures -
lines, circles, shaded figures, text, etc. -into documents. I will not illustrate how to incorporate images
but the techniques used here should apply to that graphical form also. I will illustrate the techniques
using three common software packages: MacDraft, Adobe Illustrator, and Cricket Draw. I have chosen
these three packages because they require somewhat different approaches as one incorporates their
graphical material into the w e d document.1

It seems that the success of incorporating PostScript graphics material into TEX documents can be
very dependent on the hardware/software configuration. For that reason I am carefully documenting
the configuration I use:
a. Hardware - IBM PC/AT, Macintosh Plus, QMS 810 Laser Printer
b. Software - DOS 3.3, MacLink Plus, Mac OS 4.2, Laser Prep 5.0, Cricket Draw 1.1, MacDraft

1.2a1 Adobe Illustrator 1.1, Micro'I)$ Version 1.5A1, DVIPS 4.0.4, AWK (MS-DOS MKS Toolkit
Version 2 . 2 ~ from Mortice Kern Systems, Inc.)

If you are using other software (for example, a different DVI-to-Postscript processor), you will probably
have to do things differently. Hopefully you will have enough courage or insight after reading this paper

The phrase " w e d document" means a document that was produced using the typesetting system.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 607

that you will try to incorporate graphics using your configuration.
I employ a uniform approach to the generation of Postscript and TEX material. The graphical

material is generated on a Mac Plus using one of the three packages previously identified. Using
techniques to be described later I generate a file containing the PostScript code associated with the
graphical material. This file is transferred over to the IBM AT using MacLink Plus. The new file
is processed by several AWK programs which insert, change, or remove PostScript commands as
appropriate. Via these AWK programs I am also able to preview the diagram itself so that I can
determine information needed to properly center the diagram on the printed page. Commands using
the \spec ia l command in TEX are placed in my text file. These commands are then passed through
untouched by TJ$ through to the d v i file. The dv i processor (in my case DVIPS from ArborText),
then interprets the \ spec ia l commands, includes the appropriate PostScript files, and prepares a
Postscript file for the printer. This file is then sent via a parallel communication cable to the printer.
The resulting document contains the integrated text and the graphical material.

These techniques of incorporating graphical material into w e d documents may not be useful in
every case. If you are producing only one version of a document that contains only one or two diagrams
then it may be simpler to paste in a copy of the graphical material. These techniques become useful
when you have many figures to include in a document or when multiple versions or multiple drafts of
the document will be prepared.

The remaining sections of this paper explain the techniques used to incorporate graphical material.
First an explanation of relevant Postscript concepts is presented, including the concept of a PostScript
header file. After this, the techniques for producing the Postscript file representing graphical material
are presented. The techniques for manipulating and converting this PostScript file are then explained.
Finally some techniques useful in printing the document are discussed. Appendix A contains some
AWK code that is used in processing the Postscript files.2

2. Understanding PostScript
PostScript is a language used to describe where to put certain objects on a page. Of course this is a
very simplified statement of the capability of PostScript, but it is sufficient for the mental model that
I am trying to help you build for Postscript. I am including this material to help you read PostScript
and write a few simple commands in it. To learn more about it you should consult either the second
or the fourth reference in the Bibliography.

The initial coordinate system for Postscript has 72 units to the inch, with the origin at the lower
left corner of the page. Thus the position (144,72) would correspond to a point 2 inches to the right
of the lower left corner and 1 inch above the lower left corner.

PostScript uses post-fix notation; that is, the parameter or arguments are given first and then the
command follows. For example, 100 100 moveto tells Postscript to move its current point to position
(100,100). PostScript also assumes a stack architecture - parameters are placed on a stack and then
removed or manipulated by the operators.

It is important to understand how Postscript knows what to do when it sees an operator. The
simple answer is that the Postscript interpreter looks up the operator in a dictionary to see what it
means. That is a simple model to follow. In fact, a user can create a stack of dictionaries for the
PostScript interpreter to use. The i~lt~erpreter looks up the command in the top dictionary first. If it
finds the entry there then it does what the dictionary entry says. If it does not find the entry in the first
directory it looks in the second directory. If it finds the entry there then it does what the dictionary
entry says. The interpreter continues this process through all the directories on the dictionary stack
until it finds some definition for the operator. If the interpreter has searched all the directories on
the dictionary stack and it has not found the operator, it signals that a bad operator has been given.
If the same operator name appears in two different dictionaries then the definition in the dictionary
that is above the other in the stack will be used. This provides a very easy way to make sure that
PostScript does exactly what you want with the commands you use. You create a new dictionary on
top of all the other dictionaries and put your special commands in it. This is the way that most drivers

A full set of documentation for this work, including complete examples, can be obtained by sending a message to
either the electronic or physical address of the author.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

for PostScript work. We will talk about these special dictionaries in the next section.
The Postscript commands that you need to learn for this work fall into a few categories:

1. Translating, scaling, or rotating the material to be placed on a page.
2. Creating a dictionary and putting it on the dictionary stack and then removing it.
3. Defining a new operator.
4. Saving and restoring the state of the entire PostScript interpreter or just the graphics state.

2.1 PostScr ipt Movement Opera to rs
These operators will be used to adjust your graphical material to appear on the printed page at the
right location. The methodology advocated in this paper is to place the bottom center of the dzagram
at the coordznates, (0,O). The commands used are currentpoint , moveto, t r ans la te , sca le , and
ro ta te .
a. currentpoint - This puts on the stack the coordinates of the "Postscript pointer" at the current

time. This is useful when PostScript knows where it is but you don't.
b. moveto -This command moves the current location of the PostScript writing pen to the coordinates

you designate. For example 72 72 moveto moves the graphics pen to the point one inch up and
one inch in from the bottom left corner of the paper.

c. t r a n s l a t e - This command translates the origin to a new point. For example, 144 144 t r a n s l a t e
moves the origin up two inches and over two inches. A common use for this command in the
context of placing graphical material into documents is currentpoint t r ans la te . YOU may have
positioned your diagram so that the bottom center of your diagram is at (0,O). When the DVI-to-
PostScript program tries to put your diagram on the page the current point may be (212,345.33).
By putting currentpo in t t r a n s l a t e at the beginning of your graphics PostScript file, you have
removed any need to know exactly where your diagram will go on the page.

d. sca le - This command scales the coordinate system. It can be used to shrink the coordinate system
or expand it. The shrinking or expanding may be non-uniform (i.e., the shrink may be bigger in
the x direction than in the y direction). For example, 2 2 sca le expands all the coordinates by
2. Now the point (72,72) would be two inches over and two inches up. We have to use the sca le
operator because DVIPS does some necessary scaling that we, nonetheless, must undo. Another
useful but initially confusing example is 1 -1 scale. This produces a flip of the graphics along
the x-axis. We have to use this when dealing with CricketDraw output.

e. r o t a t e - This command rotates the coordinate system. In this paper it will be used to convert
diagrams from landscape to portrait and vice versa.

The diagrams presented in Figure 1 illustrate how these operators can be used to place the bottom
center of the figure at the origin. For each diagram, additional code has been created to put an
axis and rectangles indicating four 8 112 x 11 inch pages so that the reader can better see how the
transformations are taking place. Two new operators (makedarkrectangle and makedarktriangle)
have been defined to produce the geometric figures.

Determining which transformation should be applied first and which second, etc. has always been
counter-intuitive to me. As you can see from the examples, you should first take the code that draws the
figures, then precede it by the first transformation. Then precede all this by the second transformation,
and then precede all that by the third transformation, and so on.

Figure (la) represents the initial diagram which consists of one rectangle and one triangle. Figure
(lb) represents the diagram with the bottom center of the diagram shifted to the origin. Figures (Ic)
and (Id) represent a translation of the original code to put the left side center at the origin and then
a rotation to put the diagram "bottom centered" at the origin when the diagram is in a landscape
position. Figures (le) and (If) represent the same initial translation to the origin as in Figure (lb)
but then a scaling by .5 in each direction to shrink the diagram so that it is centered at the origin but
in a smaller 6-e. This last technique is useful for adjusting a diagram when it is initially too large to
fit in the space allocated for it in the document.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure l a :
makedarkrectangle
makedarktr ianale

Figure l b :
-300 -150 t r a n s l a t e
makedarkrectanale

F igure l c :
-100 -400 t r a n s l a t e
makedarkrectangle

m a k e d a ~ k t r i a n ~ i e makedarktr iangle

F igure Id :
90 r o t a t e
-100 -400 t r a n s l a t e

Figure l e :
-300 -150 t r a n s l a t e
makedarkrectanqle

Figure I f :
- 5 .5 s c a l e
-300 -150 t r a n s l a t e

makedarkrectanale makedarktr ianaie makedarkrectangle
m a k e d a ~ k t r i a n ~ f e makedarktr iangle

Figure 1: Illustrations of PostScript movement operators

2.2 PostScr ipt Dict ionary Operators
This paper covers only a few of the many Postscript operators used for manipulating dictionaries. The
operators discussed here are used to create a new dictionary, and to put a dictionary on the stack of
dictionaries being used by Postscript and to remove a dictionary from this stack. You need to realize
that PostScript can store dictionaries "over in the corner" when it does not have them on the active
stack of dictionaries. Via the appropriate command, a dictionary "over in the corner" can be brought
out of storage and put back on the stack. All its entries are still intact.

The way to create a brand new dictionary is via a command string such as /mydict 200 dict
def. This defines a new dictionary, which I have arbitrarily named mydict, which has room for 200
entries and which is currently stored '(over in the corner".

The way to bring a dictionary (for example, one named myoldone) that is "over in the corner" to
the active stack is to give the command string myoldone begin. Notice that we did not have a "/" at
the beginning of myoldone because the name is already known to PostScript.

The way to remove a dictionary from the active stack is to give the command end. This removes
the top dictionary from the stack and places it "over in the cornern.3

2.3 PostScr ip t Definit ion Operators
Just as macros are used in to define useful combinations of basic commands, so procedures are used
in PostScript to combine useful combinations of PostScript operators. A simple form of this definition
is /myownprocedure { some Postscr ip t code) def. This process causes the name myownprocedure
to be added to the topmost dictionary in the stack of dictionaries and the corresponding PostScript
code to be entered as the meaning of myownprocedure.

With this form of defining a procedure, when Postscript encounters myownprocedure it will find
the corresponding Postscript code in the dictionary and proceed to look up the current definition of

1 have continued to use the phrase "over in the corner" to impress upon you that dictionaries don't disappear just
because they are removed from the stack.

610 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

each of the PostScript operators and then execute them. This in fact is the way that 7)$ behaves
when macros are expanded normally.

There is another way to define procedures in PostScript which can be a bit confusing at first but is
very helpful once it is understood. This involves the use of the bind operator. If a PostScript expression
such as /moveit { 100 100 t rans la te } bind def is used, then the bind operator looks up all the
operators - in this case t ranslate - in all the dictionaries. If i t finds that t ranslate has been
re-defined from its original meaning (by having been defined again in some new dictionary) then bind
does nothing. If i t finds that t rans la te has not been re-defined then it associates translate with its
original definition and in fact causes this name to point directly to that code. This has two beneficial
results. The first benefit is that when the moveit procedure is called, the PostScript interpreter will not
have to go through all its dictionaries for t,he definition of t ranslate. It can immediately execute the
code associated with i t . The second benefit is that even if between the time that the moveit procedure
is defined and the time that it is executed another dictionary is added to the stack of dictionaries
which re-defines t rans la te , the moveit procedure is unaffected.

It is important to understand the necessity for using the bind operator a t times. In some cases
header files can interfere with one another and the person producing the document must load header
files in such a way that the interference is avoided. This actually occurs when the Adobe Illustrator
header file is loaded on top of the DVIPS header file. This will be discussed more later. This problem
was solved by loading the Adobe Illustrator header file permanently, while the DVIPS header file
dictionary was not on the dictionary stack, and the bind operator was used on the affected Adobe
Illustrator code. The new release of DVIPS (Version 4.6) from ArborText has fixed this problem.

2.4 Pos tSc r ip t S ta te -Preserv ing Opera to rs
When you insert PostScript code for diagrams into Postscript code that will cause the document to be
typeset, the inserted code should make sure that when i t finishes execution, the Postscript interpreter
is in the same state as it was when the inserted code began execution. In we could accomplish
this by grouping, using { and }. In PostScript this is accomplished by using the save and restore
operators. The way that these are used is as follows:

/vmsave save def
many lines of PostScript code

vmsave restore

In the remainder of this paper this convention is referred to as a "save-restore" encapsulation. Other
distinct combination of letters could have been used instead of vmsave. The first line of code defines
a "save" object, which reflects the state of the PostScript interpreter's virtual memory at that time.
The last line of code restores the state of virtual memory to this same state. All new definitions are
forgotten, all new graphics operations are forgotten, etc. Warn ing : the operand stack is not fixed SO

you must make sure that your code leaves the operand stack just as it found i t .
Usually any decent program producing Postscript code leaves the stack clean. These two lines of

code are usually placed a t the very beginning and end of the PostScript code for the diagrams that
you are inserting. Sometimes the DVI-to-Postscript program will automatically insert these.

Another "save and restore" sequence used for saving the graphics state is gsave and grestore.
These operators are easier to use than save and restore but are less powerful. The way that they
are used is as follows:

gsave
many lines of PostScript code

grestore

The graphics state (i.e., the line width, the fill value, the current ~ a t h , the current point, etc.)
after the grestore will be the same as it was immediately before gsave. Any new definitions created
will not be removed. Only the graphics state is restored.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

3. Understanding and Using Header Files
Understanding header files can be easier if one is familiar with the concept of a file of macros for w.
For example, the p l a i n . t e x file discussed in Appendix B of the Tflbook is such a set of macros. Both
the header files and the files of macros are created to contain abbreviations for very commonly used
sequences of commands. In both cases these files are loaded into the "interpreter" before the other
code is sent to the interpreter. This can simplify the complexity of the other code that is sent since the
code can use these abbreviated forms of commands rather than laboriously repeat the full sequence
each time they are used.

Just about any program that produces Postscript output has a header file associated with it.
DVIPS, Cricket Draw, Adobe Illustrator and MacDraft each have a header file associated with them.
The header file is independent of the actual diagram and document that is produced. Thus, once a
header file is analyzed and conquered (you feel like using that language after you have dealt with some
header files) you never have to worry with it again. You don't have to reconsider it each time a new
diagram or document is produced. However, you need to make sure that the version of the header
file that you have created and stored (perhaps some time ago) is the same one that the application is
currently using. This is particularly important with the standard Laser Prep file used by MacDraft
and most of the other Macintosh applications. Compare version numbers, which should be contained
in each file.

Two nice examples of header files are those associated with Adobe Illustrator and Cricket Draw.
In the following paragraphs I will tell you how to produce these header files and how to load them into
the printer.

3.1 Adobe I l lustrator Header Fi le
The header file for Adobe Illustrator can be produced simply. Create a diagram using Adobe Illustrator.
For example, a diagram consisting of a single line is fine. Save this diagram. The Illustrator file will
appear as a simple text file of Postscript commands. Using a text editor, open and edit this file.
Extract the header file as follows. There will be some material at the beginning of the Illustrator file
that is specific to the particular file and this can be removed. The header file then begins with the line

and ends with the line:

Thus the whole header file is:

%%BeginProcSet:Adobe~Illustrator~l.l 0 0
% Copyright (C) 1987 Adobe Systems Incorporated.
% A l l Rights Reserved.
% Adobe I l l u s t r a t o r i s a trademark of Adobe Systems Incorporated.
/Adobe-I l lustrator- I . I dup 100 d i c t def load begin
/Version 0 def
/Revision 0 def
% d e f i n i t i o n operators
/bdef {bind def) bind def
/ ldef {load def) bdef
/xdef {exch def) bdef
% graphic s t a t e operators
/-K €3 index add neg dup 0 It {pop 0) i f 3 I r o l l) bdef

(several more pages of definitions)

% f o n t cons t ruc t ion operators
/Z {f ind font begin cu r ren td ic t dup leng th d i c t begin
(1 index /FID ne {def) {pop pop) i f e lse) f o r a l l /FontName exch def dup

612 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

length 0 ne
</Encoding Encoding 256 array copy def 0 exch {dup type /nametype

e q
{Encoding 2 index 2 index put pop 1 add) <exch pop) i f e l se) f o r a l l) i f

POP
currentd ic t dup end end /FontName ge t exch def inefont pop) bdef
end
%%EndProcSet
%%Endprolog

3.2 Cricket Draw Header File
TO create a header file for Cricket Draw also is easy. Create a diagram in Cricket Draw consisting of
one line or some other trivial diagram. While this file is open, choose "New" from the "File" menu
and check the "Postscript" button in the dialog box, indicating you wish to create a Postscript file
(a opposed to a "Draw" file). A new window will be created. Under the "Goodies" menu that has
appeared with the activation of a Postscript window, select the entry "Create Postscript". This will
display the Postscript code for the diagram, but not the header code. Now choose "Save As . . ." from
the "File" menu. Give this file a name and check "Complete" when indicating how to save the file.
Exit Cricket Draw and use a text editor to examine the PostScript file. Like Illustrator, there will
be code at the beginning and at the end of the file that is not a part of the header. This should be
removed. The remaining material will be the header. The header file should look like:

/$cr icket 210 d i c t def
$cr icket begin
2 se t l inecap
/d /def load def
/b {bind d)bind d
/1 {load d)b
/e /exch 1
/X {e d3b
/C /c losepath 1
/CP /currentpoint 1

(several more pages of definitions)

/shadow {so)d
/charshadow {sc)d
/ fountain {df)d
/o f fse tca lc (ocld
/MakeOutlineFont (of)d
/MakeUnderlineFont {uf)d
/ l e f t show {ls)d
/rightshow {rs)d
/centershow <cs)d
/fullshow {ss)d
/coordinatefont <cf)d

One last line should be added to the header file in order to make it complete. That is the line

end

and it is needed to close off and remove the dictionary that is being created for Cricket Draw.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 613

3.3 MacDraft Header File
To create the header file for MacDraft may require Herculean strength. This header file is the standard
Laser Prep file used by most applications that run on the Macintosh. I have included a list of suggestions
on how to construct this file in Appendix B. It is definitely a non-trivial process.

We can now assume that we have three header files created. The next step is to load them into
the Postscript interpreter's memory. There are four different techniques that can be used.

The header file can be downloaded directly into the permanent-memory of the Postscript inter-
preter. The advantage to this is that the header file is accessible whenever you or anyone else
needs i t , until the power to the printer is turned off or the printer is reset. Another advantage
is that you don't have to worry with how your DVI-to-Postscript processor would handle these
header files. Still another advantage is that you will not be loading the graphics software's header
(a.k.a. dictionary) on top of the DVI-to-Postscript package's header (a.k.a. dictionary). This last
feature has already been referred to in Section 2.3. The disadvantage is that the header file takes
up space in the printer's memory. On printers with a reasonable amount of memory (e.g., 2RIB),
this does not appear to be a problem.
To use this process requires placing the following additional line at the beginning of the header file:

serve rd ic t begin 0 ex i t se rve r

The assumption here is that "0" is the password for your printer (it will be unless some printer
guru has gone in and changed i t) . It may appear that you have placed an additional dictionary
("serverdict") on the stack and therefore you should place an additional "end" at the end of your
header file. Y o u do not need t o do th is . However, you should send a (c t r l -d> character to the
printer at the end of this file to indicate that the end of this special file has been reached. I have
done this on my system by creating a special file with only one character in i t , namely (c t r l -d>
(the HEX notation for this is 04). I send the header file and then this very small file to the printer.
The header file can be downloaded via a Macintosh computer attached to the printer. This tech-
nique is really useful only in downloading the header file associated with MacDraft and is the
standard Laser Prep file for the Macintosh. This is by far the cleanest and simplest way to down-
load this very complex file. Simply attach the Macintosh computer to the printer and print a
Word document or a MacWrite document or a MacDraw diagram or a MacDraft diagram to the
Postscript printer. This causes the header file to be downloaded permanently to the printer.
The header file can be downloaded as a part of printing the document itself. This process is
dependent on the particular DVI-to-Postscript processor being used. If you are printing diagrams
on multiple pages of the document, then you want to make sure that the header code survives
from one page to the next one. If my header file is in header.ps, then I can place the following
\ spec ia l command a t the beginning of the text for my document:

\ s p e c i a l { ~ s : p l o t f i l e header .ps g loba l)

and the header file will be correctly loaded. This particular command sequence is used by DVIPS
and will most likely not work with other DVI-to-Postscript processors. The user should consult
the manual for the particular DVI to PostScript processor used.4
If you are going to print only one diagram then you may want to include the header with the actual
file itself. This technique is discussed later when the actual process for including a graphics file is
considered.

We can now assume that the header file is loaded into the printer or else will be included with the
diagram itself.

There is a problem in using this technique (no. 3) with the version of DVIPS and Adobe Illustrator referenced in this
paper. DVIPS's header re-defines a basic Postscript operator concat. When Adobe nlustrator's header is installed with
the DVIPS dictionary already on the stack (as technique 3 would do), this operator, which is used by Adobe nlustrator,
is not bound even though bind is used. The wrong definition of concat will be used. If the Adobe Illustrator header
is loaded while the DVIPS dictionary is not on the stack, the bind operator will make sure that concat is defined
properly and permanently. When the Adobe Illustrator dictionary is finally called during operations and placed above
the DVIPS dictionary, the correct definition of concat will still be used.

614 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Producing PostScript Graphics
This section concerns the production of the PostScript code for the diagram itself. This production
process depends on the application used.
a. Adobe Illustrator - Using Adobe Illustrator, produce the diagram. Save the diagram. This entire

file can be sent from the Macintosh computer to the IBM PC for processing.
b. Cricket Draw - Using Cricket Draw, produce the diagram. Follow the procedures discussed with

respect to Cricket Draw in the section on producing headers (Section 3.2). Instead of saving the
diagram using the "Complete" option the file should be saved using the "brief" option. This will
produce only the code for the diagram and not the header file.

C. MacDraft - Using MacDraft, produce the diagram. Select the "Print" command. Position the
cursor over the "OK" button but don't click it. At the same time, press down the "Apple" or
the "Four-Leaf' (different ways to describe the same key) key and the "I?" key - then click on
the "OK" button. The computer may sound some warning signals because these keys are pressed
but this can be ignored. The message to look for after this sequence of key strokes and mouse
clicks are performed is a message box which says "Creating PostScript file". A file will be created
called "PostScriptn" where n is an integer between 0 and 9. This file should be re-named to some
meaningful name associated with the diagram.

5. Transferring the Graphics
Any of the files produced on the Macintosh must be sent to the IBM PC. I use MacLink Plus which
makes the job very easy. If you decide to use Kermit or some other file transfer protocol, then you will
have to cope with the fact that on the Mac the EOL (end-of - l ine) is designated by just CR (carr iage
re turn) (OD in HEX) while in the IBM PC world it is designated by CRLF, (carr iage re turn- l ine
feed, ODOA in HEX). There are fixes around this but a file transfer package such as MacLink PIUS
simplifies the work.

6 . Analyzing and Converting the Graphics Files
The graphics files that were produced on the Macintosh need to be altered in some standard ways
to prepare them for incorporation into documents that will be processed by TEX. Each of the three
graphics packages requires different changes. Also complicating the conversion is the fact that a diagram
may have been produced in either portrait or landscape orientatmion and the document that will contain
it may either be in portrait or landscape orientation. To handle all this repetitous file conversion work,
I use the AWK programming language. It is ideally suited for this work. It is powerful, it runs on an
IBM PC, it does text manipulation, and it can handle files in a combined interactiveJbatch mode.5

The following generic steps must be taken for all Postscript files sent over from the Macintosh:
1. Appropriate scaling information must be placed in the file to compensate for the uniform magnifi-

cation provided by the DVI-to-Postscript processor.
2. The "bottom center" of the diagram must be determined and the graphics file must be adjusted

to contain this information. It may be desirable to produce a test print for the diagram to make
sure that it is correctly centered.

3. All unneeded PostScript code in the file must be removed. Any needed additional PostScript code
must be added.
The matter of scaling depends on the DVI to Postscript processor. DVIPS magnifies all the

PostScript code based on the magnification level indicated in the original document (i.e., what \magstep
was used). For example, if \magnif ication = \magstepi is used, then a scaling factor of 1/1.2 must
be included in the graphics file. This is done by lacing the sequence .8333 .8333 sca le in the
appropriate (to be shown later) place in the graphics file.

The diagram that has been constructed on the Macintosh will need to be translated SO that the
bottom center of the diagram is at the coordinates (0,O). This makes the placement of the diagram
in the document very easy. Since the diagram will not normally be constructed so that the bottom
center of the diagram has these Postscript coordinates, a simple statement must be added to the file

Complete AWK programs to handle all the various permutations of graphics packages and document and display
orientations can be obtained via electronic mail from the author.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 615

to adjust the origin. The following approach is used to determine the correct coordinates to use in
making this code addition:
1. The original PostScript file is manipulated by an AWK program that adds code to produce a pair

of very long lines that form a right angle on the page. The vertex .of the right angle is printed at
approximately one inch up and in from the lower left corner of the page. This modified code is
sent directly to the printer. The resulting output contains two things - the diagram and a pair
of reference lines. By visual inspection and by using a ruler with a scale in points, the person
preparing the material can measure the relative displacement from each of these reference lines to
the bottom center of the diagram.
It is unwise to use a corner of the paper as the reference point. The printer may have a systematic
offset that it applies so that a corner of the paper does not correspond to (0,O). The orientation
of the paper as it goes through the printer may be a little askew and this can also distort the
measurement process.

2. A second AWK program is used to interactively ask the user for these two displacement coordinates
and then to insert the correct Postscript t r a n s l a t e command into the file to accomplish this needed
translation.

3. A third AWK program can be used to print out this modified PostScript file to verify that the
translation is correct.

Each graphics production package requires different changes to the contents of the file that it has
produced:
a. Adobe Illustrator -The header file information must be removed. The correct translation of bottom

center must be added. The proper scaling must be added to compensate for the magnification found
in the document. A "save-restore" encapsulation of the PostScript file must be put in place.

b. Cricket Draw - A correction (I -I sca le 30 -762 t r a n s l a t e) must be inserted to correct for
the fact that Cricket Draw does a flip of the diagram about the x-axis. A line of Postscript code
must be added for each font used in the Cricket Draw diagram. The fonts used in the diagram will
be listed in the header of the document. The AWK program can read these lines, remember the
fonts, and then insert the needed lines at the appropriate place in the file. For example, if the two
fonts used are Times-Roman and Helvetica, then the two lines to be added are:

(Times-Roman) coordinatef ont
(Helvet ica) coordinatef ont

The correct translation of bottom center must be added. The word showpage must be removed
from the file so that printing will occur only after the entire page is done. The proper scaling
must be added to compensate for the magnification found in the document. A "save-restore"
encapsulation of the PostScript file must be put in place.

C. MacDraft - The correct translation of bottom center must be added. The proper scaling must
be added to compensate for the magnification found in the document. The line F T cp , which
occurs near the end of the file, must be removed or "%ed out". This line causes the page to print
prematurely. A "save-restore" encapsulation of the PostScript file must be put in place.
If the header code is to be included with the code for the diagram itself then the following alterations
of the above additions must be used. The header material (minus the code serverd ic t begin 0
ex i tse rver) should be inserted immediately after the line /vmsave save def. This will allow the
header to be loaded before the code that calls on it is executed.

Appendix A to this paper contains the "before and after" codes for a simple diagram (the word "Hi")
for each of the three graphics packages.

7. Incorporation of Graphics Files into TJ$ Files
The files containing Postscript code for the graphical material must now be placed in the output
stream that will be sent to the printer. This is done in a two-stage process and is dependent on the
particular DVI-to-Postscript processor used. The following information applies to DVIPS.

616 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The DVIPS processor prepares an environment in which you can place your diagram. When the
\spec ia l command is given, DVIPS restores most of the pure PostScript environment (except the
magnification level). You make the current point the center of your drawing environment by giving
the command currentpoint t r ans la te . You will notice that this sequence has been added to all the
sample files shown in Appendix A.

My placement methods for diagrams uses the "bottom center" approach. I determine the bottom
center of the space on the page in which the diagram should fit. I find this approach much easier than
if I have to specify the lower left corner of the diagram. Supposedly all the PostScript files should
tell you where the bottom left corner of the diagram's "bounding box" is, but most of the programs
don't do this correctly. Generally this space for the figures or diagrams is created through the use of a
\midinsert, \ top inser t or \pageinsert . If the diagram is 3 inches high then I can use the following
code:

. . . and t h i s is shown i n Figure 1.

\midinsert
\vskip 3t rue in
\centerline{\hbox t o ~pt { \spec ia l (ps: p lo t f i l e f i g l .ps333
\medskip
\centerline{Figure 1 -- My F i r s t Figure)
\endinsert

A new paragraph . . .

Sometimes the diagrams are larger than will fit on one whole page using \pageinsert . As was
mentioned earlier, these diagrams require additional scaling factors to reduce the size of the diagram.
These scaling factors can be combined with the scaling factors used to correct for the document
magnification. For example, if magstep1 is used and we want to reduce the diagram to 85% of its
original size anyway then, when using DVIPS, the correct scaling would be .7083 .7083 scale since
.7083 = .85 x (111.2).

8. Additional Comments and Guidelines
The incorporation of graphics into documents definitely proceeds in two phases if i t is to be success-
ful. The first phase involves constructing the header files and building the AWK programs that will
manipulate the Postscript files. This ~ h a s e is tedious, subject to numerous errors, and will need to be
completed only once. The second phase involves the production and conversion of the actual diagrams.
This part is relatively easy. After approximately 25 diagrams were prepared in MacDraft, I converted
and centered all of them in approximately one hour.

Sometimes it may help to start learning how to insert PostScript code by incorporating some pure
Postscript code. You have no header to worry about. For example, the following code will cause one
diagonal line to be constructed:

/vmsave save def
currentpoint t r a n s l a t e
newpath
0 0 moveto
72 72 r l i n e t o
s t roke
vmsave res to re

Once you have gotten this to work, you will have more confidence to tackle the bigger job of Postscript
output from applications. Since Postscript code is simply ASCII text, you can always examine a (small)
output file and get some idea of how the Postscript code for graphics has been inserted into the other
Postscript code.

I feel that it is important to use AWK programs in order to perform this work. This allows for

TUGboat, Volume 10 (1989)) No. 4-1989 Conference Proceedings 617

the almost complete automation of this process. Dealing with all the cases of landscape diagrams
being placed in portrait documents or landscape diagrams being placed in landscape slides requires
either that you remember all the subtle but necessary corrections to make or that you depend upon a
program to make them.

This paper has not addressed all the desirable features one would like in incorporating Postscript
files. There are numerous other features that can be considered:
1. The PostScript code can be instructed to read the magnification setting that is current in the

printer and scale the diagrams accordingly. Currently I need to know beforehand the magnification
level that will be used in the document that will receive the graphics files.

2. Another form of aut~scal ing can be built into the process. The 'I$$ macros would be used to pass
the size of the space available to the graphics file. Specially written PostScript procedures would
be invoked to combine this information with information describing the size of the diagram and
these procedures would then set the scaling factors correctly.

3. The positioning of text generated by l')$ and to be placed in a landscape orientation when the
body of the text is in a portrait position could be implemented. This would be useful in placing
captions for landscape diagrams correctly in portrait-oriented documents.

I have discussed how you do this work but now you need to actually do it. What tools are available
to help you? Your greatest new need will be to try to understand what is going on inside the Postscript
printer, that inscrutable "black box". There are several possibilities:
1. There is a package called "LaserTalk", produced by Emerald City Software. It is excellent for

sending code to a Postscript printer and getting error messages back. It is available for the
Macintosh and IBM environments.

2. There are various error handling routines that can be downloaded to your printer. Then, when
YOU send PostScript code to your printer and there is an error, supposedly a sheet will be printed
showing the offending command and the state of the stack at the time the command was issued.
Unfortunately there are times when you commit an error that will not allow this error handler to
be invoked.

3. Communicate between the computer and the printer via a serial port that is set up to handle com-
munication from the printer as well as to the printer. ArborText includes such a communications
utility with the DVIPS program, called SPR. The value of this is that the Postscript interpreter
will most always be able to use this method to send you the first offending command. It will not
be able to use this method to send you any more information but at least this is a start.

A final comment: getting started with the process of incorporating PostScript code can be a trying
or challenging experience. But once the process is established, incorporating graphical material can
be easy, benefical and very time-saving.

9. Acknowledgment
The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

Bibliography
Adobe Systems Incorporated. PostScript Language Reference Manual. Reading, Mass.: Addison-

Wesley, 1985.

Adobe Systems Incorporated. Postscript Language Tutorial and Cookbook. Reading, Mass.: Addison-
Wesley, 1985.

Aha, Alfred V., Brian W. Kernighan, and Peter J . Weinberger. The AWE: Programming Language.
Reading, Mass.: Addison-Wesley, 1988.

Holzgang, David A. Understanding Postscript Programming. San Francisco, Calif.: SYBEX, 1987.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix A: Postscript Code and AWK Programs

The following material is the Postscript code for a simple diagram (the word "Hi") before and after
modification for incorporation into a document. The code is included for Adobe Illustrator, Cricket
Draw and MacDraft. In some cases large amounts of text has been removed and replaced by three
lines consisting of a single period. This is done simply for economy of space in this paper. Normally
no code would be removed.

la: Adobe Illustrator Code Before Modification

%%DocumentFonts:~ourier
%%+Helvetica
%%BoundingBox:lii -395 252 -320
%%TemplateBox:288 -360 288 -360
%%Endcomment s
%%BeginProcSet:~dobe~Illustrator~l.1 0 0
% Copyright (C) 1987 Adobe Systems Incorporated.
% All Rights Reserved.
% Adobe Illustrator is a trademark of Adobe Systems Incorporated.
/Adobe-Illustrator-1 . I dup 100 dict def load begin
/Version 0 def
/Revision 0 def
% definition operators
/bdef {bind def) bind def

% font construction operators
/Z Cfindfont begin currentdict dup length dict begin
€1 index /FID ne (def) (pop pop) ifelse) forall /Fontlame exch def dup
length 0 ne
</Encoding Encoding 256 array copy def 0 exch Cdup type /nametype
eq
(Encoding 2 index 2 index put pop I add) (exch pop) ifelse) forall) if
POP
currentdict dup end end /FontName get exch definefont pop) bdef
end
%%EndProcSet
%%EndProlog
%%Beginsetup
Adobe-Illustrator-1.1 begin
n
%%BeginEncoding:-~elvetica Helvetica
I:
39/quotesingle 96/grave
128/Adieresis/Aring/Ccedilla/~acute/Ntilde/Odieresis

%%EndEncoding
%%Ends etup

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

%%Note :
/-Helvetica 72 12 0 0 z
[I 0 0 I 148 -3801e
(Hi) t
T
%%Trailer
-E end

lb: Adobe Illustrator Code After Modification

/vmsave save def
% ! PS-Adobe-2.0 EPSF-I .2

%%DocumentFonts:Courier
%%+Helvet ica
%%Bounding~ox:lll -395 252 -320
%%Template~ox:288 -360 288 -360
%%Endcomment s
%%BeginProc~et : ~dobe_~llustrator-1. I 0 0
% Copyright (C) 1987 Adobe Systems Incorporated.
% All Rights Reserved.
% Adobe Illustrator is a trademark of Adobe Systems Incorporated.
%%EndProcSet
%%Endprolog
%%Beginsetup
Adobe~Illustrator~l.1 begin
n
I a AABeginEncoding : -Helvetica Helvetica
c
39/quotesingle 96/grave .

%%EndEncoding
%%Endsetup
currentpoint translate
.8333 ,8333 scale
-320 288 translate

0 g

TUGboat, Volume 10 (l989), No. 4 - 1989 Conference Proceedings

-E end
vmsave res to re

2a: Cricket Draw Code Before Modification

% ! PS-Adobe-2.0
%%Creator:Cricket Draw 1.1
%%Tit le :Unt i t led # I
UCreationDate: 5/15/89 4: I6 PM
%%DocumentFonts: Helvetica
%%BoundingBox: 0 0 612 792
%%Pages: (atend)
%%Endcomments
/vmstate save def
/$cr icket 210 d i c t def
$cr icket begin
2 set l inecap
%%LoadPrep:Cricket Procedures

%----- Begin Main Program ----- %
gsave % Text Block
0.000 1 -1 0.000 126.500 114.000 f ixcoordinates
/myshow /show load def
0 setgray
-63 -11 moveto
/ 1 Helvetica f indf ont 72 scalef ont se t f ont
<
(Hi) show
3 leftshow
gres to re
%------ End Main Program ------ %
showpage end
vmstate res to re
%%Trai ler
%%Pages: 1

2b: Cricket Draw Code After Modification

%!PS-Adobe-2.0
%%Creator:Cricket Draw 1 . 1
%%Ti t le :Unt i t led #I
n c r e a t i o n ~ a t e : 5/15/89 4: I6 PM
%%DocumentFonts : Helvet ica
%%BoundingBox: 0 0 612 792
%%Pages : (a t end)
%%Endcomments
/vmstate save def
currentpoint t r a n s l a t e
.8333 .8333 sca le
1 -1 sca le -100 -130 t r ans la te
$cr icke t begin
2 se t l inecap
* 8 LhLoadPrep: Cricket Procedures

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

(Helvetica) coordinatefont
%----- Begin Main Program ----- %
gsave % Text Block
0.000 I -1 0.000 126.500 114.000 f ixcoordinates
/myshow /show load def
0 setgray
-63 -11 moveto
/ I Relvetica f indf ont 72 scalef ont se t f ont

(Hi) show
3 leftshow
grestore
%------ End Main Program ------ %

end
vmstate res to re
%%Trailer
%%Pages : I

3a: MacDraft Code Before Modification

%!PS-Adobe-2.0
%%Tit le: Untit led-1
%%Creator: MacDraft
%%Creat ion~ate: Monday, May 15, 1989
%%Pages : (a t end)
%%BoundingBox: ? ? ? ?
%%PageBoundingBox: 30 31 582 761
%%For: Tom Renfrow
%%IncludeProcSet: "(AppleDict md)" 66
%%Endcomment s
%%Endprolog
%%Beg inDocument Setup
md begin

T T -31 -30 761 582 100 72 72 I F F F F T T psu
(Tom Renfrow; document: Untit led-1)jn
0 mf
od
%%EndDocumentSetup
%%Page: ? 1

OP

2 F / I Helvetica f n t
bn
-1 .9567 1 0. (Hi) ashow
0 0 pen
254 147 gm
(nc 0 0 730 552 6 rc)kp

0 g r
104 146 194 227 0 r c
F T cp
%%Trai ler

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

cd
end
%%Pages: 1 0
%%EOF

3b: MacDraft Code After Modification

% ! PS-Adobe-2.0
%%Title : Untitled-I
%%Creator : MacDraf t
%%CreationDate: Monday, May 15, 1989
%%Pages : (atend)
%%BoundingBox: ? ? ? ?
%%~age~oundingBox: 30 31 582 761
%%For: Tom Renfrou
%%Include~rocSet : "(AppleDict md) " 66
%%Endcomment s
%%Endprolog
%%BeginDocumentSetup
/vmsave save def
currentpoint translate
.8333 .8333 scale
-250 -600 translate
md begin

T T -31 -30 761 582 100 72 72 1 F F F F T T psu
(Tom Renfrou; document: Untitled-1)jn
0 mf
od
%%EndDocumentSetup
%%Page: ? I

I Helvetica fnt

671 0. (Hi)ashou
0 0 pen
254 147 gm
(nc 0 0 730 552 6 rc)kp
0 gr
104 146 194 227 0 rc
%%F T cp
%%Trailer
cd
end
vmsave restore
%%Pages: 1 0
%%EOF

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Two AWK programs are included as examples to show the utility that the AWK language can
provide for manipulating Postscript files. The first program reads in a Postscript file produced by
MacDraft and puts in the code necessary to generate two reference lines. This altered file can be
sent to a Postscript printer and the resulting diagram (with reference lines included) can be used to
determine the "bottom center" of the diagram. It is assumed that the MacDraft header has already
been loaded into the printer.

#Add t h e vmsave header
#Add t h e code t o generate t h e re ference l i n e s
/-%%BeginDocumentSetup/ {pr in t $0

p r i n t "/vmsave save def"
p r i n t "gsave"
p r i n t "newpath"
p r i n t "72 720 moveto"
p r i n t "360 0 r l i n e t o "
p r i n t "stroke"
p r i n t "newpath"
p r i n t "72 720 moveto"
p r i n t "0 -360 r l i n e t o "
p r i n t "stroke"
p r i n t "grestore"
next)

#Add t h e r e s t o r e command a t t h e end
/-end$/ {pr in t $0

p r i n t "vmsave r e s t o r e "
next)

#Pr in t t h e l i n e s which don ' t conta in an end of f i l e marker
$0 ! - "\032" {p r in t $0)

The second AWK program converts a Cricket Draw file from the original form transferred from
the Macintosh to the form that can be included in the Postscript code for the document. Before the
user runs this AWK program, it is assumed he has run another AWK program like the one above (but
designed for Cricket Draw) which helps the user determine the "bottom center" of the diagram. The
AWK program interactively queries the user for the two needed offset measurements. The results of
the transformation are written to a file specified by the variable outf i l e . This variable is specified by
the user in the command line that invokes the program. An interesting feature of this program is that
it saves font name information from one part of the text file and then writes it out later.

#Ask user f o r o f f s e t informat ion
BEGIN {p r in t "How many po in ts from t h e l e f t l i n e "

p r i n t "is t h e cen te r of t h e f i gu re?"
i f (g e t l i n e > 0) xoff s e t = $1
p r i n t "How many po in ts up from t h e bottom l i n e is"
p r i n t " the bottom of t h e f i gu re?"
i f (g e t l i n e > 0) yo f f se t = $1)

#Build t h e l i s t of f o n t s needed i n Cr icket Draw
#Note: Th is command w i l l be executed only a f t e r t h e
#/-%%DocumentFonts:/ command has been used.
/ - % % L ~ ~ ~ P ~ ~ ~ : / {print "%-------------------------" > o u t f i l e

p r i n t "%Encode PS Fonts t o match Mac Fonts" > o u t f i l e
f o r (name i n f o n t s)

p r i n t "(" name ") coordinatefont" > o u t f i l e
~y------------------------n > o u t f i l e

next
3

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

#Put i n t h e needed o f f se t information
/- \ / \$cr icket/ C

p r i n t "currentpoint t rans la te" > o u t f i l e
p r i n t "/xoff s e t " xoff s e t " def" > outf i l e
p r i n t " /yoffset yof fset " def" > outf i l e
p r i n t "/specialmag " specialmag " def" > o u t f i l e
p r i n t "specialmag dup neg scale" > o u t f i l e
p r i n t "xoffset 100 add neg 500 yof fset neg add neg t rans la te" > o u t f i l e
next)

#Turn off t h e rou t ine t h a t gathers font information
/-%%Bounding~ox:/ (act ion = 0; p r i n t > outf i l e ; next)

#Turn on t h e rout ine t h a t co l lec ts font information
/-r/DocumentFonts : / {act ion=l ; fon ts [$21 =O; p r i n t > outf i l e ; next)

#Another l i n e t h a t w i l l contain font information
act ion == I (fonts[$2] = 0; p r i n t > outf i l e ; next)

#Remove t h e showpage command so t h a t the page i s not
#pr inted prematurely
/^showpage/ (pr in t "end" > o u t f i l e ; next)

#Print t he other l i n e s which don't contain an end of f i l e marker
(i f ($0 !' "\032") p r i n t > outf i l e)

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

Appendix B: Suggestions on Creating MacDraft Header File

Producing a working version of the MacDraft Header File is a challenging task. Basically this
involves producing a working version of the Laser Prep file on the Macintosh.

The first step is to capture the header file. This can be done by creating a file in Word or MacWrite
that consists of some small amount of text - for example, the letter "a". Select the "Print" command.
Just before you click on the "OK" button, depress the "Apple" or "Four leaf' key and simultaneously
the "K" key and then click on the "OK" button. Ignore the strange sounds produced by the machine.
A new file called "PostScriptnn will be produced on the system and you can find it with the Macintosh
Desk Accessory "Find File". Open this file with some text editor.

NOW you have to pare this header file down some. There are several large code segments at the
end of the header. These look like:

currentfile ok userdict/stretch known
not and~eexec)~flushfile)ifelse
373A767D4B7FD94FE5903B70i4BiB8D3BEDO
2632C855D56F458Bii8ACF3AF73FC4EF5E81F57490

00000000000000000000000000000000
00000000000000000000000000000000
cleartomark
currentfile ok userdict/smooth4 known
not and~eexec)~flushfile)ifelse

F94EOOEE41A71C59E5CAEEDlEDBCF23DiDBA1
EE99B9BB356492923BD8BlBA83A87CEBOE07377A3
00000000000000000000000000000000
00000000000000000000000000000000
cleartomark
%%EndProcSet

These segments can be removed. The rest of the file can remain. If you plan to download the file
permanently to the printer, then you need to add the line serverdict begin 0 exitserver at the
beginning of the file. When you transfer this file from the Macintosh to the IBM PC and edit it with
a text editor, you must may very sure that some of the long lines do not get broken up incorrectly.
One particularly bad section is the part that lists the names of special characters (e.g., jagrave
/acircumflex Iadieresis latilde laring /ccedilla leacute legrave). Text editors may break
these lines in the very middle of a word and this causes the PostScript interpreter to think that there
is a new name and also a command which it does not understand. Text editors may also break -1 into
- and 1 which will cause an error. Once you get all these edits made and no lines broken improperly,
then you can send the header to the printer to see if you have any errors. At this time it is nice to use
a utility like LaserTalk to analyze the code as it is being sent.

The suggestions don't work magic but they may help.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

