
The Communications of the TEX Users Group

Volume 13, Number 1, April 1992

TEX Users Group

Memberships and Subscriptions
TUGboat (ISSN 0896-3207) is published four times
a year plus one supplement by the TEX Users
Group, 653 North Main Street, P. 0 . Box 9506,
Providence, RI 02940, U.S.A.

1992 dues for individual members are as follows:
Ordinary members: $60
Students: $50

Membership in the TEX Users Group is for the cal-
endar year, and includes all issues of TUGboat and
 EX and TUG News for the year in which member-
ship begins or is renewed. Individual membership
is open only to named individuals, and carries with
it such rights and responsibilities as voting in the
annual election. A membership form is provided on
page 112.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
delivery by surface mail $60, by air mail $80.

Second-class postage paid at Providence, RI,
and additional mailing offices. Postmaster: Send
address changes to the Tm Users Group, P. 0 . Box
9506, Providence, RI 02940, U.S.A.

Institutional Membership
Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the Users Group. For further information,
contact the TUG office.

TUGboat @ Copyright 1992, '&X Users Group
Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the '&X Users
Group instead of in the original English.

Some individual authors may wish to retain traditional
copyright rights to their own articles. Such articles can be
identified by the presence of a copyright notice thereon.

Board of Directors

Donald Knuth, Grand Wizard of m-arcanaY
Malcolm Clark, President*
Ken Dreyhaupt*, Vice President
Bill Woolf* , Treasurer
Peter Flynn*, Secretary
Peter Abbott, Vice-President for U K W U G
Bernard Gaulle, Vice-President for GUTenberg
Roswitha Graham, Vice-president for

the Nordic countries
Kees van der Laan, Vice-President for NTG
Joachim Lammarsch, Vice-President for DANTE
Barbara Beeton
Luzia Dietsche
Michael Ferguson
Raymond Goucher, Founding Executive Directory
Yannis Haralambous
Doug Henderson
Alan Hoenig
Anita Hoover
Mimi Jett
David Kellerman
Nico Poppelier
Jon Radel
Christina Thiele
Hermann Zapf, Wizard of FontsY
*member of executive committee
Y honorary
See page 3 for addresses.

Addresses
General correspondence:
TEX Users Group
P. 0. Box 9506
Providence, RI 02940
Payments:

Users Group
P. 0. Box 594
Providence, RI 02901
Parcel post,

delivery services:
T'EX Users Group
653 North Main Street
Providence, RI 02904

Telephone
401-751-7760

Fax
401-751-1071

Electronic Mail (Internet)
General correspondence:
TUGQMath . AMS . corn
Submissions to TUGboat:
TUGboatQMath. AMS . corn

TJTJ is a trademark of the American Mathematical
Society.

Kerning should usually be completely invisible: the
characters should look as if they have lived next to one
another all their lives.

Ed Cleary, letter in
Seybold Report on Publishing Systems
(November 1989)

COMMUNICATIONS O F THE USERS GROUP
EDITOR BARBARA BEETON

APRIL 1992
U.S.A.

TUGboat TUGboat Editorial Board

During 1992, the communications of the rn Users
Group will be published in four issues. One issue
(Vol. 13, No. 3) will contain the Proceedings of the
1992 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are for the most part
reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting items for Vol. 13, No. 2,
will have passed by the time this issue is mailed.
The next regular issue will be Vol. 13, No. 4;
deadlines are August 18, 1991, for technical items,
and September 15, 1991, for reports and similar
items. (Deadlines for future issues are listed in the
Calendar, page 106.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor, in care of the TUG office.

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either p la in

or U r n , are available "on all good archives".
For authors who have no access to a network, they
will be sent on request; please specify which is
preferred. For instructions, write or call Karen
Butler a t the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboat @Math. AMS . corn on the Internet.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call Karen Butler at the TUG office.

Barbara Beeton, Editor
Victor Eijkhout, Associate Editor, Macros
Jackie Darnrau, Associate Editor, iYT&?X
Alan Hoenig, Associate Editor, Typesetting on

Personal Computers
See page 3 for addresses.

Other TUG Publications

TUG publishes the series mniques , in which have
appeared reference materials and user manuals for
macro packages and rn - re la ted software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on W n i c a l subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such
items or know of any that you would like considered
for publication, contact Karen Butler at the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic, Inc.
DOS and MSJDOS are trademarks of Microsoft

Corporation
LaserJet, PCL, and DeskJet are trademarks of

Hewlett-Packard, Inc.
METAFONT is a trademark of Addison-Wesley Inc.
PC TEX is a registered trademark of Personal m,

Inc.
Postscript is a trademark of Adobe Systems, Inc.

and AMS-W are trademarks of the American
Mathematical Society.

Textures is a trademark of Blue Sky Research.
UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 13 (1992), No. I

General Delivery

Editor's note: The reassignment of the Proceed-
ings of the 1991 Annual Meeting to the final two
issues last year excluded the outgoing President's
farewell comments from their expected forum. Thus
we begin this new year with remarks from two Pres-
idents.

- -

Prez sea
Living in interesting times

Malcolm Clark

Optimism is a necessary prerequisite for Board
membership; a double dose is useful for the TUG
President. It will not have escaped your notice
that there is currently a world-wide recession, which
shows no immediate sign of passing, despite the
pronouncements of various election-sensitive politi-
cians. TUG has not escaped the fallout of economic
pressures: a number of effects have been experienced
by us all. The most visible were the increase in dues;
the restructuring of TUGboat 12 numbers 3 and 4
to be the proceedings issues; the cancelling of one
issue of TTN; less visible has been the reduction in
staff at the Providence office to only four, two of
whom are working reduced hours.

Let's look on the bright side: TUGboat still
managed to run to almost 600 pages; the Resource
Directory was published; the final balance sheet will
probably show that TUG just about broke even;
TUGboat and TTN seem to be close to their pro-
duction targets; the shortage of staff is makiilg us
look far more seriously at how best to use the vast
pool of volunteers always lurking below the surface.
I am also greatly encouraged by the cohesion shown
at the recent Board meeting. The high degree of
consensus and unanimity, directed towards common
goals and objectives should help us all move towards
a TUG which gives far more emphasis towards mem-
bership needs.

But of course, TUG is not the sole propri-
etor of 'l&X and the other 'I)$ paraphernalia. A
quick glance a t the bits and pieces in the electronic
archives, or the various digests and bulletin boards
indicates that there is a vast, active, m - a w a r e pop-
ulation out there. You might reasonably ask why
they aren't all TUG members, but remember that

and its tools are not an end in themselves; they
are merely software tools to aid document produc-

tion. It might even be that the perceived mission-
ary fervour dissuades many! But there is another
key area where it is evident that 'I)$ is becoming
yet more respectable: there is now a large number
of books, in several languages, on some aspects of
TEX. Oddly, there are far fewer on MTEX (oddly,
since M w is far more widely used - maybe it's in-
tuitive). Publishers have clearly taken to heart the
fact that the m and I4'I)$ books have sold over
150,000 copies, and are seeking to exploit the de-
mand.

Some thanks are due: a major debt of gratitude
is due to Pierre MacKay and Tiina Modisett for the
years of effort they put into texhax. The texhax
electronic digest originated at Stanford University
under the guidance of David Fuchs and was moder-
ated for a time by Malcolm Brown. (I have much to
thank Malcolm for: since Clark and Brown are ap-
parently indistinguishable as surnames, I was able
to bask in his glory for many years.) Then it was
taken over by Pierre at the University of Washing-
ton. Peter Abbott (Aston electronic archive host,
and currently chairman of the UK TJ$ users group)
offered to administer the digest, using the tools de-
veloped by the similar (and monotonously regular)
uktex digest, at nominal cost to TUG. This offer
was gratefully accepted by the board. Users of the
digest should notice no ill-effects. There have been
some suggestions that a digest is no longer neces-
sary, especially with the availability of inf o-tex and
comp. t e x t . tex. This is to misunderstand the func-
tion of these very different media. Those happily
plugged into the electronic net sometimes overlook
others' working patterns -I know that I find it far
more convenient to find time to read a digest than to
browse through an electronic conference or bulletin
board.

I also have to express my thanks to those who
are no longer on the TUG Board-Nelson Beebe,
Lance Carnes, Bart Childs, John Crawford, Allen
Dyer, David Fuchs, Regina Girouard, Dean Guen-
ther, Hope Hamilton, Patrick Ion, David Kratzer,
Pierre MacKay and Craig Platt (among them three
past-Presidents). It is through the efforts of peo-
ple like these that TUG has come as far as it has.
They have provided the foundations on which we
now stand.

o Malcolm Clark
Information Resource Services
Polytechnic of Central London
115 New Cavendish Street
London W1M 8JS, England, UK
Janet: malcolmc@uk.ac.pcl.mole

President's Column

TUGboat, Volume 13 (1992), No. 1

2 Looking forward

Nelson H. F. Beebe

1 Looking back

This is my last communication to you as President
of the T)$ Users Group for 1990-91. The past two
years have seen considerable changes in the TUG of-
fice and the TUG Board, and change is often painful.
With the new election procedures described in the
pilot issue of 7)JY and TUG News, next year may see
more changes, with possibly a very different mem-
bership on the Board. I wish the organization well,
and hope that it can overcome the financial difficul-
ties that it has suffered during the last three years,
and move on to serve an ever-increasing number of
QjX users. You can help: find some friends or col-
leagues who use m, but don't know about the TEX
Users Group, explain the benefits of membership,
and get them to join.

If I reflect on the last two and a half years, I con-
fess that my biggest disappointments have been the
turmoil in the Board, and the financial limitations
that have prevented support of some important ac-
tivities, particularly research into new directions in
typography, such as the I 4 m 3.0 redesign project,
and beginning the groundwork for the design of pos-
sible successors to and METAFONT.

Since the question of the names of descendents
of TEX and METAFONT, in view of Don Knuth's
wishes for immutable programs expressed in [13],
has caused considerable confusion in the 'l$X com-
munity, I requested a clarification in a telephone
conversation with Don a few days before writing
this.

He made it quite clear that he wishes only that
the names QX and METAFONT be permanently
bound to those programs as he wrote them; vari-
ants on the names, such as E-T&X [14], V7&X [19],
or nmf, are acceptable to him. New names should
be sufficiently different that there is no possibility of
confusion with the old ones, even when accents are
dropped, or letter case is mangled.

I must therefore retract my call [2] for a change
in the name V W . So that no confusion remains as
to my motives, I reiterate my position that experi-
ments with new designs, like VQX, MetaPost [I l l ,
Lilac [6], and the work of Luigi Semenzato and Ed-
ward Wang [16] are vitally important to the future
of computer-assisted typesetting.

Don did express his hope that the architect(s) of
any descendants of TEX and METAFONT will stand
behind the new programs, as he has for his own cre-
ations.

One of my goals as President was to enhance access
to T)?J archives. The tug l ib server at Utah has
been operational for over a year, providing electronic
mail access to archives for those who lack Internet
anonymous f t p access. A preliminary description
of the server appeared in UK W l i n e at the Cork
meeting last year, and is being reprinted by NTG.
TUGboat publication of a revised version is sched-
uled for spring 1992.

The TUG office is collaborating with Jon Radel
to provide distribution of W w a r e on floppy disks.

The tex-archive, tex-implementors, and
tex-f ont s lists now provide a way for worldwide co-
ordination of related activities. Maintenance of con-
sistency in archives is a very large problem, because
with several operating systems in use at archive
sites, there is as yet no easy way for them to ex-
change files automatically. Eventually, we must find
a solution, because the job is too large, and too im-
portant, to be relegated to fallible humans. The file
headers described below provide a way to verify cor-
rectness and versions of files fetched from archives.

The Cork font standard should offer a solution
to the use of 8-bit character sets with TJ$ 3.0. Work
on extended Computer Modern fonts is nearly com-
plete. The I4m 3.0 development has had excellent
ground work done, and I fully expect that the final
product will be truly international.

QjX servers grow in number and size; the As-
ton server in the UK now even has its own Internet
address. Within a few months, we hope to see it
accessible from the Internet.

TUG membership now includes members from
51 countries, and over a dozen national/regional/
language TEX user groups cater to the needs of spe-
cific segments of the w community.

TUG has launched a newsletter, TTN, to sup-
plement TUGboat, and provide a forum for less
technical communications.

TUG'92 will be held in Portland, Oregon, on
July 27-30, 1992.

Malcolm Clark. the new TUG President for
1992. comes to us with ample experience. He
has written or edited at least three books with m.
co-organized the E u r o m 8 8 meeting, edited and
produced m l i n e , chaired the UK-TEX group, and
taught many courses about QX and electronic doc-
ument production. I'm confident he will do a fine
job, and I'm sure you'll enjoy reading his contribu-
tions to TUGboat. Good luck, Malcolm.

TUGboat, Volume 13 (1992), No. 1

3 News Items

3.1 EuroT~X91

The Sixth European TEX conference was held in
Paris, France, on September 23-25, 1991, followed
by the GUTenberg'91 meeting on September 26.
About 120 people from at least 21 countries at-
tended. The conference papers have already been
published as numbers 10 and 11 of Cahiers GUTen-
berg.

Several papers dealt with the use of !QX in
languages with accented characters, and working
groups met daily for the polishing of the font stan-
dard proposed at the Cork meeting in 1990. We
heard progress reports from representatives of each
of the user groups, and I was pleased to hear that
TEX is now being used for typesetting several jour-
nals in Eastern Europe.

The organizers did a fine job. Meals were pro-
vided one floor above the meeting hall. About ten
workstations with Internet connections were freely
available, allowing participants to login to their
home machines to read mail and exchange software;
this is a valuable service which I hope can become
a tradition at future meetings. Simultaneous trans-
lations between French and English were provided.
Participants were lodged in various Paris hotels, but
thanks to the efficient MQtro system, could quickly
reach the meeting site.

E u r o W 9 2 is scheduled to be held in Prague,
Czechoslovakia, in the month of September.

3.2 Project Gutenberg

I recently came across Project Gutenberg at the
University of Illinois in Urbana/Champaign. Here
are some comments from literature I obtained from
them:

The purpose of Project Gutenberg is to en-
courage the creation and distribution of En-
glish language electronic texts. We prefer the
texts to be made available in pure ASCII for-
mats so they would be most easily converted
to use in various hardware and software. . . .
Our goal is to provide a collection of 10 000 of
the most used books by the year 2001, and to
reduce, and we do mean reduce, the effective
costs to the user to a price of approximately
one cent per book, plus the cost of media and
of shipping and handling. Thus we hope the
entire cost of libraries of this nature will be
about $100 plus the price of the disks and
CD ROMS and mailing. . . . The easiest way
for you t o find out about Project Gutenberg
is via subscription to the GUTNBERG list-

server. You can do it by sending the following
message to list serv9uiucvmd. bitnet:

SUB GUTNBERG your name
Your name must have at least two words.
. . . Please do not hesitate to ask for specific
information so it is included in the GUTN-
BERG mailings. Please send these question
messages separately from your subscription
message.

Michael S. Hart, Director, Project
Gutenberg

National Clearinghouse for
Machine Readable Texts

Bitnet: HartQuiucvmd
Internet: HartQvmd. cso . uiuc . edu

The GUTNBERG server is located at
gutnberg9uiucvmd. bitnet. The Internet
address is gutnbergQvmd. cso .uiuc . edu.

The 21-year old project is currently producing
electronic versions of materials in the public domain,
or for which copyright permission can be obtained,
at the rate of one book per month. Plans are to dou-
ble production yearly, and preparations are under-
way to produce a CD ROM of the current holdings.
The collections are accessible for Internet anonymous
ftp on several machines. The main archive is at
mrcnext.cso.uiuc.eduin -ftp/pub/etext.

Through the GUTNBERG list, I uncovered an-
other interesting effort at Georgetown University in
Washington, DC, which reports

Our project is involved in the cataloging
projects around the world that are involved in
the creations/storage/dissemination of elec-
tronic texts. So far, we have recorded the ac-
tivities of over 320 projects around the world.

The catalog I received covers mainly the humani-
ties, and only a small portion of the projects are
accessible electronically.

3.3 Bibliography collections

The bibliography project mentioned several times in
these columns continues to grow, with some collec-
tions receiving several updates a week. There are
now over 51 000 lines in the bibliography files. A
snapshot of the w- re la ted material was published
in the May 1991 TEX Users Group Resource Direc-
tory, which all of you should have seen by now.

Conversations that I had with representatives
of several publishers at the TUG91 and E u r o m 9 1
meetings this year indicate that there may be an-
other 1000-2000 books typeset by TFJ that have
not yet been included. I will continue efforts to get
these incorporated, but the volume is large enough

TUGboat, Volume 13 (1992), No. 1

that it will have to be from machine-readable mate-
rial that can be manipulated into B I B W form with
the help of the wonderful auk language [I].

A recently added collection is the files ep.*,
containing entries for papers from several recent
electronic-publishing conferences; kudos to Karl
Berry for initiating this one.

The collections are accessible via anonymous
f t p to math.utah.edu from the directory ' f tp/
pub/tex/bib, and via electronic mail to tug l ib@
math .utah. edu with requests help to get started,
and send index from tex/bib to find out what is
there. Each BIB^ file has a corresponding I P W
file to typeset the complete bibliography, and there
are several supporting style files for BIB^, IAW,
and m.
3.4 Errata collections

I have recently established a new directory on math.
utah. edu to hold errata files; any book in the bibli-
ography collection is eligible for representation. The
new book on I 4 m by Jane Hahn [lo], and the new
book by Raymond Seroul and Silvio Levy [18] (both
cited in earlier columns) are covered there, as are
some earlier books about w and I P W . Several of
these errata and comment summaries can be typeset
by I4QX using a style file, erratum.sty, included
in the collection.

You can find these files in 'ftp/pub/tex/
e r ra ta with anonymous f t p , or in tex /e r ra ta with
the t u g l i b server.

3.5 Standard file headers

The file headers described in my editorial [3] a year
ago are now being generated in new additions to
the archives with the help of GNU Emacs Lisp
code in the file f i l e h d r . e l stored with the bibli-
ography collection. This code is quite general, and
easily customized; it knows how to generate file
headers for more than 110 different file types and
over 60 different computer languages. Functions
are provided for updating major and minor ver-
sion numbers, dates, and checksums. The function
updat e-f ile-header-and-save does all of those
jobs, making it painless to maintain the headers af-
ter a file has been edited. Extended documentation
will be available in IPw in fo formst, which permits
producing both a typeset manual, and on-line doc-
ument at ion.

Robert Solovay's checksum program in CWEB
described in [4] is available for anonymous f t p
from math.utah. edu from the directory "f tp /
pub/t ex/pub/checksum, and via electronic mail
to tuglib@math.utah. edu with the request send

index from tex/pub/checksum to find out what is
there. checksum should compile and run on any
system that has a C compiler, and an IBM PC exe-
cutable is included in the distribution.

I encourage 'QjX archive sites, and authors, to
incorporate these headers and checksums in files
that are expected to be exchanged between systems.
The American Mathematical Society has incorpo-
rated similar headers in the September 1991 release
of AMS-TEX 2.1. During the next year, I expect
that tools will be developed to scan file directories,
extracting information from the file headers to pro-
duce catalogs, abstracts, and version summaries.

Perhaps some clever programmer will volun-
teer to convert the approximately 1100 lines of code
in f i lehdr . e l to another editor language, such as
that for jove, which runs on Apple and IBM per-
sonal computers, as well as UNIX and VAX VMS, so
that the support for the file headers becomes readily
available to a larger number of users.

3.6 Typesetting computerese

Peter Neumann's Inside Risks column in the Com-
munications of the ACM [15] recently commented
on the garbling of net addresses by I4l&X, t r o f f ,
and hyphenation algorithms. Such problems have
bothered this author, and I'm sure, the TUGboat
editors.

Some time ago, I wrote a prototype of a W
macro to typeset a string of characters in typewriter
text, with discretionary breaks automatically in-
serted at punctuation characters, so that T@ could
do a good job of line breaking without the tedium
of the user having to supply explicit break points. I
used it in the bibliography collection for file names,
host names, and electronic mail addresses.

My implementation was not optimal, so after a
redesign attempt that still did not meet my goals, I
passed the problem off to Philip Taylor who kindly
provided a robust solution. The macro is invoked as
\path1 . . . I ; as with I 4 W ' s \verb1 . . . I , you can
pick the argument delimiters. However, the package
goes further: you can specify the characters at which
line breaks are permitted by saying something like
\d iscret ionar ies I -Q%. ! I, which is a suitable set
of break points for electronic mail addresses. This
makes it easy to customize the line break points for
particular applications. The default break set is all
punctuation characters. The macros are available in
the bibliography collection at Utah in the file path.
s ty .

TUGboat, Volume 13 (1992), No. 1 9

3.7 New Books

As far as I am aware, as I write this, only one
new book on m in English is in press, although
I know of several others that are close to comple-
tion. Arvind Borde's l)jR by Example [5] should be
available from the publisher by the time you read
this. I myself have not seen it yet.

Don Knuth informs me that the first book pub-
lished by Soviet MIR Publishing using w will be
a Russian translation of Concrete Mathematics [8],
using special Concrete Cyrillic fonts designed with
METAFONT especially for the book, following the
style of Concrete Roman [12].

I recently obtained a copy of the book Code
Typographique 171. It is a comprehensive collection
of rules for French typography, and for the typeset-
ting of several foreign languages in French texts. It
includes tables of diacritics for most European lan-
guages, plus hyphenation rules for English, German,
Greek, Italian, Latin, Portuguese, and Spanish.

3.8 New ?'EX packages

m h a x recently reported an implementation of
a I 4 w extension for Arabic typesetting [9];
it includes METAFONT sources and I P w style
files. This is a preliminary distribution from
Prof. Klaus Lagally clagal lyQinf ormatik .mi-
s t u t t g a r t .de>. The collection is stored on
servers at i f i . inf ormat i k . m i - s t u t t g a r t . de and
niord. shsu. edu, and may be expected to appear on
others as well.

3.9 Electronic mail

Users of electronic mail have frequently experienced
problems of corruption (particularly in TEX files),
truncation, non-delivery, and the general inability to
send &bit character data without special encoding.
A June 1991 Internet Draft entitled Mechanisms
for Specifying and Describing the Format of Inter-
net Message Bodies can be obtained by sending an
e-mail message with the text SENDME DRAFT. BODY*
to d-vlservQshsu. b i tne t . It describes a proposal
for extending electronic mail support to character
sets other than US-ASCII, inclusion of binary data
and image and audio fragments, and tagging of mail
objects to convey type information, using a syntax
compatible with SGML. As a draft, this document is
circulated for comment only: in no way does it repre-
sent a commitment from the Internet authorities or
network software developers. Nevertheless, I found
particularly interesting its incorporation of a "text-
plus" type which includes m , t r o f f , and Post-
Script, and several proposed binary formats, one of

which is 7&X DVI. This may give us hope that by
mid-decade, electronic mail may be much less trou-
blesome for w users.

References

[l] Alfred V. Aho, Brian W. Kernighan, and Pe-
ter J . Weinberger. The AWK Programming
Language. Prentice-Hall, 1988. ISBN 0-201-
07981-X.

[2] Nelson H. F. Beebe. Comments on the future
of TEX and METAFONT. TUGboat, 11(4):490-
494, November 1990.

[3] Nelson H. F. Beebe. From the President. TUG-
boat, 11 (4):485-487, November 1990.

[4] Nelson H. F. Beebe. President's introduction.
TUGboat, 12(2):205-208, June 1991.

[5] Arvind Borde. Q.X by Example. Academic
Press, 1992. ISBN 0-12-117650-9.

[6] Kenneth P. Brooks. Lilac: A two-view docu-
ment editor. Computer, 24(6):7-19, June 1991.

[7] Fbdkration C. G. C. de la Communication.
Code Typographique-Choix de rkgles d l'usage
des auteurs et professionels du livre, seizibme
edition, 1989.

[8] Ronald L. Graham, Donald E. Knuth, and
Oren Patashnik. Concrete Mathematics. Ad-
dison-Wesley, 1989. ISBN 0-201-14236-8.

[9] George D. Greenwade. ArabT'X files available
at FILESERV. m h a x , 91(40), September 15
1991.

[lo] Jane Hahn. for Everyone. Personal '&X
Inc., 12 Madrona Street, Mill Valley, CA 94941,
USA, 1991.

[ll] John D. Hobby. A METAFONT-like System with
Postscript Output. TUGboat, 10(4):505-512,
December 1989.

[12] Donald Knuth. Typesetting Concrete Mathe-
matics. TUGboat, 10(1):31-36, April 1989.

[13] Donald E. Knuth. The future of and
METAFONT. TUGboat, 11(4):489, November
1990.

[14] Frank Mittelbach. E - w : Guidelines for fu-
ture 'l&X. TUGboat, 11(3):337-345, September
1990.

[15] Peter G. Neumann. Inside risks-expecting the
unexpected Mayday! Communications of the
Association for Computing Machinery, 34(5):
128, May 1991.

[I61 Luigi Semenzato and Edward Wang. A Text
Processing Language Should be First a Pro-
gramming Language. TUGboat, l2(3):434-44ll
December 1991.

TUGboat, Volume 13 (1992), No. 1

Raymond Seroul. Le petit Livre de l&Y. Inter-
Editions, 1989. ISBN 2-7296-0233-X.
Raymond Seroul and Silvio Levy. A Beginner's
Book of m. Springer-Verlag, 1991. ISBN O-
387-97562-4, 3-540-97562-4. This is a transla-
tion and adaption by Silvio Levy of [17].
Michael Vulis. V W enhancements to the
language. TUGboat, 11 (3) :429-434, September
1990.

o Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
South Physics Building
University of Utah
Salt Lake City, U T 84112
USA
Tel: (801) 581-5254
FAX: (801) 581-4148
Internet: BeebeQmath.utah.edu

Editorial Comments

Barbara Beeton

It will not escape your notice that there has been
a considerable delay between the previous regular
issue and the present one, with the result that some
items are no longer "fresh". This is regrettable, but
I hope their usefulness is not affected by the delay.

Some of the news we have to offer is sad, but
there are also some bright spots.

Cathy Booth, a remembrance

Cathy Booth, one of the most dedicated TEX sup-
porters in the U.K., was defeated by cancer last July.

I remember meeting Cathy first at the
meeting in Strasbourg in 1986. She was cheery, out-
going, and always ready to help someone else.

With Malcolm Clark, Cathy organized the
"'Q$etern meeting in 1988. For me, the local ar-
rangements for this meeting were the most success-
ful of all the Euro'Q$ meetings, with all the partici-
pants housed in a single Exeter University residence.
Plenty of lounges and discussion areas and few dis-
tractions made it easy for everyone to really get to
know one another. Cathy was the person to thank
for this.

Our contact continued at TUG and other
E u r o W meetings, and in between, through eIec-
tronic mail. I t was a real shock to learn that she

was ill, not from Cathy herself, but from a mutual
friend.

I last saw Cathy in Cork, at EuroT@'9O. As
always, she spread cheer and caring, even when she
was obviously very tired and just keeping up was a
great effort.

Her friends in the U K W u g have established
a fund in her memory, and the prize for the best
paper at E u r o m meetings has been named in her
honor. All her many friends will miss her. I am glad
to have had the opportunity to know her.

Sam Whidden, a remembrance

Another stalwart lost to us was Sam Whid-
den. A more formal recollection follows this column.
However, I can't omit saying what a good boss and
friend he was for so many years. He helped mold the
way my generation of AMS employees approach and
solve problems. Sometimes he just didn't let on that
he thought something couldn't be done, and was re-
warded by seeing it done by his staff who didn't
know any better.

The department Sam built was remarkably free
of bureaucracy, and he always gave us opportunities
to learn interesting new things. I hope that I pass
on some of that enthusiasm to others. My world just
isn't the same without Sam around.

Trip report: Euro'QjX, GUTenberg'91

The sixth European TEX Conference took place on
23-25 September 1991 in Paris. Like previous edi-
tions, it was attended by a diverse collection of
speakers and audience, on this occasion 121 peo-
ple from 21 countries, including several in eastern
Europe.

The spread of (I 4) W in new geographic and
language areas was a recurring theme throughout
the conference. Reports were presented on activ-
ities and developments in Russia (and separately
Siberia), Czechoslovakia, Poland, Hungary, Turkey,
for African languages, for languages using Arabic
scripts, and other topics related to linguistic and
multilingual support. Several of the formal presen-
tations on these topics appear in the proceedings,
which form N9 10-11 of the Cahiers GUTenberg, dis-
tributed as part of the registration materials.'

Other presentations included updates on exist-
ing packages - Babel, MakeIndex, WMS-T@, and
of course I 4 m 3.0-and reports on new work-
database applications, SGML, windowing environ-
ments, tree structures, and color.

See abstracts of this issue of the Cahiers, p. 101

TUGboat, Volume 13 (1992), No. 1 11

Consistent with the interest in using the DC
font arrangement agreed on in Cork, a lively BOF
took place on the subject of 256-character math
fonts; see below for more details. Other BOFs ad-
dressed I4w 3.0 and the future of TEX.

As has become the custom at E u r o w meet-
ings, a prize (a bottle of good Scotch) was awarded
for the best paper. (With this year's presentation,
this will become known as the Cathy Booth Prize.)
The recipient of this year's award was JiEi ZlatuSka,
who spoke on automatic generation of fonts with ac-
cented letters, based on the existing Computer Mod-
ern fonts rather than on the extended layout.

By the end of the meeting, representatives of
most of the European T)$ groups had conferred
and agreed, and it was announced that the 1992
E u r o m meeting would be held in ~ r a ~ u e . ~

The following day, September 26, was devoted
to the GUTenberg meeting. The program included
several technical papers, panel discussions on mat-
ters of particular interest to French speakers, and
GUTenberg business. -

Throughout both meetings, the organizers
made available terminals attached to an Internet
connection, allowing participants to maintain con-
nections to their home systems. Another wel-
come facility was simultaneous translation between
French and English. The organizers deserve con-
gratulations for a job well done.

256-character math fonts

The adoption of the 256-character DC fonts in Cork
has addressed a number of problems in handling
Western European languages that use the latin al-
phabet. However, some of the math capabilities
of TEX have been disabled, and some symbols "or-
phaned" because of it.

At the request of Michael Ferguson, TUG's co-
ordinator for multilingual activities, and now the
chair of the TUG Technical Council, I undertook
work on the creation of a compatible 256-character
math font, and was able to make a preliminary re-
port at a E u r o m BOF in Paris last September.

The core principle expressed in this report was
that cmsy and all "orphaned" cm symbols must be
accommodated. Full upper- and lowercase greek al-
phabets are required, in both upright and italic pos-
tures. Blackboard bold is a strong candidate for
inclusion, as are the most useful items from msam,
msbm, lasy, wasy, and perhaps other existing meta-

An announcement for E u r o m 9 2 can be
found on p. 107

fonts. Suggestions and recommendations were so-
licited at the meeting.

I have since been in contact with Norbert
Schwarz (who was largely responsible for the basic
structure of the DC text fonts); he is constructing
test versions of 256-character math fonts to begin
experimentation. We are sharing the information
that we have each collected, and I expect that Nor-
bert will have a usable experimental layout by the
time you read this. However, suggestions are still
welcome; they should be accompanied, if possible,
by supporting documentation of actual usage. Send
them to me at the address printed at the end of this
column, and I will make sure that they are forwarded
to Norbert.

o Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940
USA
bnb@Math.AMS.com

Samuel Blackwell Whidden, 1930-1991

Sam Whidden, one of the founders of TUG, and its
treasurer from 1980 through 1987, died unexpect-
edly on October 29, 1991. At the time of his death,
he was a member of TUG's Long Range Planning
Committee.

Trained as an astronomer at Harvard College,
Sam spent a couple of years at a hill station in India
tracking Sputnik. After his return to the U.S., he
obtained an M.B.A. degree from Harvard Business
School and joined a small company that was de-
veloping computerized warehousing, shipping, and
other services for publishers. These services in-
cluded some experimental projects in text process-
ing for the American Mathematical Society, and in
April 1968, Sam came to work for AMS as founding
Director of the Information Systems Development
Department (ISD).

Sam's new department was charged principally
with two tasks. The first was relatively ordinary:
to develop in-house computer procedures to replace
manual procedures and contracted computer ser-
vices for the Society's business functions - account-
ing, sales, warehousing and shipping. The second
was certainly more interesting, and perhaps more
important: to continue investigations begun nearly a

TUGboat, Volume 13 (1992), No. 1

Sam Whidden, at a lighter (than air) moment

decade earlier into computer-based typesetting and
other experimental areas of text processing.

Sam was a champion of the idea that the So-
ciety could accomplish the composition of its books
and journals on its own computer. This was the
logical outgrowth of several projects that had been
adopted by ISD on his arrival. He oversaw investiga-
tions into several promising technologies and helped
design and conduct the pilot projects for math com-
position that brought first the Science Typographers
system and later TEX into everyday use at AMS.

The Society's annual Gibbs Lecture was pre-
sented in 1978 by Donald Knuth. Richard Palais,
then Chair of the Society's Board of Trustees (and
later the first Chair of TUG), drew Sam's attention
to this work, and encouraged an investigation. The
investigation led to sending a small group of mathe-
maticians and Society employees to Stanford in the
summer of 1979. They were instructed to learn w.
develop some tools, and bring back a working sys-
tem that AMS could use for all its publication needs,
to replace the two widely differing systems in use at
the time.

When it became clear that wasn't exactly
going to be a "black box" with strong vendor sup-
port, Sam was instrumental in arranging with the
Stanford Project a meeting, held in February
1980, of existing TEX users and others interested in
computer typography for the purpose of organizing
a users group. From this meeting emerged TUG.
Richard Palais was the first Chairman of the gov-
erning body, then called the Steering Committee,
and Sam became the first Treasurer.

For the first year or so, the TUG "office" was re-
ally a minor activity under Sam's direction at AMS.
As it grew, however, more support was required, and
Sam's administrative assistant, Ray Goucher, left
his position at the Society to become TUG Business
Manager. Sam continued to watch over the opera-
tion, both as Treasurer and in an advisory capacity,
until more space was needed than was available at
the AMS offices, and the TUG office moved to its
own quarters.

Sam spread the word about TQX and TUG in
other directions too. He was an active participant
in DECUS, the Digital Equipment Corp. Users So-
ciety, chairing the Languages & Tools SIG for three
years and making his presence felt in a number of
other important areas. He encouraged the use of
?]EX for preparing DECUS documents, and assigned
members of his staff to speak at DECUS about
and to develop macros for preparation of the DE-
CUS proceedings. (These macros are still in use.)
Sam's own contribution was a set of I4W macros
for the "Sessions-at-a-Glance", a compact room-
schedule chart that is part of every DECUS program.

In recognition of his work, Sam was the recipi-
ent of several of DECUS's highest awards. The 1991
Fall Symposium in Anaheim was dedicated to him.

Sam's final legacy to TUG was his outline for
the direction of the Long Range Planning Commit-
tee. As long-time Treasurer, he was concerned for
the financial health of the organization, but also for
its less tangible qualities, such as the sense of com-
munity among its members. His foresight and advo-
cacy spurred the creation of the committee, and his
participation in its deliberations are now beginning
to bear fruit in the form of a plan that will be able
to guide TUG in the years to come.

Sam is survived by his mother, a sister, four
children, and two grandchildren. He also leaves be-
hind many appreciative friends and colleagues.

Barbara Beeton
American Mathematical Society

TUGboat, Volume 13 (1992), No. I

Software

Inside Type & Set

Graham Asher

Abstract

Type & Set is a typesetting system consisting of
TEX, several macro packages, and a suite of
C programs including a style sheet editor, an au-
tomatic page make-up system which replaces W ' s
output mechanism, and a family of drivers. It solves
many of the problems which make plain 'l$jX diffi-
cult to use for commercial journal and book publish-
ing. This article explains in detail how Type & Set
works.

History of the project

Type & Set has been under development at In-
format Computer Communications since February
1987. Informat is the software development and
typesetting division of Current Science (formerly
Gower Academic Journals), a publishing house, and
because the two companies share the same premises
we have had constant access to users and their sug-
gestions and criticism. Some ideas in Type & Set
are tsken from an earlier (non-QX) package of the
same name which it has superseded. For these ideas
(principally the style sheet hierarchy, the mark-up
system and the input format for the table genera-
tor) I am indebted to Mr. A. Harris, a former pro-
grammer at Informat. I take full responsibility for
the present form of the system. The first version of
Type & Set was installed in June 1988. but since
then nearly every part has been rewritten.

What problems does Type & Set solve?

Using Type & Set rather than QX incurs costs in
running time and disk space. However, Type & Set
solves or ameliorates the following problems, many
of which are discussed in detail by Mittelbach [I].
The severity of these problems amply justifies the
increased use of resources.

Page breaking is taken away from TEX com-
pletely and given to a program called PAGE which
analyses the D V I file and writes a new D V I file.
optimally paginated, with balanced columns, fig-
ure spaces, running material, headers and footers.
PAGE takes i ts formatting information from a style
sheet created using Type & Set's style sheet editor.

Varying numbers of columns. Type & Set can

13

switch freely, as many times as you like (and as many
times as you like on the same page). between text in
one. two, three and four columns.

Baseline-to-baseline spacing occurs as a result
of using PAGE rather than TEX to make up pages.
All vertical dimensions in the Type & Set system are
measured from the baseline of one line of text to the
baseline of another. In particular. baselines at the
bottom of pairs of columns align with each other,
as do those of the last lines of text on facing pages.
This also allows style sheets to specify a grid of lines
on to which all baselines should fall if possible: that
is, the y coordinate of a baseline should be an exact
multiple of the grid interval.

Composite fonts (I prefer this term, suggested
by Beebe [2] . to the less descriptive 'virtuai fonts')
are used where necessary in the drivers. Readable
data files called FD or 'FontData' files provide all the
information a driver needs to convert a QX char-
acter code into a device character, using transfor-
mations and superimposition if necessary. A utility.
hfAKETFhl, is used to create TFM files for various
output devices, given appropriate FD files and width
tables.

Tables are created using a quasi-wyszwyg format
in a text editor and converted into TjjX by a pro-
gram called TABLE. Horizontal spans, vertical and
horizontal rules, and centring around any character
(such as a decimal point), are all supported. Tables
are very easily created and modified using this sys-
tem.

Graphics is absent from TEX, and should not
be added. The prevailing standard for graphics is
Postscript. and so the Type & Set Postscript driver
will pick up a named Encapsulated Postscript file,
translate and scale it, and embed it in a figure space.
The driver is told to do this by a \special written
by a macro placed in the text and passed through
by PAGE. A more general feature of PAGE, that
can be used with any driver, is its ability to load,
scale and embed a D V I file in exactly the same way.

Ease of use. Once a style sheet has been cre-
ated for each kind of document to be typeset the
rest is very easy. Staff at all levels of the publishing
process, including those with no specialist computer
knowledge (that is, nothing beyond basic abilities
such as the use of the file system and rudimentary
text editing) can be trained to use Type & Set in a
day or two.

The rest of this article describes in detail how
the problems were solved and how Type & Set
works. What is described is a working system which
was designed and implemented at a publishing house
over a period of four years, and is now in daily use.

14 TCGboat, Volume 13 (1992), No. 1

Data flow and general operation

Input. The user types a document using his or her
favourite word processor. This may. for example. be
Wordstar or Wordperfect, or (as I prefer, being in
part an unreconstructed TJ$ hacker) an ordinary
ASCII text editor. The document contains little or
no TEX apart from markup codes known as mode
names which are determined by the style sheet to be
used. Mode names look like ordinary T@X control se-
quences. mainly because that is what they are. The
preferred Type & Set style places mode names on
separate lines. The mode determines all the stylistic
and structural parameters of the text: its font, jus-
tification, indents. paragraph spacing, and whether
it is part of the body text. a figure caption, or, say. a
running header-and many other details. Tag is the
term preferred in the world of desktop publishing,
but we stay with mode for historic reasons.

Preprocessing. The first part of Type & Set to
be run is the appropriate preprocessor for the text
editor or word processor that has been used. In the
case of Wordstar this is WS2TEX. which strips the
high bits that Wordstar uses to mark the ends of
words. converts Wordstar codes for italic, bold face,
etc., into \it. \bf. etc., and emits standard ASCII
text of the type 7&X reads.

'QX. Any version of can be used, with the
proviso that if the document contains large tables a
version with the biggest possible memory is desir-
able. loads a customised format file, very sim-
ilar to p l a i n . fmt (indeed, almost upwardly com-
patible) called t s p l a i n . f mt. The first command
T@X finds in its input file is something like \ input
mysty le. s t y , which loads the style sheet, which de-
fines all the mode names and other markup codes
used in the document. TJ$ then runs normally and
writes a DVI file, using the minimal output routine
from t s p l a i n . fmt. This output file is effectively a
galley in traditional typesetting terms, in that the
text has been set in the desired fonts and counted or
broken into lines, but has not yet been made up into
pages. The D V I file contains numerous \specials,
mostly for use by PAGE.

Page make-up. PAGE reads the D V I file and
analyses i t into lines. determining the mode of each
line from a \special. A packet of information is
built up for each line giving quick access to its mode,
leading, position in the D V I file, and so on. At this
point any automatzc materzal is added. This con-
sists mainly of the spacing and rules which the style
sheet specifies for insertion before or after certain
modes. or between paragraphs, or around blocks of
text. PAGE then uses the line information to write

a new file, given the extension DVP, but precisely
conforming to the D V I format, which contains the
made-up pages. If TEX fonts were used the work of
Type & Set proper could end here, and the DVP file
could be typeset using a third-party driver.

Previewing. Both D V I and DVP files for any
printing device can be previewed on the screen using
the Type & Set previewer, DVISCR. which draws
characters using a device-independent vector font.
This evades the problem of screen bitmap fonts not
being available for, say, Optima on the Linotronic
100.

Proofing. Proofing is generally done on a laser
printer, using the Postscript or Hewlett Packard
LaserJet driver as appropriate. All drivers have the
ability to emulate a font not found on the output
device by using a similar one that zs present: and
the Postscript driver is especially optimised for em-
ulation.

Printing. The driver family includes drivers for
Postscript, Hewlett Packard LaserJet, Linotype de-
vices using CORA V, Chelgraph devices using ACE,
and Agfa Compugraphic devices. All drivers share
common code which reads the FD (FontData) file, in-
terprets the D V I file, and implements the composite
font system.

Style sheets

The style sheet system both endows Type & Set with
much of its power and limits it in various ways. Style
sheets embody a generalisation about the possible
forms of a document: a model which necessarily ex-
cludes some possible documents. The Type & Set
style sheet model is designed to handle most types
of journal and book design. but not magazines or
newspapers, which in any case are laid out manu-
ally, page by page, rather than being intended for
automatic page make-up.

Type & Set documents organise their text into
two major divisions:

0 body text, and
0 running matter

The body text is a single continuous sequence laid
out over as many pages as necessary within a certain
rectangle known as the text area, which may be posi-
tioned differently on left and right pages. Footnotes
and figures are included within the broad heading of
body text: these are positioned within the ordinary
text under the control of callouts or references to
them.

The running matter comprises running headers
and footers, and folios (page numbers). These items

TUGboat, Volume 13 (1992)) No. 1 15

are placed in the margin outside the text area at
fixed positions on each page. Style sheets allow you
to specify different positions and different text for
left, right, start and end pages.

Style sheets have three levels, page, block and
mode. Each level has its own dialog within the inter-
active style sheet editor, STYLE. To create a style
sheet a designer runs STYLE and fills in the boxes
in the dialogs. The following paragraphs explain the
meaning of each level.

Page level. This is where you specify the size
and position of the page and of the text area within
it. In the present version of Type & Set each doc-
ument can have only a single page style: but mul-
tiple page styles are an obvious and not impossibly
difficult extension which may be considered in the
future.

Block level. You must create a block for each
structurally different type of text in the document.
Blocks are named objects belonging to one of the
following categorzes, each of which has a two-letter
symbolic name:

text
running header, start page
running header, end page
running header, left pages
running header, right pages
running footer, start page
running footer, end page
running footer, left pages
running footer. right pages
footnote
folio, start page
folio, end page
folio, left pages
folio, right pages
figure

It is often necessary to have more than one text
block. Blocks may be set in one, two, three or four
columns: if you need to switch between text in differ-
ent numbers of columns, as, for instance, in the case
of a document with full-width single-column head-
ings and two-column text, then the single-column
text must have one block and the double-column
text another.

The other main motivation for multiple text
blocks is the need to position the blocks differently:
each block may be offset from the left margin of the
text area by a different amount, and this may be
specified separately for left and right pages. This
facility enables you to design a document (as in the
case of a medical textbook published using Type &

Set) where the headings project beyond the text,
inward toward the margin.

Usually no more than one block will belong to
each of the running header and running footer cat-
egories.

To sum up, the following information is specified
at block level:

0 name of the block
0 category: see previous table
0 offset from left margin
0 absolute coordinates, unless category = text
0 width
0 number of columns
0 gutter between columns
0 weight of gutter rule, if any
0 weight of box rule, if any
0 margins inside box rule
0 grid spacing, if any
0 automatic spaces and rules

explicit spaces, rules and indents

A typical simple style sheet will have six or seven
blocks: a complex one will have twenty or thirty.

Mode level. This is the lowest level of descrip-
tion, corresponding to the tags used in desktop pub-
lishing packages such as Ventura Publisher. Here all
the information about fonts and point sizes is stored,
along with the justification and indents. The mode
may be indented within its column, so the measure
or, in 5 Y terms, the \hsize of a paragraph of text
is determined by width of a column (set at block le-
vel) minus any left or right indents applied at mode
level.

The name you give a mode is the actual markup
code used in the input text, and may be any alpha-
betic sequence up to ten letters long. In the text
all that is needed is a prefixed backslash: to invoke
mode 'ref', the command \ref is used, on a line of
its own.

Every mode belongs to a block, and normally
several modes belong to the same block. In an ex-
tremely simple document consisting only of text and
headings, there might be two modes, \ tex t , in a
fully justified roman font, and \head, in a left jus-
tified bold font. Automatic spacing can be used to
insert space between the heading and the text.

Not one but four fonts are specified in every
mode. These are roman, bold? italic, and bold italic,
and will nearly always come from the same face or
family unless special effects are intended. For exam-
ple, a text mode might have Garamond Light, Gara-
mond Book, Garamond Light Italic and Garamond
Book Italic; within this mode the control sequences
\rm, \bf , \it and \b i respectively would be used

16 TUGboat, Volume 13 (1992), No. 1

to select each of the four fonts. Where the mode is
inherently bold, as in a heading, the fonts are usu-
ally chosen so that roman and bold are identical, as
are italic and bold italic.

Although Type & Set gives you control, via
PAGE, over the degree of tolerance extended to wid-
ows and orphans, sometimes absolute prohibition of
unwanted page and column breaks is preferred. This
is done at mode level. For example, if you want the
first two lines of each paragraph to be locked to-
gether and never split in any circumstances you can
give paragraph star t lock the value 2. Headings must
never be separated from the text that follows, and
this is done by specifying that the heading mode is
to be locked to the next mode, as well as having all
its lines locked together. Of course, this does not
mean that all the heading lines in the document are
locked into one huge block: the lock applies only to
continuous sequences of lines belonging to the same
mode.

To sum up. the following information is specified
at mode level:

0 name of the mode
0 the block it belongs to
0 the four fonts
0 pointsize
0 leading
0 justification
0 hyphenation tolerance
0 looseness of word spacing

left and right indents
paragraph indent
glue between paragraphs (\parskip)
indent the first paragraph?

0 lines to lock at start of mode
0 lock all lines of mode together?
0 lock this mode to following text?
0 lines t o lock at start of paragraph

lines t o lock at end of paragraph
0 automatic spaces and rules
0 explicit spaces, rules and indents

Table modes. I shall not deal with table modes in
detail. They are at the same level of description as
ordinary modes, and contain much of the same in-
formation, with the addition of some things needed
specifically for tables, such as the amount of space
to leave between the table and its caption. if any.
Tables are explained below.

Fonts and font families

All text in a Type & Set document belongs to one of
the modes of the style sheet in use. When STYLE

creates a style sheet one of the files it writes is a
large macro package: each mode is a macro.
This is how the fonts are selected. When a mode
macro is interpreted by w, ten control sequences
(among others) acquire new meanings:

roman text
italics
bold face
bold italics
superscript
subscript
math italic font
symbol font
math extension font
Type & Set extension font

These invoke lower-level macros to select the appro-
priate fonts and pointsizes. The first six need not
be used if WordStar or Wordperfect is used to in-
put the text, because Type & Set can convert the
control characters used by the word processors if
necessary. The last four are also rarely seen in Type
& Set text, but are invoked automatically in mathe-
matical text and when special characters from those
fonts are used.

The xx or Type & Set extension font is a rag-
bag of characters which seem to be required in jour-
nal and book publishing, and are generally provided
on typesetting equipment, but are absent from the
standard rn layouts. These include solid triangles,
solid circles. copyright symbols as single characters
rather than composites, guillemets, etc.

Plain preloads the sixteen most popular
Computer Modern fonts and sets up a math font sys-
tem at 10pt. The Type & Set format, t s p l a i n . f m t .
preloads no fonts at all: Type & Set is designed to
be used on a wide variety of different devices, many
with differing TFM files for fonts with the same
names; so to preload fonts would cause confusion
and errors.

The family mechanism used in plain w ' s math
setting has to be retained, since it is hard-coded into
W; but the other families are slightly different.
Type & Set has:

family
0
1
2
3
4
5
6
7

descrzption
text
math italic
symbol
math extension
italic
bold face
bold italic
Type & Set extension

TUGboat, Volume 13 (1992), Xo. 1 17

No fonts are assigned to members of these families in
t s p l a i n . fmt. This is all done when the style sheet
is loaded. For each mode, a font is assigned for all
eight families at three different sizes, making a pos-
sible total of twenty-four fonts per mode. Very large
style sheets may exhaust W'S font memory, but in
practice that does not happen very often, because
many of the fonts belonging to one mode will be
exactly the same as those of another: and STYLE
is optimised to make use of any coincidences when
writing the style sheet macros.

Superscripts and subscripts are implemented
in a different way from plain W ' s method, ex-
cept within math mode, where everything as far
as possible is identical to plain W . Outside math
mode the \sp and \sb macros provide more con-
sistent text-mode superscripting and subscripting
than - and -. They use 'I)$'s font family sys-
tem to determine the appropriate \ sc r ip t fon t or
\ s c r i p t sc r i p t f on t to use.

Type & Set's consistent approach allows every-
thing to work in the same way whatever the current
point size. In particular. mathematical setting is the
same at any size, while remaining compatible with
plain w.
Page make-up

DVI files written using Type & Set style sheets are
completely standard and can be translated using any
driver. All the extra information needed by PAGE,
Type & Set's page make-up program, is to be found
in xxx commands written by w ' s \ spec ia l prim-
itive.

PAGE is line-based: it analyses the DVI file into
separate lines and moves these around, but goes no
deeper than that except in the case of page num-
bers or folzos, which must be often inserted into the
middle of lines. Finding out where a line starts and
ends in a DVI file originally seemed difficult, and
a complex algorithm for finding minimal push-pop
pairs enclosing pieces of text was used in an early
version of PAGE, but eventually it was realised that
with a little care one can ensure that every line is a
first-level push-pop group.

PAGE can if needed optimise its layout over
a whole document, by building a directed acyclic
graph in which nodes are page breaks and arcs are
possible pages labelled with their cost or 'badness',
which is assessed using w - l i k e criteria: and finding
the lowest-cost traversal of the graph. In practice,
however, users of Type & Set accept PAGE'S first
attempt at a solution, which is produced by succes-
sively taking t he lowest cost for the current page

and then moving on to consider the next. This will-
ingness to accept compromise is caused by the slow-
ness of PAGE when in whole-document optimisation
mode. and obviously this is a shortcoming of the sys-
tem. Nevertheless, people still find whole-document
optimisation useful for improving documents which
are badly laid out at the first attempt, usually be-
cause of problems with figure placement.

Blocks and column balancing. Pages are made
up block by block. Each group of contiguous lines
belonging to a single text block is collected together,
with any figures called out somewhere among these
lines, and any figures held over from previous pages.
Lines are grouped into shims-bundles which can-
not be split because they are locked together. or be-
cause they comprise a figure. (I have borrowed the
term shim from Michael Plass [3, p. 361, who uses
it in a slightly different way.) The list of shims for
a block are then split into columns, and any mode-
level space appearing at the top or bottom of a col-
umn is discarded. Block-level space is retained ex-
cept when it appears at the top or bottom of a page.

Columns are balanced using a method that is
similar, but not identical, to the method used by

for breaking paragraphs into lines. The method
must be different, for the problem is different: para-
graphs are split into an unknown number of lines,
each of a known length, while in column balanc-
ing a known number of columns must be produced,
each of an unknown length. The badness of a group
of balanced columns is calculated in the same way
that TEX uses for lines. using a function propor-
tional to the cube of the glue ratio. Glue is set in
such a way that the baselines of the bottom line of
text in each column align together as well as those of
the top lines. Since the height of the block is meas-
ured from its top baseline to its bottom baseline,
this ensures that pages also align properly.

Figures. A figure in a Type & Set document is
any section of the document starting with \ f igure,
ending with \endf igure, and containing a sequence
of figure spaces and captions. Figure spaces are in-
serted by writing \f igurespace <dimen>, where
<dimen> is the height of the space; and captions
are chunks of arbitrary text in any mode belonging
to a block of category f i .

PAGE extracts the figures and assigns each one
a callout number which determines where it goes
in the text. In fact, every contiguous sequence of
lines of a certain category is given a callout num-
ber. This means that in a document consisting of
some ordinary text, followed by a figure, followed
by some more ordinary text, the callout numbers 0,

TUGboat, Volume 13 (1992), No. 1

1. and 2 would be assigned to the three sections.
This would cause the figure, callout number 1. to
be placed somewhere after the first section of text.
A figure's ideal position for Type & Set is where it
appears in the original source text: the further away
it ends up. the greater the penalty levied.

Internally figures are split into two groups: nar-
row and wide. Narrow figures span a single column
in multi-column text, while wide figures are those
which span all the columns of the block. (Type & Set
cannot yet handle figures spanning more than one
column but not all columns, such as two-column fig-
ures in a three-column block.) Wide figures are easy
to place: they are inserted as soon as enough room is
found, at or after their ideal position. Narrow figures
are treated in a special way by the column-balanc-
ing system, in that they are allowed to float forwards
from their ideal positions if the columns cannot be
balanced otherwise. The algorithm which does this
has recently been improved and now will very rarely
fail to produce an acceptable page; but if there are
just too many figures and not enough text, figures
will inevitably appear one or more pages after their
callouts.

PostScript and D V I embedding. Type & Set
makes it very easy to embed Postscript pictures
or existing D V I files in a document. The simplest
way to do this is to place the command \p ic tu re
<fi lename> on a line of its own in the source text.
The \ p i c t u re macro will write a \ spec ia l to be
read by PAGE. which then finds the file and deter-
mines its bounding box, deciding whether it is an
encapsulated PostScript (EPS) or a D V I file from
the first two bytes: %! for the former and bytes
with the decimal values 247 and 2 for the latter.
EPS files divulge their bounding boxes via a com-
ment of the form %%BoundingBox <lower-left-x>
<lower-left-y><upper-right-x> <upper-right-
y>, while for D V I files PAGE uses the values 1 and
u from the postamble. unless it finds a \spec ia l of
the form page : bounds <n> , <n> , <n> , <n>, which it
interprets in the same way as the Postscript Bound-
ingBox comment.

Having found out how big the figure is, PAGE
scales it t o fit the column width of the current mode.
Unless the user has requested otherwise (via variants
of \ p i c t u re allowing greater control) the scaling is
isomorphic: the width of the figure is scaled to be
the same as the width of the column, then the height
is adjusted to preserve the aspect ratio.

If the figure is a DVI file it is directly embedded
in PAGE'S output D V I file. To do this PAGE has
to assign new numbers to the fonts in the embedded

file so that they do not conflict with any in the main
file; and all dimensions and fonts must be scaled by
the appropriate amount as the file is read in. Only
a single page, the first page of the file, is embed-
ded: PAGE copies and scales everything between
the BOP (beginning of page) and EOP, inserting a
PUSH and a move to the correct x coordinate be-
fore the embedded code and a POP after it. The y
coordinate need not be set explicitly: by the time
PAGE has arrived at this point it will already be at
the correct vertical position, since every line above
the figure will have moved the current y coordinate
down by its leading.

The procedure is different for PostScript files.
PAGE calculates the coordinates and scaling fac-
tors needed and places them, with the filename, in
a new \spec ia l , or rather, since it is not written by
w, xxx command. DVIPS, the Type & Set Post-
Script driver, reads this information and loads the
file in. creating a transformation matrix to scale and
translate the embedded graphics.

Using this method one of Current Science's as-
sociated companies, Current Patents, publishes a
journal giving details of the latest pharmacologi-
cal patents. Diagrams of the chemical structures are
created using commercial software which writes EPS
files that are loaded with no modification into the
PostScript output of Type & Set.

The following variants of \p ic ture exist:

\p ic ture <filename>: scale to fit column
\ap ic ture <filename>: set at actual size
\sp ic tu re <filename> <scale>: set at given scale
\wpicture <filename> <width>: or given width
\hp ic ture <filename> <height>: or given height
\xpicture <filename> <indent>: or indented

A further variant, \gp ic ture or 'general picture,'
gives you control over all the variables at once. In
fact, all the above variants are expressed internally
using \gpicture. Some examples:

will be indented 2pc and forced to be l in wide and
3cm high;

will be indented 4pc and forced to 20pc wide, and
its height will be calculated from that: Opt means
'don't force'; and

TUGboat, Volume 13 (1992), No. I

will be scaled to half-size horizontally and three-
quarters vertically and centred.

The \gpicture format is: \gpicture {< f i le>)
{<indent>) (<width>) {<height>) {<xscale>)
{<yscale>l {<alignment>). If <xscale> is 0,
<width> is used; and if <yscale> is 0, <height>
is used. If <alignment> is non-zero and <indent>
is zero the picture is aligned according to 1 =left,
2 = right, 3 = centre; otherwise it is aligned in the
same way as the current mode. If <width> is zero it
is calculated from height and vice versa. If <width>
and <height> are zero both are calculated from the
current column width.

Drivers and font layouts

The Type & Set drivers (with the exception of the
screen previewer, which, being interactive, has to
work in a different way) are all linked to two library
packages, one to perform the basic D V I file interpre-
tation, and the other to create data structures repre-
senting lines, phrases, words and characters, and to
read the translation tables specifying the way
characters are rendered by device characters.

Thus most of a driver program is well-tested
standard code, leaving only a small (300-400 lines
of C code) device-dependent section containing the
procedures needed to drive the actual printer or
typesetter.

The main() function in a driver immediately
calls the library function DVImainO with arguments
giving the name of the default FD file to be read,
whether accents are to be associated with the char-
acters they are on or positioned separately, whether
the device needs lines of text or separate characters.
whether the output language is textual, like Post-
Script, or binary, like the Compugraphic language;
and other information.

DVImain () has control for the entire run, calling
other library functions to interpret the FD file and
the DVI file and callback functions in the device-
dependent module to set lines of text or individual
characters.

Part of the reason for the simplicity of this ap-
proach is the use of a completely standard charac-
ter layout on all devices. Type & Set is rigorously
device-independent, like itself, and apart from
the font metrics no device-specific information is
known at the time of running or PAGE. Type
& Set has a character set consisting of 640 charac-
ters, divided into five layouts:

text
* math italic

symbol
0 math extension

Type & Set extension

For a given printing device there are always many
text fonts, but only one font in each of the other
layouts: at least in logical terms, for the purposes of
Type & Set. This reflects the fact that at sites us-
ing typesetting machinery such as the Linotron 100
and the Chelgraph IBX many text fonts exist, but
only a few pi or symbol fonts. Similarly, Postscript
provides a large number of text fonts but originally
only one Symbol font.

The text layout is the same as that of plain
[4, p. 4271 except for the following differences:

0 character 14 changes from ffi to i
* character 15 changes from f f l to A

character 35 changes from # to £

These changes are all motivated by the need to have
different variants of these characters in each text
font, rather than have to use, say. the same pound
Sterling with all the different fonts, whether bold or
light, roman or italic.

The math italic, symbol and math extension
layouts are identical to the plain layouts [4, pp.
430-4321. This enables Type & Set to be 100% com-
patible with mathematical setting, a feature
which apart from its evident convenience absolves
us from the task of writing a manual. The Type &
Set extension layout, as described above, contains
characters essential to book and journal publishing
but entirely absent from the TEX layouts; and, since
this is not the text font but one of the pz fonts, of
which only one version exists per device, only sym-
bols can go here, not textual characters. At present
this font contains some forty characters. New ac-
cessions are made with reluctance, and only if the
candidate character actually exists or can be emu-
lated on most of the output devices.

As previously mentioned, drivers can elect to
be passed complete lines or individual characters.
There is flexibility too in the way a line is repre-
sented. A line-based driver will define a DVIline 0
callback function that is passed the address of a line
structure. When a line arrives it is guaranteed to
contain characters lying within a certain vertical dis-
tance of a common baseline, with no kerns greater
than a certain size, and with no horizontal spaces
greater than a predefined maximum. The idea is
that drivers such as DVICORA, which generates Cora

TUGboat, Volume 13 (1992), No. 1

V code for Linotron typesetters, can set the entire
line at once, taking advantage of Cora's justification
system and ability to interpret kerns, small amounts
of up and down movement, and font changes within
the line.

Postscript's widthshow primitive. however. al-
though able to justify to a given measure, takes a
string which must consist only of characters and
spaces: movements and font changes have to be done
separately. DVIPS, the PostScript driver, works at
the phrase level rather than the line level. A line
is a list of phrases, and phrases are defined in a
much stricter way: each phrase is guaranteed to con-
tain characters on precisely the same baseline, all in
the same font, and possibly some spaces, each of
which must be the same width within a certain pre-
defined tolerance. This means that DVIPS can set
each phrase using widthshow.

Each phrase is divided into words. These are
composed of characters abutting horizontally. shar-
ing a common font and baseline. Each character
may have an associated accent. This last feature
is used where accents are positioned by the de-
vice, and w ' s positioning must be discarded, as
on Linotron devices using Cora V. No Type & Set
drivers yet work at the word level, but the Compu-
graphic driver DVICG is an example of a character-le-
vel driver. These define a DVIchar 0 callback func-
tion that receives every character separately.

Composite fonts

A composite font is a font containing characters from
more than one device font, or containing characters
rendered by distorting or overlaying one or more de-
vice characters. Type & Set's composite font system
is defined by FD or FontData files, one for each type
of output device. An FD file is a readable ASCII file
in a format modelled on that of Adobe Font Metric
(AFM) files: that is, it is made up of sections start-
ing with Start<name> and ending with End<name>,
possibly nested, and within these sections there are
data lines of the form <key> <data>. The main sec-
tions are DevFonts, mapping device font names or
numbers t o the names of their AFM files; TSFonts,
mapping Type & Set fonts to device fonts; and sev-
eral Layout sections, mapping standard Type & Set
character codes to local character codes.

Rather than look at an exhaustive definition of
the FD syntax and semantics, it will be more illumi-
nating to follow two examples all the way from the
D V I file t o their representation in a typical output
language, PostScript.

First, an ordinary character. Opcode number 12

is read from the D V I file and interpreted as 'set char-
acter 12 and move right by its escapement'. The cur-
rent font is font 0, which has already been mapped
to a TFM file called time. To convert the character
into PostScript these two pieces of information are
sufficient.

The TFM name time is is used as a key into a
section in the FD file bracketed by StartTSFonts
and EndTSFonts. This section associates Type &
Set logical fonts with font layouts and names of AFM
files, and contains the line time, meaning that, no
layout having been specified, this font uses the de-
fault layout, given at the start of the FD file by the
line Def aultLayout t ex t . This tells the driver to
look at the section starting with StartLayout t e x t
and ending with EndLayout. The character code,
12, is used as a key into a section within the layout
called the CharDef s section and the line 12 174 is
found, meaning that on this device Type & Set text
character 12 (which, incidentally, is the fi ligature)
is to be translated into character 174, the PostScript
code for fi.

The PostScript font is determined by reference
to a section starting StartDevFonts, which contains
lines mapping the names of AFM or Adobe Font Met-
ric files to a string of characters identifying the font
on the device: in this case, the name Times-Roman.
AFM files are used as the standard readable format for
font metrics on all devices-not just for Postscript.

Now a composite character. This time the char-
acter code is 11, or the f f ligature, which does not
exist in the PostScript text layout. If TFM files pre-
pared specifically for PostScript fonts are used this
character will of course never appear in the D V I file;
but in this example we assume that DVIPS is being
used for proofing, and must do its best to produce
an emulation of something which will eventually ap-
pear, say, on the Chelgraph IBX typesetter, which
does possess an ff ligature.

Everything happens in the same way until the
layout line is reached, which is 11 I02 # # 102 # [I
0 0 I .25 01. Here 11 is the TEX character code,
and the rest consists of two triplets, 102 # # and
102 # [I 0 0 1 .25 01. Each triplet represents a
device character, and is of the form <code>
<transform>, with # indicating that the default is
to be used. The <transform> is a transformation
matrix in the PostScript format [5. p. 651. To ren-
der a composite character the output device takes
each triplet in turn, setting the specified character
from the specified device font, transforming it in the
specified way. Here, if the second triplet had been
identical to the first only a single f would have ap-

TUGboat, Volume 13 (1992), Eo. 1

peared, since they would have been superimposed:
but the transform on the second f moves it right by
a quarter of an em, giving a tolerable rendition of
an ff ligature.

You can see that the ordinary character in the
first example uses the same syntax as the composite
character once you know that any trailing # tokens
can be dropped: the layout line for character 11 can
be expressed more pedantically as I1 174 # #.

At present there are two noticeable defects in
the composite font system. The first is that a charac-
ter cannot contain rules, and the second is that the
transformation cannot make use of character met-
rics. It would be very useful to be able to define a
transformation to move a character right by half the
width of another character, but at the moment the
x and y translation elements in a transform can be
expressed only in ems, or. more accurately speaking,
in fractions of the current pointsize.

FD files, as well as being read by the drivers.
are used to generate TFM files for the various de-
vices. For non-Postscript devices a utility called
MAKEAFM creates AFM files from the width tables
and other metrics supplied by manufacturers, while
Postscript AFMs are downloaded via the Adobe Post-
Script Archive File Server. The AFMs are then used
by another utility, WIAKETFM. in conjunction with
the FD files, t o write the TFMs. This has to be done
after any revision to the FD or AFM files that could
affect character metrics.

Tables

Medical journals are full of tables, most of which
contain spans, brace rules and numbers centred on a
decimal point or a i: sign. The difficulty of creating
tables in makes an automatic table generator
not only desirable but essential. The way Type &
Set solves this problem is for the user to type the
table in a sort of wysiwyg format, preferably. but
not necessarily, using a special editor giving access
to symbols representing column delimiters and rules.
All the user has to do is ensure that the table is topo-
logically equivalent to the desired result. Specifi-
cally, he or she must align the column breaks and
arrange for the right things to span.

Each cell of the table can contain ordinary text,
with or without control sequences, plus special
characters to tell the table processor how to align the
cell. The absence of an alignment character causes
the text in the cell to be centred. Macros are also
available to insert multi-line paragraphs into cells if
necessary. These are justified and hyphenated ac-
cording to parameters defined in the table mode.

Here is an example: a modified and shortened
version of a table in The w b o o k [4, p. 2461. The
user creates a file called, say, mytable. tab, contain-
ing the following:

\narrow

I
I Year

I
1 8000 B.C.
1 50 A.D.
I

I
World Population I

I
5,000,000
200,000,000

I
I
I

The vertical and horizontal rules here represent sym-
bols taken from the standard IBM P C extended
character set; but any symbols can be used, since
the table system itself reads its special characters
from a table. The control sequence \narrow is the
table mode to be used.

When TABLE, the Type & Set table generator,
is run, it translates the above into code:

\vfil\eject
\narrow
\setboxO\hbox{a)
\boxtable{\off interlineskip\tabskip=Opt
\halignto \hsize{\vrule # \tabskip=Opt%
&# \tabskip=\tg& # & #\tabskip=Opt%
&\vrule #&# \tabskip=\tg& # & #%
\tabskip=Opt&\vrule #\cr\vrzero height%
\hrzeroht&\multispan{3)\hrf{O)%
&\vrzero height\hrzeroht&\multispan{3~%
\hrf{O)&\vrzero height\hrzeroht\cr
\vrzero\global\tablepos=l&&\tsp Year%
\strut \tsp&&\vrzero%
&&\tsp WorldPopulat ion\ tsp&&\vrzero\cr
\vrzero&\multispan{3)\hrf{O~&\vrzero&%
\multispan{3)\hrf{O)&\vrzero\cr
\vrzero&&\tsp 8000 B.C.\strut \tsp&&%
\vrzero&&\tsp 5,000,000\tsp&&\vrzero\cr
\vrzero&&\tsp 50 A.D.\strut \tsp&&\vrzero%
&&\tsp 200,000,000\tsp&&\vrzero\cr
\vrzero depthOpt\global\tablepos=2%
&\multispan{3)\hrf{O)&\vrzero depthopt%
&\multispan{3)\hrf{O)&\vrzero depthOpt\cr
)
\tablewrapup
\vf il\e j ect
\endinput

This contains many control sequences referring to
parameters defined in the style sheet, such as the
width of the table and the weight of the rules. A
table is thus 'soft', in the sense that a given TAB
file can be typeset in varying ways depending on
the style sheet; or can even be used in two different

TUGboat. Volume 13 (1992), No. 1

documents, looking different in each, because of dif-
ferences in the definitions of the table mode. I t is
common practice to define a \narrow and a \wide
table mode, and if a table exceeds the allowed width
when typeset \narrow, it can be set using \wide.
The table is included in the source text using the
command \ input mytable, and when PAGE anal-
yses the DVI file it recognises the table as such and
treats it as a figure, floating it to a convenient posi-
tion. The code above produces the following result:

Year

Conclusion

World Population

8000 B.C.
50 A.D.

T)$ is readily available, standard, stable, reliable
and well documented. It is also complicated and
hard to program in: and unsuitable for multi-col-
umn setting and baseline-to-baseline measurement.
These facts have led us to use T G ' s incomparable
facilities for galley setting as the inner engine of our
typesetting system, but to replace W ' s page make-
up system with our own post-processor program.
written not in Tj$ but in C. The program-
ming difficulties have been obviated by arranging for
Tji$ macro packages to be written automatically by
a style sheet editing program; and tables are coded
not in but on the screen in a wyszwyg format.

The other big TJ$ problem concerns fonts.
Journals and books must be typeset using standard
commercial faces such as Garamond, Optima, Hel-
vetica, Univers, and Gill. T G , while not in theory
connected with any particular typeface or character
set, is in practice closely bound to Knuth's Com-
puter Modern family and its character set. The main
achievement of Type & Set, apart from the page
make-up system, is to retain almost complete com-
patibility with the plain Tji$ font layouts while type-
setting on standard equipment-such as the Chel-

5,000,000
200,000,000

graph IBX-using the standard typefaces available
on the equipment.

These things make up Type & Set. This system
has enabled us at Informat and Current Science to
typeset about thirty academic journals and many
other publications automatically using conventional
typesetting equipment and standard fonts.

Afterword

Since this article was written two names have
changed. The name of the software is to change from
Type & Set to P a g e w , which. although similar to
several other names of systems involving T)$, high-
lights the most important feature: automatic page
make-up.

Informat Computer Communications is now
subsumed into Life Science Communications, the
holding organisation for Current Science and other
companies, and it is Life Science Communications
which will market P a g e w . Only the names have
changed: the people and the software are the same.

References

1. Mittelbach, Frank. "E-'l&X: Guidelines for
Future Extensions." TUGboat. 11 (3) :
337-345, September 1990.
2. Beebe, Nelson. Personal communication,
September 1990.
3. Plass, Michael F. Optimal pagination techniques
for automatic typesetting systems. Department of
Computer Science, Stanford University, California,
1981.
4. Knuth, Donald E. The W b o o k .
Addison-Wesley, May 1989.
5. Adobe Systems Incorporated. PostScrzpt
Language Reference Manual. Addison-Wesley,

Graham Asher
Life Science Communications Ltd
34-42 Cleveland Street
London W1P 5FB
England
Telephone 1-44 81 348 1043

TUGboat, Volume 13 (1992), No. 1

Philology

Computer Aided Hyphenat ion for Ital ian
a n d Modern Lat in

Claudio Beccari

Abstract

After an essential historical sketch of the evolution of
latin into italian and modern latin, the peculiarities
of both languages are described so as to understand
the philosophy of the hyphenation patterns. The
latter is one of the few cases where the same set is
suitable for two different languages.

Sommario

Dopo aver delineato brevemente l'evoluzione del
latino verso l'italiano e il latino moderno, vengono
descritte le caratteristiche delle due lingue in mod0
da capire la filosofia dei pattern di divisione in sil-
labe. Questi pattern costituiscono uno dei pochi
esempi applicabile a due lingue differenti.

Summar ium

Latini sermonis evolutione ad italianum et latinum
modernurn breviter exposita, utrius sermonis spe-
cietates descriptae sunt ut philosophia de pattern
ad syllabas dividendum intelligatur. Isti pattern
duobus differentibus sermonibus applicabile exem-
plum sunt .

1 Outl ine of historical evolution

Classical latin, as we study it in schools and univer-
sities, is the language that was used, especially in
written form, by the authors of the republican pe-
riod and of the very beginning of the Roman empire.
Common people used to speak a similar language
that was open to the contribution of new words from
other countries, to new constructs, and to a general
simplification of the inflection of nouns, adjectives
and verbs.

Cicero himself was complaining about the fact
that common people (the vu1gus) used to shorten
the desinences leaving out the final consonants, and
used to palatalize the 'c' and 'g' followed by the front
vowels 'el and 'i'. Those were the first signals of the
autochthonous evolution of latin towards the mod-
ern language; in the other parts of the Roman em-
pire similar evolutions were going on with a stronger
influence of the native languages over which latin
had superimposed itself; the invasions of the "bar-

barians" brought in peculiar pronunciations and a
lot of lexical additions.

Latin decline was very slow because it was the
scholar's, the chancellor's, the notary public's lan-
guage for many centuries, and it was and still is
the official language of the Roman Catholic Church;
latin, in its modern form, is the official language
of the Vatican State, and the daily Vatican news-
paper, L 'Osservatore Romano, is published mainly
in italian, but with frequent contributions in latin,
even commercial ads! Modern latin is used even for
comic books; I suggest Snoopy [I], Mickey Mouse [2],
Asterix [311.

Nowadays latin is studied in many countries as
a regular subject in both high schools and universi-
ties; in Italy it is not classified as a "foreign" lan-
guage and is a compulsory subject both in classical
and scientific licei (high schools). In the past, latin
was even more important in the education of young
people; forty years ago I started latin in sixth grade
and had eight years of it through junior high and
high schools2.

From the common people's language of the first
century several regional and local dialects evolved;
in 960 A.D. there is the first document explicitly
written in what we might already call italian [4]; sev-
eral documents, mostly poems, were produced in the
following centuries, and by the end of the thirteenth
century the masterpiece of Dante Alighieri, the Div-
ina Cornmedia, is considered the main landmark of
the new language, that was already so mature as to
be used in a poetic treatise of history, philosophy
and theology.

The modernization of Dante's language took
place during the past seven centuries, but compared
to modern italian there is not such a great differ-
ence as between the language used by Chaucer in
his Canterbury Tales and modern english; today's
Italian high school students can read Dante's poem
and other even older texts with no more difficulty
than that required by any other conceptual text.

The first two books are intended as didactic
aids for teaching latin, and are fully accented with
both prosodic and rhythmic marks.

I frequented the liceo classico and had also five
years of classical greek; now I have an engineering
degree and I am a professor of electric circuit theory.
I am very glad I had the opportunity of completing
my education by studying humanities for so long,
and I wish the new generation could have the same.

TUGboat, Volume 13 (1992), No. 1

2 Alphabet

Italian and modern latin use the 26 letter alphabet
that everybody knows with the name of latin alpha-
bet; actually there are some fine points to consider
with due attention.

Italian. The letters J , K, X, Y, and W are used only
in technical terms and symbols, foreign names, and
some very specialized words, such as the interna-
tional word taxi. J , K and Y survive in toponyms,
family names, and english style nicknames, such as
Stefy for Stefania (Stephanie). The letter J (see also
below) used to be employed in the past as a graphic
device to distinguish the semivowel role of the letter
I, so that you have Ajmone (family name) and you
may write Iugoslavia (modern spelling), Jugoslavia
(old fashioned spelling), or Yugoslavia (international
spelling) according to your preference; in italian all
three are correct and are pronounced exactly the
same way.

Besides the above mentioned letters, there are
five vowels, none of which is mute: a, e, i, o, u;
fifteen consonants: b, c, d, f, g, 1, m, n, p, q, r, s, t, v,
z; and one diacritical letter: h. The latter does not
correspond to any sound and is used only to mark
half a dozen words in order to distinguish them from
similar ones that sound the same but have a different
meaning, to mark some interjections, and to mark
the velar pronunciation of 'c' and 'g' when otherwise
they would be palatalized.

Except for a dozen articles, prepositions and
adverbs (that nevertheless are used quite often), all
common words in italian end with a vowel; of course
this statement does not apply to trade marks, unas-
similated foreign words, technical terms, and the
like.

Another peculiarity is that every consonant
may occur in its doubled form, and this corresponds
to its reinforcement when the double consonant is
pronounced. There are rare instances of double vow-
els, but in this case, contrary to what happens in
english, they form different syllables instead of a
diphthong; for example, zoologico can be divided as
zo- 0-lo-gi- co.

Latin. Classical latin missed J , U, and W, while V
was used throughout wherever U or V are now used.
Since the very beginning this anomaly was passed
by scholars on into the spelling and printing of all
languages; capital V was used in all circumstances,
while 'v' was used in printing at the beginning of
words and 'u' in the middle or at the end. This con-
fusing habit was common to all western languages
but fortunately it was abandoned starting in Hol-

land during the sixteenth century; it lasted a lit-
tle longer in Italy because of the wide use of latin,
but was eventually done away by the end of the
seventeenth century. When Knuth [5, p. 1061 cites
Pacioli's Diuine Proportione, published in Venice
in 1509, he reports that title with the spelling of
the original printing, but the pronunciation at that
time already implied the consonant V instead of the
vowel U.

In the middle ages and in the early times of
printing it was the habit to use 'j' instead of 'i' in
those cases where the letter 'i' formed a diphthong
with the following vowel; it was just a graphic trick
to distinguish the two roles of the letter 'i', and it
was so successful that it was adopted also in other
languages; this is the reason why even today we spell
junior instead of iunior, although the latter is the
formal latin spelling.

Modern latin uses both U and V in the proper
positions, while J and W are used only in foreign
names and toponyms.

There are six vowels: a, e, i, o, u, y and eighteen
consonants: b, c, d, f, g, h, k, I, m, n, p, q, r, s, t,
v, x, z. The ligatures n: and E do not belong to
latin; they were introduced in the sixteenth century
in France and in England in order to replace the
diphthongs ae, oe, and after that they enjoyed a
certain popularity also in latin, but in modern usage,
as well as in classical latin, these two diphthongs are
spelled with separate letters.

3 Accents

Italian. In italian accents are used very sparingly;
it is compulsory to mark with a suitable accent the
last vowel of polysyllabic oxitone words (those that
receive the stress on the last syllable), and to mark
some well known and specified monosyllabic words
that contain a diphthong. This is standardized by
the Regulation UNI 6015 [7].

In contrast to spanish and portuguese, in italian
there is no necessity to mark proparoxitone words
with an accent, although the best grammars recom-
mend doing so. In practice, if you exclude oxitone
words (where accents are compulsory) and parox-
itone words (where accents are not required)? the
other ones may be marked with an accent only when
a different position of the stress might change the
meaning; for example lhvati means 'wash yourself'
while lavhti is the masculine plural of 'washed'; in
this circumstance it is advisable to mark the first
case unless the meaning of the rest of the sentence
does not make clear which case is implied. Although
the 'Sommario' of this article contains five proparox-
itone words, no accents were used.

TUGboat, Volume 13 (1992), No. 1 25

The accent can be used also for denoting the
open or closed nature of a vowel (only for tonic 'e'
and 'o'), but this use is found only in dictionaries
and grammars; a good grammar will certainly point
out that cdto (picked up) is different from cdlto
(educated), but in practice the meaning is deter-
mined by the context while the actual pronunciation
very strongly depends on the regional origin of the
speaker.

The grave (') accent is used on any vowel, while
the acute (') accent may be used only on the vowel
'e' (and on the vowel 'o', but only in optional situa-
tions) when it has a closed sound. Most Italians are
not even aware of this choice; when they hand write,
they just put any kind of small surd on the vowel to
be accented, and by so doing they intend to mark
only the stress; the tonic value of the accent is used
only in dictionaries and grammars, while in printing
the difference is maintained only for the letter 'el
in oxitone words more as a tribute to the tradition
than for an actual semantic necessity.

When the accent is compulsory and upper case
letters are used, if the character set does not contain
accented vowels, it is accepted to use an apostrophe:
UNITA' (unity) in place of UNITA; this practice is
considered bad style in typesetting, but is used quite
often in advertising.

The dieresis (") and the circumflex (*) are not
used anymore; in the past the dieresis was used in
poetry to split a diphthong, and the circumflex had
several meanings such as, for example, to mark the
contraction of two 'i' into one sign in those plurals
that centuries ago were spelled with a double 'i':
studii (studies, two centuries ago), stud; (one cen-
tury ago), studi (modern).

Latin. In latin no accents are used; the breve (')
and the long (-) accents are used only in dictio-
naries, grammars and where prosody is dealt with.
The dieresis is sometimes used in grammars and in
prosody to mark the splitting of a diphthong: aer
(air), poeta (poet).

4 Apocope and aphaeresis

Italian. In italian the dropping of one or more initial
letters in a word (aphaeresis) takes place only in
poetry and is marked with an apostrophe preceded
by a white space.

The loss of one or more terminal letters in a
word (apocope) either is not marked at all (see in the
'Sommario' aver in place of avere) or it is marked
with an apostrophe when it corresponds to a vocalic
elision before another vowel (see above l'evoluzione
in place of la evoluzione) or to a complete syllabic

apocope. The latter case is very unusual, while the
vocalic elision is very frequent, so that this case must
be taken care of properly when dealing with hyphen-
ation; the rules stated in the Regulation UNI 6461
[6] require that when a line ends with an apostro-
phe, this must not be replaced again with the vowel
it originally replaced. In the past, not too long ago,
for example when I was in elementary school, the op-
posite rule was in use, so that there are occasional
discussions between the old styled generation and
the new one. Nevertheless even today it is consid-
ered bad style to end a line with an apostrophe, and
in typography this practice is tolerated only when
the line width is quite small, as in the daily news-
papers' narrow columns.

Latin. I do not know of any case where apocope or
aphaeresis are marked in any visible way; actually I
am almost sure that these two spelling behaviours
are not legal in latin.

5 Diphthongs

Italian. In italian a diphthong is formed by any
vowel preceded or followed by an unstressed closed
vowel ('i' or 'u'); so we have:

ia, ie, io, ai, ei, oi
ua, ue, uo, au, eu, ou

iu, ui
Italian diphthongs are always pronounced

maintaining the sounds of the individual vowels, and
the closed vowel plays the role of a semivowel or a
glide.

There are also groups of three vowels that con-
tain two semivowels or a semivowel and a glide:

iuo, uie
ieu, uoi, iei

An 'i' (possibly also a 'u', but I can't find exam-
ples) sandwiched between two other vowels behaves
always as a semivowel, so it always starts a new syl-
lable.

Latin. In latin there are more or less the same diph-
thongs as in italian with the addition of

ae, oe
that one or two centuries ago were replaced with
the corresponding ligatures re, E ; in modern latin
the pronunciation of both these diphthongs is given
by a single open 'e'3.

I have seen a reproduction of an italian book
printed in Venice in the sixteen century where both
these diphthongs were consistently replaced by their
sound given by the letter 'e'.

TUGboat, Volume 13 (1992), No. 1

Furthermore in some words of greek origin, latin
may have the diphthong yi, for example Harpyia
PI 4.

The main difference between italian and latin
common diphthongs is that ia, ie, io, iu behave as
such in latin only when they are at the beginning
of a word or are preceded by another vowel; in any
other case they are part of two different syllables; in
italian they are always diphthongs provided the 'i'
is unstressed.

6 Di- and trigraphs

Italian. In italian there are groups of two or three
letters that imply a sound that is not implied by
any other single letter of the alphabet; besides 'c!
and 'g' modified with the diacritical 'h', and 'c' and
'g' modified with a diacritical there are

gn, gli, sc

where gn is pronounced as in french, or as the span-
ish f i or the portuguese nh; sc is pronounced as the
english sh when it is followed by a front vowel 'e' or
'i', and gli is pronounced as the portuguese lh when
it is not preceded by 'n' and is followed by another
vowel or it is at the end of a word. These digraphs
and trigraphs must not be split by the hyphenation
process.

Latin. In latin by itself there are no indivisible di-
graphs or trigraphs, but since classical times the
transliteration of greek words has required th in
place of 6 , rh in place of p (but rrh in place of pp),
ph in place of 4, and ch in place of X ; therefore
these digraphs cannot be split by the hyphenation
process.

7 Hyphenation

Italian. The italian hyphenation rules are stated
very simply as follows:

1. every syllable contains at least one vowel6;

One might think that it would be the same to
consider the vowel 'y' and the diphthong 'ia', since
the pronunciation would be practically the same;
but if you look at it from the prosody point of view,
the situation becomes completely reversed; a diph-
thong is always long while 'y' is always short, so that
in prosody Har-pyi-a becomes --", while Har-py-ia
becomes -'-.

In this case the letter 'i' does not form a diph-
thong with the following vowel but is used just to
palatalize the two consonants; from the hyphenation
point of view this subtle difference may be ignored.

This rule applies to all languages. although in
every language the notion of vowel is different; for

diphthongs and 'triphthongs' behave as one
vowel;
a consonant followed by a vowel belongs to the
same syllable as the vowel;
one or more consonants not followed by a vowel
(at the end of a word, possibly because of an
apocope, or in technical terms, trade marks and
the like) belong to the same syllable as the pre-
ceding vowel;
when a group of consonants is found, the hy-
phen position is the leftmost one (even at the
left of the whole group) such that the conso-
nants that remain on the right of the hyphen
can be found also at the beginning of an italian
word;
prefixes and suffixes can be ignored and the
compound word may be divided as if it were
a single word; in any case division according to
the etymology is accepted; in practice this hap-
pens only with the technical prefixes dis-, post-,
sub-, trans-, which are not very common.

Once it is clear what is a consonant, a vowel,
a diphthong and a 'triphthong', the only difficult
rule to apply is the rule number 5 ; with the help
of a school dictionary one can always find if there
exists an italian word starting with a certain group
of consonants.

The point is that if you use a dictionary of too
high a quality, you will find words starting with
almost any possible group of consonants: bdelio7,
cnidio, ctenidio, ftalato, gmelinite, pneumatico, psi-
cosi, pteridina, tmesi. But many of these words,
mostly of greek origin, do not find their way into
school dictionaries (except pneumatico and psicosi),
so that a diligent person will not be misled by too
many technicalities and will find the correct division.

example in several slavic languages 'r' is considered
a vowel. If TEX contained a provision for this, the
bad line break (compara-nds) that occurred in TUG-
boat 12, no. 2 (June 1991) on page 239, first column,
6-7 lines from the bottom, would not have taken
place.

Due to the extremely specialized nature of
these words, I do not give the translation in english,
because I did not find a suitable italian-english dic-
tionary that reported them; I believe, though, that
their scholarly nature is such that with minor mod-
ifications they exist also in english and many other
languages.

TUGboat, Volume 13 (1992), No. 1

b-d
C-s
d-v

P-t
g-f r
mp-s
n-str

b-n
c-t
f -t
P-=
Id-m
nc-n
r-st

b-s
c-z

g-m
t-m

Id-sp
ng-st
r-str

c -m
d-g
P -n
t-n
1-st

n-scr
st-m

c -n
d-m

P-s
z-t

mb-d
n-st

Table 1: Groups of consonants that can be
across syllables

The Italian Standards Institute, in orc

split

r to
avoid confusion in this matter, established the Reg-
ulation UNI 6461 [6] that lists the groups of conso-
nants that must be divided, table 1. This table does
not list the normal consonant divisions, that is:

digraphs and trigraphs can never be divided,
except gn when it appears in a foreign word
or in a word that derives from a foreign one
and where the two letters are pronounced in-
dividually, such as Wagner + wagneriano -+

wag-ne-ria-no;
geminated (double) consonants and cq must al-
ways be split;
a liquid ('l', 'r') or a nasal ('m','n') is always
separated from a following consonant except for
the cases shown in table 1;
any consonant is never separated from the fol-
lowing liquid except for the cases considered in
the previous rule;
the letter 's' is never separated from any fol-
lowing consonant (unless it is another 's').

The Regulation UNI 6461 states also the rules
for the apostrophe, i.e. it behaves as the vowel it
replaces; line breaking (without hyphen) is allowed
after it when the line is very short, but it is bad style
to do it8.

Italian hyphenation for TEX has already been
explained by Dksarmknien [8], but, although I wish
I knew french as well as he knows italian, the 88
patterns that he created for italian were good only
for consonants while completely ignoring diphthongs
and 'triphthongs'; in a previous version I prepared
for TEX 2.xq 150 patterns were needed to perform
italian hyphenation correctly.

For the rest the regulation is already made in
such a way as to synthesize the hyphenation pat-
terns TEX requires, without the need of running
patgen; of course some care must be exercised in

For line breaking after an apostrophe the new
symbol <cwm> of the 3+ extended character set
may become useful.

order to avoid strange situations and in order to
replace w ' s inability to distinguish vowels from
consonants.

With the advent of Version 3.xx of ?&X it is
better to set \righthyphenmin to the value 2, be-
cause there is no need to protect the hyphenation
algorithm from the mute vowels ('el) that are so fre-
quent in english; of course it is not good style to
go to a new line with just two letters, but this is so
rare that it is much better to give TQX more chances
to find suitable line break points than to protect it
from situations that in italian never take place.

Another reason for choosing this reduced value
for \righthyphenmin is due to the accents; it was
pointed out that in practice italian has accents, if
any, only on the last ending vowel of a word. It is
known that w does not hyphenate a word after
an accent control sequence, but this drawback has a
negligible influence on italian since after the accent
control sequence the word may have just one letter;
the accented letters found their way into the 256
symbol extended character set of !l&X 3+ so that
this simple drawback is eliminated, but even with
the limitations of the 128 symbol character set (un-
less virtual fonts are used) this peculiarity is of
negligible influence.

With the reduced character set I admit that
virt\'u + virtu (virtue) cannot be hyphenated be-
cause is too short, while with the extended set virta
could be hyphenated as vir-tli, but there are no
problems with longer words, for example qualit\' a
-+ qualita (quality) is hyphenated by TEX as qua-
lita, the full possibility with the extended set being
qualit& -+ qua-li-tci. But with both character sets
7&X gives correctly per-che' (because), af-fin-chi (so
that), and so on.

There are no known problems with the synthe-
sized patterns listed at the end; the only point that
leaves me partially unsatisfied, but is grammatically
perfectly correct, is the fact that technical prefixes
such as dis-, post-, sub-, trans- must be explicitly
separated with \- if one wants to stress their spe-
cific prefix nature. See below the solution for the
same problem in latin.

Latin. The patterns that are listed at the end in-
clude a subset that was originally designed just for
italian; with a little thought and a few additions
the pattern set was extended so as to include also
modern latin.

For what concerns diphthongs, italian and latin
diphthongs were merged together under the assump-
tion that w is not supposed to find every possible
break point but only legal break points, so that if

TUGboat, Volume 13 (1992), No. 1

two vowels are treated as a diphthong even if they
belong to two different syllables, the only drawback
is that you miss a legal break point but you do not
make any wrong division. Moreover. most Italian
readers feel uncomfortable when a break point is
taken such that the new line starts with a vowel
(this is certainly not the case with anglophone read-
ers) so that the extension of the set of diphthongs of
either language bothers neither Italian readers nor
Latin ones. The declaration of Q and cr: as letters
with their \lccode allows also the hyphenation of
words containing such ligatures.

Concerning consonant groups there is no reg-
ulation as for italian; my grammar [9] claims that
latin hyphenation is done as in italian (except for
what concerns prefixes and suffixes that must be di-
vided etymologically) but in latin there are conso-
nant groups that never occur in italian. Another
book, [lo], reports hyphenation rules for italian,
classical latin, classical greek, french, german, en-
glish, and spanish; for latin the rules are drawn from
a german source [ll], which I was not able to reach,
that apparently reports the hyphenation rules that
were used in the middle ages. In classical times, as
well as today, latin hyphenation is more similar to
the italian than to what is reported in [lo].

In order to find out how unusual consonant
groups are treated in latin I examined an impor-
tant scholar's took 1121, the bilingual New Testa-
ment in greek and latin "apparato critic0 instruc-
tum", reprinted as a "reeditio photomechanica ex
typographia . . . , Romae" and for which "omnia iura
reservanturn; clearly this is modern latin, although
the book's contents, the latin part, contains the well
known text that was translated from greek and ara-
maic by several authors across several centuries and
copied by different copyists in many codices that are
preserved all over the world. This critical edition
is intended as a study material and is particularly
cured in the language and the spelling for the very
purpose of the book.

By examining the hyphenations of this book I
could list a series of consonant groups, and I could
realize that the digraph gn (which is such in italian
but it is not supposed to be one in latin) was not
treated in a uniform way, so as to have both reg-num
and re-gnum. I decided to choose the second form
of hyphenation for two reasons: a) it does not con-
flict with the italian rule, and b) the pronunciation
recommended to the clergy and that is being used

where it is treated as in english; for example blas-
phemia (blasphemy) is hyphenated as blas-phe-mza.
Since this does not conflict with the italian rule (in
this langua,ge the group 'sph' is missing) a suitable
pattern was generated in order to cope with such
situations.

Some attention was given to prefixes and suf-
fixes in order to find a way to separate them cor-
rectly according to their etymology; for what con-
cerns prefixes, these must be separated regardless of
the groups of letters that get split away, provided
that the prefix did not lose its final vowel by eli-
sion with the initial vowel of the compound word's
second element. For example the prefix paene- (al-
most) loses the last 'e' in paeninsula and therefore
the whole word is treated as a single word and is
hyphenated pae-nin-su-la.

It was possible to find suitable patterns for cer-
tain instances of ab-, ad-, ob-, trans-, for the prefixes
abs-, dis-, circum-, sub-, and for the suffixes -dem,
-que but the problem remains, although it shows up
not so often.

The solution to this problem is to define a soft
discretionary break that does not inhibit hyphen-
ation in the rest of the word as does the plain defini-
tion \-. I chose to redefine the underscore character
in such a way that in math mode it maintains the
usual meaning of a subscript character, while in text
mode it performs as a soft breaksg

%
% New definition for the underscore
%
% Note that plain.tex and 1plain.tex
% already \let\sb=-
%
\catcodeC\@=ll % 'at' is a letter
\catcodeC\-=I3 % Active underscore
\def\soft@break(\penalty\@M\hskip\z@\-

\penalty\@M\hskip\z@>
\def-{\ifmode \sb \else \soft@break \fi>
%
% With TeX 3+ use instead:
% \def-(\ifmmode \sb \else \cwm\cwm \fi3

Therefore, if wrong prefix or suffix hyphen-
ations are found in the drafts, it is possible to cor-
rect (or to write it that way from the beginning)
con-iungo, ob-iurgo so that the possible hyphen-
ation points are con-iun-go, ob-iur-go.

in the catholic universities, seminaries, monasteries, Editor's note: The active underscore must be
etc., corresponds to the italian digraph gn. treated with care in both rn and LPW; it can-

Also the letter 's' is not treated uniformly; it is not safely be used in \labels or in file names to be
generally treated as in italian, but there are cases \input or \included.

TUGboat, Volume 13 (1992), No. 1

8 Generat ion of t h e format file

In the appendix the file i t a l a t . tex is listed and
the patterns may be checked against the rules that
have been stated in the previous sections. Special
attention was given to the groups ps and pn, be-
cause table 1 states that they must be separated, but
the compound words with psic- (example parapsi-
cologia) and pneum- (example pseudopneumococco)
must not be hyphenated after the 'p'.

The ligatures 'ae' and 'ce' have been included
with the - ^ notation and \ l e t to the familiar con-
trol sequences \ae and \oe so that the pattern table
is easily readable. If one has access to a ?'EX 3+ ver-
sion, that allows the use of the 256 character code
scheme published in TUGboat, [14], these ligatures
have different codes so that suitable lines must be
commented or uncommented.

The pattern list is preceded by some definitions:

the category, lower case and upper case code
definitions for the ligatures 'ae' and 'ce' so that
they can be used in latin text; I stress again
that these ligatures should not be used, except
when quoting verbatim some text where they
have been used.
the new definition of the underscore character
so as to produce a "soft" discretionary break;
the TfjX 3+ extended character codes described
in [14], include the special invisible character
< c w m that can be used in the definition of such
soft break, provided that the pattern table con-
tains a suitable pattern.
the pattern scheme was developed and tested
with existing versions of 3.0, 3.1, and
3.141°, none of which accepts extended codes; if
a version of 3+ that accesses the extended
character codes is available, the accented letters
h, 6, 4 i, b, 4 (and the corresponding uppercase
letters) can be declared with their \lccodes by
in i tex, so that the patterns require only simple
control sequences in order to include such let-
ters while remaining completely transportable.
the definition of the new language "italian"
with the command (\ i ta l iano) that invokes
all the auxiliary definitions; the apostrophe
character must be given its \lccode so as to
treat it as a normal letter and as the vowel
it replaces. Remembering that with the non-
extended seven-bit ASCII and internal
codes, the apostrophe is used also as a single
quote or as the first element of the ligature of

lo I have access tb T u r b o w 3.0, to S B W 3.1
and to North Lake Software 3.14a.

the double quote, by treating the apostrophe
as a letter, one might encounter rare instances
where closing quote(s) introduce possible hy-
phen positions in the wrong places depending
on the value of \righthyphenmin; every effort
was spent to preview such cases, so that when
apostrophes are present there are suitable pat-
terns that allow or disallow hyphenation. Up
to now no wrong hyphenations were reported
in these cases.
the command for latin (\ la t ino, ablative and
short for "latino sermone") is defined so as to
catcode the ae and ce ligatures, and to restore
the apostrophe to its original setting;
the same is done with english (\english) so
that you can interchange the three languages
with the assurance of maintaining the correct
settings for each one of them.

The patterns are enclosed within a group so
that the \lccode of the apostrophe and the codes
for the ligatures 'ae', 'ce', and accented vowels remain
local and do not mix things up with the default lan-
guage and/or with the previously defined languages.

Adding these hyphenation patterns to the for-
mat that has one or more languages already defined
is not a heavy overhead; if you add italian and latin
to the default language 'english' you do not need
a large version of 7QX; the statistics, after running
in i tex , say that the hyphenation trie is of size 6359
with 223 ops, 181 of which are used for english and
42 for italian and latin; italo-latin hyphenation re-
quires just 209 patterns (some of which probably
never occur in practice) against the 4447 needed in
englishl'.

9 Conclusion

The hyphenation patterns valid for both italian and
latin have been generated directly from the grammar
hyphenation rules; for italian the set of patterns (a
subset of that shown in the file i t a l a t . tex reported
in the appendix) has been in use for two years in the
Institution where I work, and after a short period of
careful observation and debugging it performed ab-
solutely without errors of any kind. Although the
italian rules allow hyphenation of a compound word
as if it were a simple one, some prefixes that are
mainly used in technical terms may be explicitly hy-
phenated with the help of the new meaning of the
underscore character.

l1 These figures were obtained after an i n i t ex
run with the i t a l a t . tex file in the appendix and
no extended character set.

30 TUGboat, Volume 13 (1992), No. 1

La lingua italiana e
le lingue cosiddette ro-
manze o neolatine, cioi:
lingue derivate anch'es-
se dal latino (france-
se, spagnolo, portoghe-
se, rumeno ed altre mi-
nori), si fanno risalire
all'idioma, che a1 tem-
po dell'impero romano

era parlato nella peniso-
la italiana, nelle regio-
ni del Mediterraneo oc-
cidentale e nella Dacia,
l'odierna Romania.

Tracce evident issime
si osservano ancor og-
gi non soltanto nel les-
sico e nella morfolo-
gia del gruppo lingui-

stico neolatino, ma an-
che in altre lingue eu-
ropee, quelle del grup-
po anglo-sassone, co-
me conseguenza dell'in-
flusso diretto o indiret-
to esercitato dalla lin-
gua di Roma sugli idio-
mi particolari dei popoli
nordici.

Per quel che riguarda
la lingua italiana, essa
si collega direttamente
a1 sermo vulgaris la-
tinus, cioi: a1 latino par-
lato comunemente dal-
le famiglie e in pubblico
nei quotidiani rapporti
di commercio e di affari.

Figure 1: Example of italian text typeset in narrow columns (from [9])

Et sicut Moyses exal-
tavit serpentem in de-
s e r t ~ , ita exaltari opor-
tet Filium hominis, ut
omnis, qui credit in ip-
sum, non pereat, sed
habeat vitam aeternam.
Sic enim Deus dilexit
mundum, ut Filium su-
um unigenitum daret,

ut omnis qui credit in
eum non pereat, sed ha-
beat vitam aeternam.
Non enim misit Deus
Filium suum in mun-
dum, ut iudicet mun-
dum, sed ut salvetur
mundus per ipsum. Qui
credit in eum, non
iudicatur; qui autem

non credit, iam iudi-
catus est, quia non
credit in nomine uni-
geniti Filii Dei. Hoc est
autem iudicium, quia
lux venit in mundum,
et dilexerunt homines
magis tenebras quam
lucem; erant enim eo-
rum mala opera. Om-

nis enim, qui male agit,
odit lucem et non venit
ad lucem, ut non ar-
guantur opera eius; qui
autem facit veritatem,
venit ad h e m , ut ma-
nifestentur opera eius,
quia in Deo sunt facta.

Figure 2: Example of latin text typeset in narrow columns (J 3,14-21)

For latin there is less experience but the im-
pression is that also in this language there are no
hyphenation errors; anyhow the author is grateful
to anyone who might report suggestions and correc-
tions. The new meaning of the underscore character
is very useful for prefixes and suffixes and must be
used whenever unusual consonant clusters are gen-
erated by the apposition of a prefix or a suffix.

In Figures 1 and 2 two examples show the per-
formance of the hyphenation algorithm in italian
and in latin when the line width is very small; you
may notice than in such narrow columns italian gets
some advantage thanks to the possibility of having
two-letter final syllables.

I am pleased to express my thanks to the
Nuns of the Benedictine Monastery of Viboldone in
S. Giuliano Milanese (Milano), Italy, who assisted
me with their experience in typesetting latin and
other ancient languages.

References

[I] Schulz C.M., Insuperabilis Snupius, translated
into latin by G. Angelino, European Language
Institute, Recanati, Italy, 1984

[2] Walt Disney, Michael Musculus et Regina
Africae, translated into latin by C. Egger, Euro-
pean Language Institute, Recanati, Italy, 1986

Goshinny and Uderzo, Asterix gladiator, trans-
lated into latin by K.H.G. von Rothenburg
(Rubricastellanus), Delta, Stuttgart, 1978
Migliorini B.M., Storia della lingua italiana,
(History of the italian language), Sansoni,
Firenze 1963
Graham R.L., Knuth D.E., Patashnik O., Con-
crete mathematics, Addison-Wesley Publ. Co.,
Reading, Mass., 1989 (3rd printing)
Divisione delle parole in fin di linea (Word hy-
phenation at the end of a line), published by
UNI, Ente Nazionale Italiano di Unificazione,
Milano, 1969
Segnaccento obbligatorio nell'ortografia della
lingua italiana (Obligatory accent marks for the
correct spelling of the italian language), pub-
lished by UNI, Ente Nazionale Italiano di Unifi-
cazione, Milano, 1967
DBsarmknien J., "The use of l&X in French:
hyphenation and typography" in 7&X for scien-
tific documentation, D. Lucarella ed., Addison-
Wesley Publ. Co., Reading, Mass., 1985

[9] Manna F., I1 latino ieri e oggi (Latin yesterday
and today), Signorelli, Milano, 1985

[lo] Farina R., Marinone N., Metodologia (Method-
ology), Societh Editrice Internazionale, Torino,
1979

TUGboat, Volume 13 (1992), No. 1 3 1

Leumann M., Hofmann J.B., Szantyr A., La-
teinische Grammatik (Latin grammar), vol. I,
Miinchen, 1977
Nouum Testamentum Graece et Latine (The
New Testament In Greek and Latin), A. Merk
S.J. ed., Istituto Biblico Pontificio, Roma, 1984
Braams J., Babel, a multilingual style option
system for use with BT&X's standard docu-
ment styles, TUGboat 12, no. 2, (June 1991),
pp. 291-301

[14] Ferguson M.J., Report on multilingual activ-
ities, TUGboat 11, no. 4 (November 1990),
pp. 514-516

o Claudio Beccari
Dipartimento di Elettronica
Politecnico di Torino
1-10129 Turin, Italy
beccariQpolito.it

Appendix A The i t a l a t . tex file

This file must be input after the last line of the file pla in. tex (or l p la in . tex for I 4 W) ; the definitions
given before the pattern table are better located in the format file, so they are valid for any style and there
is no possibility to forget them. If this file is used with TE;Y 2.xx, comment out the lines that contain the
commands \newlanguage and \language. Similarly, move the comment character as indicated if you use
this file with W 3+ and the extended character set.

1 1 1 1 0 1 1 1 1 1 8 ~ ~ 1 1 1 I 0 0 1 1 1 1 1 ~ ~ ~ 1 1 1 8 ~ 1 1 1 ~ 1 1 1 1 1 ~ 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 ~ ~ ~ 0 1 1 ~ ~ 1 1 1 1 ~ 1 LL
%
% F I L E 1 T A L A T . T E X
%
% Hyphenation patterns for Italian and Latin
1 1 0 0 8 0 0 1 # 1 0 1 1 1 1 1 # 1 0 ~ 1 0 1 1 ~ 1 1 ~ 1 1 1 1 1 ~ 1 1 ~ ~ ~ 1 1 1 ~ ~ 1 ~ 1 1 1 1 1 1 ~ 1 1 ~ 1 1 ~ 1 ~ 1 ~ ~ ~ 1 ~ ~ ~ 1 1 ~ ~ 1 1 1 1 1 LL
% Prepared by Claudio Beccari, Politecnico di Torino, Italy
1 e-mail beccari@polito.it
%
% Version date 10 January 1992
%
\catcodel\@=ll
% Useful definitions
%
% Ligatures \ae, \AE, \oe
%
% If TeX 2.xx is used, or
% the macro \specialcodes
% *,... L L h ! \ae = 26 \AE = 29
%
\def\specialcodes{%

% Q is a letter

and \OE

no extended character set is available,
is correct; comment it if you use TeX 3+

\catcode 26=11 \catcode 29=11 \lccode 29=26 % Ligatures \ae,\AE
\uccode 29=29 \lccode 26=26 \uccode 26=29
\catcode 2 7 4 1 \catcode 30=11 \lccode 30=27 % Ligatures \oe,\OE
\uccode 30=30 \lccode 27=27 \uccode 27=30)

%
% If TeX 3+ is used, and assuming that lccodes and uccodes are already
% established, the following \specialcodes macro must be uncommented:
% \'a=--eO \'e=-^e8 \)e="-e9 \'\i=""ec \'o=^^f2 \'u=--f9
I , . . \'A=--cO \'E=^^c8 \'E="^c9 \'I='-cc \'O=-^d2 \'U=-^d9
%
%\def\@namelet#1{\expandafter\let\csname#l\endcsnme=)

TUGboat, Volume 13 (1992), No. 1

\Qnamelet{QgrQi)̂ êc \Qnamelet{QgrQI)̂ ĉc
\Qnamelet{QgrQo)"-f2 \Qnamelet{QgrQO)"-d2
\Qnamelet{QgrQu)̂ -f9 \QnameletIQgrQU)--d9
\let\cm=--17 \lccode'\'-17="17) ;! Compound word marker

% Languages
%
% A number is given to italian/latin hyphenation
%
\newlanguage\italian
%
% New definition for the underscore
%
% Note that plain.tex and 1plain.tex already \let\sb=-
%
\catcode'\-=13 % Active underscore
\def \sof tQbreak{\penalty\QM\hskip\zQ\-\penalty\QM\hskip\zQ)
\def-{\ifmode \sb \else \softQbreak \fi)
%
% With TeX 3+ use instead:
% \def-{\ifmode \sb \else \ cm\cm \fi)
%
% Definition of the commands \italiano and \latino
%
\def\italiano{\language=\italian \specialcodes

\righthyphenmin=2 \lccode'\ '= ' \ ')
%
\def\latino{\language=\italian \specialcodes

\righthyphenmin=2 \lccode ' \ ' =O)
%
\def\english{\language=O \righthyphenmin=3 \lccode'\'=O) % Needed in order
% to restore the english settings when you revert to english
%
I % Beginning of the group
7,

% With TeX version 3 or lower use:
\let\ae=--la \let\oe='-lb % Comment with TeX 3+
% and with TeX 3+ use
% \let\ae=--e6 \let\oe=*-f7 % Uncomment with TeX 3+
% and
% \def\'#l{\csname QgrQ#l\endcsname) Uncomment with TeX 3+
% \def\'#lI\csname QacQ#l\endcsname) % Uncomment with TeX 3+
%
\language\italian \specialcodes
\lccode'\'='\' % Apostrophe catcoded to lower case
\patterns{
. a2b2s3 . a2b3l
.o2b31 .o2b3m .o2b3r .o2b3s
. anlti3 . anlti3m4n
.di2s3ci3ne .cirlcu2m3
. wa2g3n .a2p3n .ca4p5s
.pre3i .pro3i
.ri3a .ri3e .re3i .rid0 .ri3u
. su4b31u . su4b3r
2 s 3que. 2s3dem.
3p4si3c4 3p4neul
ala a2e a2i a23 a10 a2u a2y
a2y30 a3i2a a3i2e a3i20 a3i2u ae3u
ela ele e2i e2j e20 e2u e2y e3iu

% Diphtongs and hiati

TUGboat, Volume 13 (1992), No. 1

i2a i2e ili i20 i2u io3i
ola 02e 02i 02j olo o2u o2y
o3i2a o3i2e o3i20 o3i2u
u2a u2e u2i u20 ulu uodu u3i2a u3i20
\ael \oel
%i2\'a0 i2\'e0 i2\'e0 i2\'00 i2\'u0 % Uncomment with TeX 3+
%u2\'a0 u2\'e0 u2\'e0 u2\'i0 u2\'00 % Uncomment with TeX 3+

2b3t % Consonant groups
2b3s40 2b3s4u 2b3s4t u2b3s4c
2c3q 2c3s 2c3t 2c3z 2ch3h
2d3s 2d3v 4d3u

%112\'a0 112\'e0 112\'e0 112\'i0 112\'00 112\'u0 % Uncomment uith TeX 3+
lm2 2m3m 2m3b 2m3p 2m31 2m3n 2m3r 2m4p3s

2m4p3t 4m3u
ln2a ln2e ln2i ln2j In20 ln2u ln2y 2n3n n2cln 2nll

n2g3n 2nlr n2s3m n2s3f 2n' 1n2\ael In2\oel
%ln2\'a0 ln2\'e0 1n2\'e0 1n2\'i0 ln2\'00 In2\'uO % Uncomment uith TeX 3+
lp2 2p3p 2p3s 2p3n 2p3t 2p3z 2ph3p 2ph3t 2s3p2h

2q3q
lr2a lr2e 1r2i 1r2j lr2o lr2u lr2y lr2h Ir2\ael 1r2\oe1
%Ir2\'aO lr2\'e0 lr2\'e0 lr2\'i0 lr2\'00 lr2\'u0 % Uncomment uith TeX 3+
ls2 2s3s 2st3m 2s'
it2 2t3t 4t3m 2t3n It' 4t3w
lv2 2v3v lw2 2w3w wa4r
1x2a ix2e 1x2i 1x20 1 x 2 ~ 1 x 2 ~ 2 x 3 ~ Ix2\ael Ix2\oel
%lx2\'aO lx2\'e0 ix2\'e0 lx2\'iO 1x2\'00 lx2\'u0 % Uncomment with TeX 3+
y2a y2e y2i y20 y2u
122 2232 2z3t lz'
%\cwml\cwmO % Uncomment with TeX 3+
1
1 % End of the group
% At this point it might be necessary to restore the at sign catcode
% \catcode'\Q=12 % Uncomment if necessary

Fonts

Invisibility using virtual fonts

Sebastian Rahtz

Abstract

The SL~IQX 'invisible' fonts are currently produced
by a special set of METAFONT files; an alternative
method of generating 'invisible' versions of any font
is presented, using virtual fonts.

1 Introduction

As soon as Donald Knuth announced [Knuth 19901
that 'virtual fonts' would be an official part of the
TEX version 3 distribution, I started to think of ways
in which they could make life easier for me. Now
that drivers exist which support the new font for-
mat (I have used Tom Rokicki's dvips for Postscript
output, and Eberhard Mattes' driver family distrib-
uted with e m m for screen previewing), I have been
able to realize some of these ideas. In a forthcoming
article for the journal of the UK TEX Users Group,
Baskervzlle, I discuss the use of virtual fonts in a
PostScript environment to implement the suggest,ed
extended font layout for m: here I look at a very
simple use of virtual fonts to generate the invisible
fonts needed by S L ~ .

S L ~ needs a set of fonts which produce
no output, but use up the same amount of white
space as the main fonts, in order to produce over-
lays [Lamport 1986, pp. 136-371. Leslie Lamport
achieved the desired effect by taking the set of fonts
he was using for S L ~ anyway, and altering the
METAFONT source so that they produced no marks
on the paper but had the same metrics as the par-
ent font. Despite continued complaints that these
fonts are not found in all LATEX distributions, the
system works well, provided that one sticks to the
default fonts. The big disadvantage, of course, is
that if one uses a different typeface one has to go
right back to METAFONT sources (which may be
unavailable or non-existent) to generate invisibil-
ity. But who ever dared change the font setup in
S L ~ anyway? The exciting work of Mittelbach
and Schopf [Mittelbach & Schopf 19901 changes the
situation, however. I t is now very easy to build a
S L ~ which uses a different set of fonts; but if we
decide t o do our slides in, say, Optima. how do we
get invisibility? There are three approaches:

1. If we are using a Postscript printer, there is
a simple. and elegant, solution. Where we

TUGboat, Volume 13 (1992), No. 1

want invisible text, we simply typeset it in
the parent font. but bracket it with a pair of
\special commands which instruct Postscript
to set these letters in white, i.e., invisible.' This
has the great advantage that only one set of
font metrics is needed for TEX. but has the dis-
advantage that it is dependent on the printing
device. Leslie Lamport (pers. comm.) has writ-
ten an appropriate style file for S L W which
does the necessary work (this is not part of the
LATEX distribution at present).
We could tinker slightly with to do the
same thing, i.e., read a single font metric file,
but in a certain mode produce only white space
rather than the characters. So far as I am
aware, this has not been done. Whether it is
possible by arcane 7$X macros, I feel incom-
petent to judge! The helpful reviewer of this
paper suggests, as a start:

\catcoder a = \active
\def a{\setboxO=\hboxia)\hskip\wd0\relax)

Chris Torek's 'mctex' distribution goes in this
direction by allowing for a mapping file read
by the drivers which lets you assign the names
of conventional t fm files to the invisible names,
and add an attribute of invisibility; this forces
the driver to look up the width in the tfm file.
and move right by the required amount.
We can take an intermediate route, and gener-
ate a set of font metrics which satisfy T&$ it-
self about the size of characters in the font, but
actually point to virtual fonts which produce
just white space. This is the approach I have
adopted. Its advantage is that it is portable,
and applicable to any font, but has the disad-
vantage that still has to load two sets of
font metrics. which are identical.

Methodology

Even if we have no METAFONT source for a font,
we certainly have a lJjX tfm file. We therefore start
with that as our basis, and extract from it the widths
of every character. This data can be used to write a
virtual font which has an entry for every character.
but whose body simply contains a dvi instruction
to move sideways by the width of the original char-
acter.

As the format tfm is not very easy to read, let
us look at the work that needs to be done in the

' This scheme would fail, not if we printed on
coloured paper, but if we overlaid text on some other
colour, in which case Postscript's imaging model
would produce white letters.

TUGboat, Volume 13 (1992), No. I

human-readable pl form. The format of the vpl
file. the corresponding human-readable form of the
vf file, is a superset of the pl format [Knuth 1990,
p. 18ff.l. The first part of the file, which describes
the basic characteristics of the font, can be left more
or less unchanged. adding just a VTITLE line: for
example:
(VTITLE created on Sunday, October 28, 1990

11:28 pm)
(COMMENT an invisible form of the font)
(FAMILY TIMES-ROMAN)
(CODINGSCHEME ADOBESTANDARDENCODING)
(DESIGNSIZE R 10.0)
(COMMENT DESIGNSIZE IS IN POINTS)
(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)
(FONTDIMEN

(SLANT R 0.0)
(SPACE R 0.25)
(STRETCH R 0.3)
(SHRINK R 0.1)
(XHEIGHT R 0.448)
(QUAD R 1.0)
)

A typical entry for a character in the pl file
looks like this:
(CHARACTER C a

(CHARWD R 0.444)
(CHARHT R 0.458)
(CHARDP R 0.014)
)

so all we need do is reproduce this, and duplicate
the width in a MOVERIGHT command:
(CHARACTER C a

(CHARWD R 0.444)
(CHARHT R 0.458)
(CHARDP R 0.014)
(MAP
(MOVERIGHT R 0.444))

1

There is no need to worry about heights and
depths, as the dvi file will contain commands to
reposition the current print position at the start
of each line, and T)$X will have ensured that the
baseline separation is correct. Even characters like
floating accents, such as the circumflex from Times-
Roman, have a negative 'depth' to tell that they
occupy only the top area of the box:
(CHARACTER 0 303

(CHARWD R 0.333)
(CHARHT R 0.675)
(CHARDP R -0.494999)
1

This presents no difficulties because it is
which has done all the work establishing where the
accent is to go, and has written instructions into the

dvi file to position us there. The simple MOVERIGHT
should continue, therefore, to work.

3 Implementation

An ideal conversion program would read a tfm file
and write a vf file. I have adopted a simpler
approach, which is to write a utility in the text-
processing language Icon which reads an ASCII pl
file and writes a vpl file. My program consists of
the following steps, illustrating how easily a pl can
be parsed:

run tftopl on the base font
open the pl file
read and concatenate lines until matching sets
of (and) are found; process result.
for each element that is a CHARACTER, copy out
the CHARWD value as a MAP . . . MOVERIGHT com-
mand at the end of the entry.
simply copy out other elements (e.g.
FONTDIMEN).
call vpt ovf .

When the resulting vf and tfm files are in-
stalled, we are ready for action. If we started with
a file called ptmr. tfm, we generate ptmrJ . tfm and
ptmr j . vf 2 . TEX is told the invisible font is called
ptmrj, and reads the metric file. The dvi driver
finds ptmrj . vf, obeys the MOVERIGHT instructions,
and no further characters are typeset.

4 Results and acknowledgements

This idea has not been fully tested, and TEX may
have tricks up its sleeve to waylay us. But it does
work in simple examples (including things like ac-
centuation), and I have some confidence that a
portable tftoiv program can be written to make
this a general technique. Those who use a Postscript
printer will find the 'write-white' approach more at-
tractive (especially as it saves on font space) and
extensible, but less portable.

Russell Lang (r j lQau . edu . monash . cc . monul)
has translated my rough Icon program into C, and
this latter version is available from him or me for in-
terested parties who care to rewrite the whole thing
in WEB for the 7$J community, or make it read and
write tfm and vf files.

Frank Mittelbach has written an experimen-
tal redefinition of the \invisible macro in S L ~
which takes the ingenious route of simply prepend-
ing 'iv' to the name of the current font family, and
then calling \selectfont to pull out the correct
font, bypassing the hard-wired font names in the

Using Berry's font naming scheme, and adding
a 'j' at,tribute for invisibility

TUGboat. Volume 13 (1992); No. 1

Investigate possibly sign~ficant relationships, such as:

Investigate possibly slgnlficant relationsh~ps,

such as:

. Fabric vs. type

. Fabric or type vs. phase

Thespatial distribution of typesorfabrlcs or phases;

the co-ordinates identify the location to a 112 me-

tre grid square - cons~der how to look at the

distribution by 50 metre square.

You will probably want to concentrate on one fabric

or type at a time - it would be nice to automate the

process of select~ng the appropriate data from the

database.

Fabric vs. type

. Fabrlc or t ype vs phase

T h e spatial distribution of types or fabrics

or phases: the co-ordinates identlfy the io-

cation t o a 1/2 metre grid square - con-

sider how t o look a t the distribution by 50

metre sauare.

YOU WIII probably want t o concentrate on one

fabrlc or type a t a t ime - i t would be nice t o

automate the process o f selecting the appro-

priate data f rom the database.

Helvetica Computer Modern

Figure 1: The effect of various fonts in slides

original S L ~ . Future releases of the font selection
macros are likely to feature this system; combined
with the virtual font suggestions outlined above, one
can envisage a long-overdue renaissance for SLITEX.

To demonstrate the effect of the virtual font ap-
proach in these pages would be difficult, but it may
be of interest to readers to see the visual effect (al-
beit reduced) of S L W slides set in Helvetica rather
than the familiar hugely expanded Computer Mod-
ern (Fig. 1).

This article has benefited considerably from
comments by the TUGboat reviewer.

References

[Knuth 19901 KNUTH, D. 1990. 'Virtual fonts:
more fun for grand wizards', TUGboat 11, no. 1,
pp. 13-23.

[Lamport 19861 LAMPORT, L. 1986. U T E ! User's
Guide & Reference Manual, Addison-Wesley
Publishing Inc., Reading, Massachusetts.

[Mittelbach & Schopf 19901 MITTELBACH, F. AND

R. SCHOPF 1990. 'The new font family
selection-User interface to standard LATEX',
TUGboat 11, no. 1, pp. 91-97.

o Sebastian Rahtz
ArchaeoInformatica
5 Granary Court
St Andrewgate
York YO1 2JR
U.K.

Packing METRFONTs into POSTSCRIPT

Toby Thain

Aimed at implementors of DVI-to-POSTSCRIPT
translators, this article suggests adapting Rokicki's
packed font format [I] to compactly define bitmap
fonts in POSTSCRIPT, an approach which has been
successfully implemented and tested by the author.

The problem of integrating METAFONT and
POSTSCRIPT has been tackled in two completely
different ways: by modifying METAFONT to out-
put curvilinear paths and outlines [4, 51, and by
using METAFONT's standard bitmap output di-
rectly. Since POSTSCRIPT allows flexibility in
representation, the choice is largely philosophical.
While outlines are less device-dependent and more
amenable to linear transformations, this author feels
that users need an effective means of using
METAFONT-generated bitmaps with the gamut of
POSTSCRIPT devices.

Another consideration is that METAFONT's
digitisation is likely to be better than that pro-
duced from a machine-translated outline font; cur-
rent POSTSCRIPT printers are notably lax in this
regard. (Adobe Type Manager is a significant
improvement, but printers do not yet incorporate
this renderer, resulting in the irony that some non-
POSTSCRIPT printers using ATM render text better
than many POSTSCRIPT printers.) In short, where
low-resolution devices are concerned, the author be-
lieves that METAFONTs such as Computer Modern

TUGboat, Volume 13 (1992), No. 1

I Name dpi GF PK PS VM I

Roman are better digitised by METAFONT than
by POSTSCRIPT from an outline. (This is also
apparent from examples presented in [5].)

It is clear from the table that GF-format glyphs
are excessively large at high resolutions, and even
low-resolution fonts are cumbersome if no compres-
sion is used. Another constraint is the limited
'virtual memory' available to POSTSCRIPT devices;
all fonts in a document typically coexist in this
space, and therefore it is important to manage it
efficiently (the column headed 'VM' indicates how
much of this memory is used by each packed font.)
A compressed representation is also desirable where
fonts are stored in a POSTSCRIPT device's local file
system.

This wastefulness suggests using a compressed
description which could be interpreted by the printer
itself. Having the advantages of high compression
ratios and well-documented algorithms, PK format
seemed a natural choice. Furthermore, existing 7l&X
fonts are largely in PK format.

An implementation of this idea is shown in Fig-
ure 1, encapsulated in a dictionary named pkdict.

Most of the work is done by the bc procedure; what
remains is to show how specific fonts are arranged
to make use of that code. (These examples, compro-
mises between clarity and brevity, can be improved
in either direction.)

An example

A bitmap font dictionary might be defined as follows
(automatically generated from logo10.300pk):

/logo10 pkdict begin 10 d i c t dup begin
/FontType 3 def
/FontMatrix [26214400 109226469 div

0 0 2 index 0 01 def
/Encoding ev def
/Buildchar /bc load def
/glyphs 128 ar ray

def
/FontBBox [O 0 30 251 def
end end def inefont

/pkdict 11 d i c t dup begin / a [O 128 192 224 240 248 252 2541 def

/p 1 2 index 3 1 r o l l put) bind def /f / f a l se load def /t / t rue load def
/r {s t r ing c u r r e n t f i l e exch reads t r ing pop) bind def /ev [O 1 255 { () dup 0 4 -1 r o l l put cvn) for] def
/gn {d p get h i {-4 b i t s h i f t / h i f a l s e def) C15 and /p p 1 add def / h i t r u e def) i f e l s e) bind def
/gb {d p get i and 0 eq /i i dup 1 eq {/p p 1 add def pop 128) {-I b i t s h i f t) i f e l s e def) bind def

/pb {{j or) i f j 1 eq (1 q 3 -1 r o l l put /q q 1 add def 0 128) {j -1 b i t s h i f t) i f e l s e / j exch def) bind def
/pn { gn dup 0 eq I 11 add gn dup 0 ne {exit) {pop) i f e l se) loop

exch €4 b i t s h i f t gn or) repeat 15 sub 13 df sub 4 b i t s h i f t df add add
3 { dup df g t { dup 14 It {df sub 1 sub 4 b i t s h i f t gn add df add 1 add)

(14 eq {pn) C1) i f e l s e /r exch def pn) i f e l s e) i f) i f e l s e) bind def
/bc C save 3 1 r o l l exch /glyphs get exch get pkdict begin 16 d i c t begin aload pop

/d exch def /df exch def /c exch def /w 6 index def
3 index neg 3 index 6 index sub 1 add w 6 index sub 5 index 1 add setcachedevice
f a l s e [l 0 0 -1 8 -2 r o l l 1 add] /p 0 def
w 7 add -3 b i t s h i f t dup s t r i n g /1 exch def dup s t r i n g /br exch def
dup s t r i n g exch 1 sub 0 1 3 -1 r o l l (1 index exch 255 put) f o r / w r exch def
df 14 eq {/i 128 def {/ j 128 def /q 0 def 0 w {gb ~ b) repeat j 128 ne (1 q 3 -1 r o l l put) {pop) i f e l s e 1))
{ / r -1 def / h i t r u e def /n 0 def

{ r 0 It { /r 0 def /k 0 def /v 0 def /q 0 def /b w def /n n { dup 0 eq {pop pn /c c not def) i f
dup b It dup {I index) {b) i f e l s e dup
k 0 ne dup 8 k sub 2 copy g t {exch) i f pop c {dup a exch get k neg b i t s h i f t v or /V exch def) i f

dup k add dup 8 eq €1 q v put /q q 1 add def pop 0) i f /k exch def sub) i f
dup 0 ne { dup -3 b i t s h i f t dup 0 ne { 1 q c {wr) {br) i f e l s e 0 4 index ge t in te rva l pu t in te rva l

q add /q exch def 7 and) {pop) i f e l s e c {dup a exch ge t) {O) i f e l s e /v exch def k add /k exch def
) {pop) i f e l s e exch {dup b exch sub /b exch def sub) {k 0 ne (1 q v put) i f sub ex i t) i f e l s e

) loop def) i f /r r 1 sub def 1)) i f e l s e imagemask end end res to re 1 bind def
end def

Figure 1. It looks complicated, but it works!

38 TUGboat, Volume 13 (1992), No. 1

Such Type 3 fonts require a BuildChar proce-
dure to draw glyphs. The Encoding array trivially
maps the 256 possible character codes to 256 dif-
ferent names (required by the font cache). The
FontMatrix defines the resolution; the font's pix-
els and measurements such as bounding boxes and
widths are transformed by this matrix to 'user
space'. glyphs is an array mapping character codes
to Lpackets' describing the character:

[w h h - o f u-off dx dy f dyn-f da ta] .
f is t r u e if the first run of pixels is black, f a l s e
otherwise, and data consists of the nybble-packed
glyph description. The other entries correspond to
PK character packet fields.

After the character descriptions comes the
font's bounding box, which is computed by the
PK-to-POSTSCRIPT translator.

Finally, the BuildChar procedure (which takes
its definition from bc in pkdict above) is executed
by the interpreter when a character from this font
is needed. In short, bc looks up the character's
description given the font dictionary and a char-
acter code, passes the width and bounding box to
set\-cache\-device (thereby requesting that the
character be cached), and draws the glyph one row
at a time using imagemask. For further information
on the structure of user-defined POSTSCRIPT fonts,
see [2].

POSTSCRIPT'S font cache ensures that each
different glyph drawn is only decompressed once;
subsequent requests for the same glyph bypass
BuildChar and are satisfied by the cache. Only
glyphs which are drawn are decompressed.

It is worth noting that some device-indepen-
dence comes 'for free' with POSTSCRIPT; for ex-
ample, bitmap fonts defined in this manner can
be rendered at any resolution, under any linear
transformation; hence, if bitmaps are not available
for a specific resolution or magnification, those at
another resolution can be substituted (albeit with
less pleasing results).

Character positioning is an issue which can be
dealt with on two levels. METAFONT records two
different dimensions for each character: a rounded
'displacement' in pixels, and a 'TFM width' for type-
setting purposes. Two considerations conflict when
positioning characters: it is desirable that charac-
ters are spaced according to their TFM width, so that
margins line up; and yet integral displacements will
yield more even spacing (an issue addressed in more
detail by [6]). The approach taken by this POST-
SCRIPT representation is that characters are spaced
by displacement, therefore the DVI-to-POSTSCRIPT

translator will occasionally need to compensate for
accumulated rounding errors according to [6].

If fonts are to be stored on a printer's local
disk (freeing the host of the responsibility of man-
aging them), a file usr/pkdict should be created
containing the definition of pkdict above. Each
font file should begin with

/pkdict where {pop) {(usr/pkdict) run) ifelse

which executes this file if necessary, rather than
defining the dictionary in each font file. Font
file names are conventionally prefaced by 'f onts/ '
(e.g., f onts/logolO). Local font files are executed
by f indfont to define the font dictionary, and
therefore consist of the same text that would be
downloaded 'on the fly' (see [3]).

Finally, the author would welcome discussion of
the techniques and issues presented in this article,
and any aspects of the integration of and
POSTSCRIPT. The author has also ported 3.0,
METAFONT 2.0 and associated tools to the Inmos
T800 Transputer.

References

1. T. Rokicki, "Packed (PK) font file format,"
TUGboat 6(3), pp. 115-120 (1985).

2. POSTSCRIPT Language Reference Manual,
Adobe Systems Inc., Addison-Wesley (1985).

3. POSTSCRIPT Language Program Design,
Adobe Systems Inc., Addison-Wesley (1988).

4. J.D. Hobby, "A METAFONT-like System with
POSTSCRIPT Output," TUGboat lO(4),
pp. 505-512 (1989).

5. S. Yanai & D.M. Berry, "Environment for
Translating METAFONT to POSTSCRIPT,"
TUGboat 11(4), pp. 525-541 (1990).

6. D.E. Knuth, DVItype .web (1982-90).

o Toby Thain
RMB 712
Beaufort
Victoria 3373
Australia
Ph. +6153 497296
Fax +6153 497339

TUGboat, Volume 13 (1992), No. 1

Complete Greek wi th Adjunct Fonts

C. Mylonas and R. Whitney

W e present a set of good quality Greek
fonts and a system for accessing the full
Greek alphabet with all diacritic marks
using 'adjunct ' f o n t s without explicit font
changing commands, and a system of
Greek moni tor characters permitting di-
rect m z n g .

Introduct ion. The project started with an innocu-
ous attempt by one of the authors (it is obvious
who) to learn TjjX for translating a Greek book on
Mechanics, only to find that lacked the bold
upright Greek lowercase letters used for symbol-
izing vectors such as o and @ for angular velocity
vectors. After some trials with variations of "poor
man's bold" (T h e T&Xbook, p.386) it became clear
that the only hope of getting good characters was
to produce them with METAFONT. The beautiful
pictures of Computer Modern Typefaces whetted
the desire for complete fonts for writing Greek, es-
pecially as W ' s Greek mathematical symbols were
not intended for writing Greek text (T h e m b o o k ,
p.430), and furthermore, they have to be entered
with lengthy commands. At that time the ever
helpful Barbara Beeton brought to our attention
the excellent, original and efficacious Greek system
and fonts of Professor Silvio Levy [I], which he
graciously offered us. That is when the collab-
oration of the two authors started, the one ever
entangled in problems resolved by the other. At
&st all efforts were concentrated on the design of
the Greek characters. The problem of limited font
capacity was postponed till the end. In this report,
however, it seemed more useful to start with the
requirements for a Greek font, which we then set
to meet. Accordingly the following paragraphs de-
scribe the characters required in a complete Greek
font and the constraints imposed by TEX; the cho-
sen system for accommodating all requirements and
the development of the method of adjunct fonts;
the commands for typesetting Greek; the design of
a new family of Greek fonts; and the use of Greek
monitor characters.

Greek fonts within m's constraints. The
biggest problem in font making for T ' is the
limited number of characters in each font.
originally would only accept direct input of 128
symbols in each font, but this was increased to 256
in the new version 3 of 1990. Even this larger

capacity is insufficient for all characters and symbols
of a complete Greek font, much more the smaller
font size still in wide use. We shall show how two
or more 128-position fonts can be interconnected
so as to furnish most of the Greek characters, and
how the same system could be applied to two 256-
position fonts, which would then accommodate all
Greek characters with room to spare for symbols
useful in lexicography or instruction.

Classical Greek uses most of the first 295
symbols shown in Table I , and lexicography some
or all of the last 65, making about 360 (without
counting the new characters on line 4 or some of
the symbols on block 6). The six accented vowels
marked with a ' - ' sign in blocks 2 and 3 do not
appear in Classical Greek, but classicists want them
for indicating the pronunciation in ancient dialects.
The characters in parentheses with asterisk at
the end of blocks 2 and 7, and their uppercase
counterparts in lines 13 and 9 seem to occur very
rarely, if at all, in Classical Greek literature [2]. All
these symbols do not fit even in a 256-position font.
Furthermore, though over 64000 ligatures and kerns
can be used in TJ$ 3 and can be provided by META-
FONT 2.7, only 256 are allowed in METAFONT 1.7
(we use PCMF v.1.7 [Ill), so that we had to count
and be sparing in their use. If all diacritized
characters (i.e., characters with accent, breathing
or iota subscript) were to be accessed as ligatures
so as to permit automatic hyphenation, about 200
ligatures would be required for Classical Greek and
many more for lexicography. Some 55 kerns would
then be left for Classical Greek, whereas our Greek
alphabet is less regular and requires more kerning
than the Latin.

Modern Greek is written with a single accent
and diaeresis but no breathings or iota-subscript
(blocks 1 and 5 in Table I, and 15 characters of
block 2). This reduces the number of characters
to 103 (with the punctuation marks and numerals)
and of ligatures to 23, so that a 128-position
font is sufficient, with 233 kerns available. Even
this number of kerns is not high: in the worst
case every lowercase letter would need kerning
with itself and every other, which with the 7
simply accented vowels, makes 24 x 32 = 768 kerns
(no letter after a final sigma). The possible
kerns between vowels with breathings (always first
in a word) and the other unaccented letters is
56 x 25 = 1400. Another 242 = 576 would be
required for kerning uppercase letters, and 768
for uppercase followed by lowercase, bringing the
maximum total to about 3500 kerns. Happily, many
character pairs need no kerning and, of course, all

T A B L E I
A COMPLETE GREEK FONT

TUGboat, Volume 13 (1992), No. 1

Clas. Mod.
1. ' a o ~ v s q 0 t ~ h p v

........... 5 o n p o s r u c p x w 2 5 2 5

8. A E H I 0 Y 52 with accent-breathing on the left56 -
9. A, H, n, plain or with accent-breat hing on the left * 2 1 -

10. Digits ... 10 10
11. Digamma, Greek numerals, left subscript: F c LI 3 , 5 -

Total - 295 103

Lexicographic or other use:
....... 12. 1 Y with accent-breathing on the right (beginning diphthongs) 16 -

. 13. A E H I O Y n A , H , f i , 1 witha accent on the right* 33 -
14. Upper and lowercase vowels with brkve (") or macron (-) 16 -

Total - 65
Grand total- 360

TUGboat, Volume 13 (1992), No. 1 4 1

pair combinations do not normally occur, though separation after the first or before the last letter of a
the transliterated outlandish names seen today in word is excluded. Internal subscript vowels are rare,
the press contain surprising combinations. In the and even more rarely will hyphenation occur at their
system described below we had to be content subscript, but this should be checked. Likewise the
with 225 kerns, and we ignored the rarer and the accent-breathing to the left of uppercase vowels run
less evident misspacings, eagerly awaiting the full no risk of hyphenation.
implementation of 3 and METRFONT 2.7 with
the promised practically unlimited kerning.

No concern about kerning is indicated by Pro-
fessor Levy who introduces an ingenious scheme for
printing the character 's' as final sigma '2' when at
the end of a word and as middle sigma 'o' otherwise,
but uses 56 ligatures of the middle sigma 'o' with
every other letter and accented vowel. This dispen-
sation from choosing the proper sigma is a luxury
not enjoyed by any typist in Greece, but would be
welcome if different keys weren't anyway needed for
the two sigmas in word processors producing Greek
characters on the screen (see section Greek Monitor
Characters). Another 128-position distribution was
proposed by Haralambous and Thull [4] in their
excellent compromise for Modern Greek, and a gen-
eral 256-position distribution by Haralambous [5]
was communicated to us after the submission of the
present article.

The chosen system. It was felt that a "complete"
and unique Greek font should be produced for type-
setting both Modern and Classical Greek without
font-changing commands and that it should include
all the additional accents and pronunciation signs
used in lexicography. In the absence of a large font
size with unlimited ligatures and kerns, a system
with the following characteristics was chosen:

a. The number of distinct characters in the Classical
font was reduced to 187, without sacrificing its
capabilities, by retaining only the diacritized vowels
of blocks 2 and 3 in Table I, and abandoning the
separate characters representing the vowels with
iota subscript (block 7 and line 9), the uppercase
vowels with accent- breathing on the left (line 8),
and the diacritized vowels for lexicography (lines 12-
14). These diacritics are instead entered correctly
as separate characters, the accent-breathing before
uppercase vowels and the iota subscript after vowels.

b. The iota subscript was made a separate character
of zero width and a left offset which centers it under
the plain or accented vowels a q o when typed after
them. The subscript is placed at the right of the
uppercase A H R with the macro \I which offsets
it by .4em (or with just " I " when with breathing).
Subscripted vowels are mostly first or last letters
in a word, and will run no risk of hyphenation if

c . In lexicography, only main entry words or the
word following them are diacritized with brive and
macron or, when rarely capitalized, with accent
or accent-breathing on the right or left. But
main entries in a dictionary are always placed at
the beginning of a line and need no hyphenation.
The accent-breathings of Table I, line 12, and the
accents of line 13 occur in rare uppercase words
in lexicography or instruction and are entered on
the right of the letter. The brbve and macron of
line 14 are entered with plain T$$ commands (The
rnbook, p.52, 356), e.g. " \u o " gives " 6 " .
d. The 103 Modern Greek characters double as
Classical when the single accent is marked as a
regular 'acute', as is done in most books in Greece
[3], but not when it is shown as a novel triangular
mark suggested by some Greek grammarians. The
192 independent Classical characters are then re-
duced to 89, of which 25 can be placed with the
103 characters of Modern Greek in one 128-position
main Greek font. The question then remained how
to sort out at least 64 classical characters into a sep-
arate 128-position classical adjunct font, and how
to access them easily, preferably without explicit
font-changing commands.

The solution was found by noting, first, that
the 66 diacritized characters of Table I block 3 have
the common trait of carrying a smooth or rough
breathing, hence are entered with a leading symbol
'>' or '<' followed by an optional accent and finally a
vowel or 'p' with which they form ligatures, and sec-
ond, that if these 'breathed' characters were placed
in the classical adjunct font, the common breathing
symbols could be made to act as commands to shift
and access the compound character in that font,
without any additional entry or any hint to the user
that a second font is used. Adjunct fonts match the
main fonts in style and magnification, and the shift
is automatic to the matching adjunct font. The two
fonts double the possible number of ligatures and
may be easily joined into one (without any changes
in the .tex files) when 256-position systems become
available with sufficient kerns and ligatures. It
would even be possible to fit most of the uppercase
vowels with breathings in the adjunct font so as
to access them by ligature, but this was not found

TTJGboat, Volume 13 (1992), No. 1

T A B L E I1

PRESENT KEY CORRESPONDENCE

a ~ y 6 ~ ~ ~ 0 ~ ~ ~ ~ v ~ o n p o ~ ' ~ u c p x ~ o ~
a b g d e z h i k l m n o p r s t u f u- u u u Y u U
Not obvious J . . . X.. C q.. W V

A B ~ D E Z H O I K A M N Z O ~ P ~ c ~ ~ o x w s z ~ s
A B G D E Z H I K L M N O P R S T U F Y u U U U 4 u

. . . . Not obvious J . . X.. C.. Q.. w v

necessary as the separate accent-breathings worked
perfectly. The required inputs for writing Greek are
shown in section Typesetting Greek and on lines 7
and 8 of Table 11. The only drawback of this system
is the exclusion of kerning between characters of
different fonts. But the adjunct font contains the
vowels with breathing, which come always first in
a word and may need kerning only on their right.
This may frequently be circumvented by carefully
adjusting the character margins (a d j u s t 2 it).

Accordingly two interrelated 128-position fonts
were used: the main font containing all characters,
symbols, and punctuation marks used in Modern
Greek, as well as the remaining simply accented
vowels from blocks 1,2,4,5,6,10 of Table I (plus two
new characters), and the adjunct font with the
remaining vowels with breathing from blocks 2 and
4, plus some additional characters. The main font
gmlO and its adjunct gpiO are shown in Table IV.
Numerals, plain alphabets, simple accents and all
punctuation marks have the same positions as in
Levy and the corresponding characters in Computer
Modern. The remaining characters in p i 0 and all
of gplO are in unrelated positions.

The correspondence between Latin and Greek
characters, shown in Table 11, and the way of

entering the accents and breathings, are almost
identical to Levy's, though we use 128-position
fonts. Minor differences are the use of separate keys
for middle and final sigma, and the introduction
of some new characters. The key correspondence
is mostly obvious: the non-obvious are specifically
marked in Table 11. S.A. Fulling [6] places only two
characters in positions different from Levy's and
ours, and suggests working for a consensus, and
Y. Haralambous [5] is forming a special group for
standardizing Greek m. Such a standardization is
most desirable, but it would require agreement with
other major groups of users even of plain Greek, as it
would be odd to use different keyboard conventions
in m- and nonm-Greek. Such groups are the
classicists, who use some other variations, and the
mass of users in Greece, whose support will be
essential for a successful adoption, and who mostly
use the IBM mapping with O E X Q ly respectively
on keys U J X V C.

Typesetting Greek. The macros used in Greek
mode are gathered in the file greekmac. tex. To
typeset a document in Greek one has only to enter
\ input greekmac at the start of the file and then
the brief command \ [to start Greek mode in font

TUGboat, Volume 13 (1992), No. 1 43

gmlO (see The Fonts below), and finally \ I to end
it. When clashing with other extensions; e.g.
with L A W , these commands may be redefined to
\ (. . . \) , at a loss only of the command \ (in the
concert format (The w b o o k , p.409).

These commands replace Levy's longer \beg-
ingreek and \endgreek (which can also be used),
as well as his alternative $ for starting and ending
the Greek mode after the command \greekdelims
which substitutes \math for the math-mode com-
mand $. Our \ [and \I leave $ untouched, they
resemble delimiters, and have proved quite conve-
nient during frequent alternations between Greek
and English, especially when intermixed with math.
A11 'l$J control sequences are valid in Greek mode,
e.g., \rm switches to cmrlO and \mz back to gmlO
(but for macros defined in Greek mode see Levy [I]).

Things get even simpler and w i n g faster if
one creates a new format file greek. fmt containing
greekmac. tex, and dispenses with \input greek-
mac in the text file (though \ [will still be needed
to start Greek). To w one then enters

tex &greek <file>

In Greek mode one can write Modern Greek
using ondy the acute accent, or Classical Greek
with all diacritics, and can shift to other Greek or
English fonts as shown in the following example of
a Greek . tex file. Greek mode must be closed at
the end of the file to avoid the complaint \end
occurred inside a group at level I.

\ [>Arq'h cellhniko-u keim'enou.
\rm Or in Modern uniaccent Greek:
\mz Arq'h ellhniko'u keim'enou.
\rm Which means: \it Beginning of
Greek text. \I

This gives

'Apxil khhqv1~06 K E ~ ~ ~ O U .
Or in Modern uniaccent Greek:
Apxfi ~ h h q v ~ ~ o l j K E I ~ ~ V O U .
Which means: Beginning of Greek text.

Accents and breathings are entered as shown in the
1st and 3rd of the next four lines, and produce the
2nd and 4th lines respectively:

Typewriter mode within Greek mode should be
enclosed in curly brackets: {\tt . . .) as it causes a
redefinition of the catcodes of >, >, I , which must
revert to their greek-mode values. Mathmode works
perfectly within Greek mode: the symbols >, <, I
automatically regain their mathematical meaning
and Greek fonts can be specified within mathmode

$\mbz a \cdotp b< l a l l b I $ gives: a . p < la1 /PI

Some Rare Occurrences. Although efforts were
made to cover most of the requirements of Greek
typesetting, some rare cases must be made up with
improvised commands, as e.g., the rare characters
shown at the end of Table I block 2 or vowels with
macron plus breathing and accent like ' 6 ' found
in only one book [7] reproducing a Greek text of
the early 5th century B.C. and simulating the long
vowels 'rl' and 'w' missing in that dialect. These
characters are produced with macros such as \mc or
\br for 'macron' or 'brkve' with three parameters,
the third being the diacritized vowel:

\mc>-o gives 9 \mc<'e gives
\br\ >o 6 \br<-e k
When such characters appear frequently (in refer-
ence [7] there are several in each line) they could
be placed in a new adjunct font accessed by the
'macron' and 'brkve' symbols. For only 'E' and '0'

with macron there are 24 characters which could be
fitted in the present adjunct font.

The fonts. In the multitude of Greek fonts with
variable stroke width and most satisfying to Greek
readers, we may distinguish two prevailing styles:
one is the style of fonts called 'simple' (dnha)
in Greece, which we shall venture to call Didot
style as it has a distinct relation to Didot's fonts
and has probably evolved from them; the other of
fonts tending generally to what is called Elsevier
or Times. The Didot style is still amazingly close
to the fonts used by the famed Parisian firm of
Didot (18th - 20th century). Fran~ois Ambroise
Didot (1730-1804), apparently influenced by John
Baskerville (1706-1775), created the Didot fonts
in 'new style roman' (which in turn influenced
Giambattista Bodoni, 1740-1813). He was said
by Benjamin Franklin Bache (apprenticed to Didot
by his grandfather Benjamin Franklin) to be 'the
best printer of this age and even the best that
has ever been seen'. Firmin Didot (1764-1836)
created improved fonts, and Ambroise Firmin Didot
(1790-1876) printed many Greek books, among
them several of the eminent Greek scholar A.Korais
in Paris, and sent printing presses and hundreds

44 TUGboat, Volume 13 (1992), No. 1

of books to Greek towns even before the start
of the Greek War of Independence (1821) [8].
Other printing presses were also brought to Greece
from England and Italy, notably by Stanhope to
Missolonghi, but Didot style fonts seem to have
been generally adopted in Greece. A slight change
in the fonts of Korais' books between 1807 and
1823 might possibly indicate the shift from Fran~ois
Ambroise to Firmin Didot fonts.

Didot type fonts are used in older Greek pub-
lications, in the government gazette (reminiscent
of the font used in the first official printing of
the Provisional Constitution of Greece enacted in
Corinth in 1822), in several historical and philo-
logical treatises, in the Teubner classical editions
(though more ornate), and in TEX as Greek math
symbols. The Elseuier or Times types of fonts are
closer to the 'roman' style, and are mostly used in
scientific books. novels and newspapers.

Didot style (almost Levy's [I])

o O P P K
Near Times-Elseuier style (Euclid font)

Some of the many differences between the two styles
stand out as distinguishing characteristics: in Didot
characters the thicker parts of curved lines are those
sloping up toward the right (which happens in the
letter '0' when its internal oval is tilted toward
the right) as in the first row in the figure above,
whereas in the Times-Elseuier the thicker arcs are
slightly sloping upward toward the left. The Didot
have arms which get thicker toward their ends, a
lowercase 'kappa' resembling an 'x', and the legs of
'mu' or 'rho' or of both generally curving toward the
right, whereas the Times-Elseuier style has straight
arms mostly of constant thickness and a lowercase
'kappa' resembling the uppercase. Both types can
be upright or slanted, though some editions of the
classics have slanted lowercase with conspicuous
upright uppercase characters. Levy's fonts, as well
as Haralambous' and Thull's are clearly related to
the Didot upright. We wanted a style approaching
the Times-Elsevier, which did not exist in W,
but with some aesthetic changes as well as practical
ones, such as a preference for horizontal and vertical
lines which print better at medium resolutions.

The character files in Computer Modern Type-
faces and the corresponding character figures were of
immense help, as were those of Levy, and served as
models for ours. Without them our work would have
been much harder. However, all character programs
had to be redone to the new style, even those of the
14 uppercase letters similar in Greek and English
and of some digits and punctuation marks, though
their changes were minor. The lowercase char-
acters presented the greatest difficulty, as they have
quite different curves from the English and several
intersecting or convoluted branches. The aim was
to make a font pleasant and acceptable to readers
accustomed to present day Greek publications, and
causing no hesitation or delay for querying or
appreciating unusual strokes.

One old ligature was re-introduced as a char-
acter in the Greek alphabet, after a search and
comparison, necessarily inexpert, in Byzantine man-
uscripts of Mount Athos and of Patmos, and in early
editions of Greek texts, such as the Estienne edition
of the Homeric poems (Paris 1566), the Cambridge
edition of the Suidas Lexicon (1705), and in more
recent publications. It is a pity that some of these
beautiful characters cannot be fitted into today's
rather rigid font styles. The new character is a
ligature of omicron '0' with upsilon 'u' over it, mak-
ing an infinity sign with the open end uppermost:
' 8 , 8 '. It first appears in a manuscript of about 512
AD and regularly after about 880 AD [9], and was
used in renaissance editions of the classics and later
up to about 200 years ago. Some people, including
one of the authors, use it in handwriting today. It
may be remembered from Byzantine icons of Mary
"MOTHER OF GOD", i.e., "MHTHP OEOY",
abbreviated by iconographers to "MP O W .

We assigned this character to the key 'v, V'
instead of accessing it as a ligature of '0' and "'
because some people will not want the diphthong
'p5 o+' to turn up automatically as a "'. Separate
characters had to be made of" with every accent and
placed in the main font, and with accent-breathing
in the adjunct font, so there are now eight vowels
'a E q 1 o u o o 8' with all corresponding diacritics.
This character is presented to former colleagues in
Engineering and Applied Math at Brown University
who had been inquiring about additional Greek
characters for use as symbols of newly introduced
quantities. It also affords a significant shortening of
Greek text, as the 'o*' diphthong may occur quite
frequently, as in the following line

TUGboat, Volume 13 (1992)) No. 1

TABLE I11
THE NEW GREEK FONTS

Font gmsllO
ABTAEZH@IKAMNEOITPCTY@XQRES
Font gmslblO
ABTAEZHOlKAMNZOHPZTYQjXWfl6 U ~ ~ ~ E ~ ~ ~ Z K ~ ~ V ~ O E P (T S T U (~ X ~ O ~

Font gmsslbl0
ABrAEZHOlKAMNEOnPZTY@XWRtS ~ ~ Y ~ & ~ ? ~ ~ ~ K ~ ~ W ~ O ~ ~ O ~ T U @ X ~ W ~

Font gcsslO
ABrAEZHOlKAMN,OnPZTY~XWR?5 ABrAEZHOIKAMN~OnP~TYQ,X4JRtS

Font gcsllO
ABrAEZHOIKAMNEOIIPC TY@X !PC26 A B ~ A E Z H O I K A M N E O ~ P C T Y @ X W Q ~

Font gcssllO
ABrAEZHOIKAMNEOnPZTY@XWR6 A B ~ A E Z H O I K A M N ~ O ~ P Z T Y Q , X ~ R ~ ~

Three additional symbols were designed to complete
the Greek numerals, which run as follows

a' 1
P ' 2
Y' 3
6' 4
E' 5

stigma q' 6
5 ' 7
rl' 8
0' 9

1' 10
K' 20
h' 30
p' 40
v' 50

60
0' 70
n' 80

koppa 11' 90

p' 100
0' 200
T' 300
u' 400
cp' 500
x' 600
q' 700
o' 800

sampi 3' 900

The regular alphabetic Greek numerals are entered
as letters of a regular Greek font with the last one
primed. The three additional symbols for 6, 90, 900
are in the adjunct fonts and are entered as \s \n
\p, giving: ' q % 3 '. Thousands are represented with
the same symbols and a low left subscript entered
as \x before the first digit of the numeral. E.g.,
\x a' gives ,a' (1000), \x\p ' gives ,3' (900, OOO),
and \x a\p\n a' gives ,ct?+ld (1991). If the Didot
style is prefered for numerals, the Levy font could
be called, as was done for the two CL'S of the greek

numeral for 1991 which look more archaic. Finally
a digamma 'F' (entered as \f) was placed in the
main fonts to satisfy classicists, and the new symbol
'6' (entered as C) was introduced for representing
the Greek drachma (6paxpi) in analogy with the
$-sign. Uppercase Greek numerals for epigraphic
use have been given by I. Haralambous [4].

The same character programs were used with
suitable parameter files to create a regular font, a
bold, a sans serif and a sans serif bold font, as well as
the corresponding four slanted fonts, all in magsteps
0, .5, 1, 2 and 3. They are 128-character Modern
Greek fonts with names starting with GM, and each
has a "classical" adjunct font with a corresponding
name starting with GP. In addition, four Caps-
Smal l -Caps fonts were made with names starting
with GC at the same magnifications, as well as four
fonts of 9, 8, and 7 points for Greek subscripts in
math mode. All are listed below with, hopefully,
recognizable provisional names, which can later
be changed to conform with a standardized font-
naming scheme as described by Karl Berry [lo].

gmlO gmbl0 gmsslO gmssbl0

46 TUGboat, Volume 13 (1992), No. I

The fonts of the top row at zero magnification
are entered with \mz, \mbz, \mssz, \mssbz. For
magnification 1 the last 'z' changes to 'un', and
for magnification 2 to 'tw', provided all these fonts
have been defined. w 3 accepts these extra fonts
without difficulty, but earlier versions may give
the error message "! TeX capaci ty exceeded,
sorry." calling for an increase of the font memory.
The various fonts are shown in Table 111, and
samples of Greek text in the page following it.

We give the name of Euclid to these fonts
not so much for the shortest paths of the arms
of the characters, which they mostly follow, being
straight, but in honor of an earlier Euclid, archon
of Athens in 403 B.C. when the Ionic form of the
Greek alphabet was officially accepted, i.e. the greek
alphabet as we know it today.

Hyphenation. English hyphenation leads to many
in Greek text. Greek hyphenation rules are sim-
ple and have been discussed [4] and hyphenation
patterns have been announced [12], but they may
not fully apply to Classical Greek. We are working
on hyphenation patterns for strictly Greek text,
using the initial version of P C W 3.0 [ll] without
multilingual capabilities. With enhanced hyphen-
ation capabilities these patterns should work also
for mixed language texts.

The Greek Monitor Characters. The word
processor PC-Write [13], mentioned years ago in
the TUGboat as using only ASCII characters hence
suitable for writing and editing Q X files, and used
for the last four years by one of the authors, came
out recently in a shorter version, PC-Write Lite.
capable of using foreign fonts both onscreen and
for printing, and with the facility for creating the
monitor fonts on a 8 x 14 pixel matrix. We used it to
make the set of simple Greek letters in the displayed
screen photograph. These characters are defined
in a new edit control file ED.GRK, where they
are given positions above the regular 128 ASCII
characters and are assigned to the corresponding
English keys as in Table 11. As used presently,
every text file < f i l e > . grk meant to display Greek
characters onscreen must have the extension . grk
which directs PC-Lite to select the edit control
file ED.GRK. At present the <Caps-Lock> key shifts

Greek screen characters designed with PC-Write Lite.

between English and Greek characters during word
processing and in case of errors <ALT-A > transcribes
the letter before the cursor. To print Greek from
the word processor one should match or transcribe
the positions of the screen characters to those of
the printer fonts he acquires.

The major problem remained, however, of how
to TEX a file with Greek characters in positions
above the 128th ASCII when all Greek w charac-
ters are below the 128th. The problem was solved
with the kind help of Mr.Mark Zehr of Quicksoft,
who patiently instructed us on how to create a
new printer control file for transcribing the Greek
file into an English one with the character cor-
respondence of Table 11. We call this file PR.TEX
and rename it PR.DEF for making the transcription.
Furthermore a so-called 'dot-command' must be
written at the top of < f i l e > . grk for directing the
output to < f i l e > . t e x

Pressing <ALT-Q> from the open file in PC-Lite,
transcribes the Greek <file>.GRK to the English
< f i l e > . TEX of the same name but a . TEX extension.
When w e d this gives the proper Greek or English
text as specified by the font commands. This
method works with all w versions.

However, we also found another solution usable
with 3. We made a Greek-to-Latin charac-
ter substitution file grk-eng.tex which is called
by greekmac and operates automatically during
w i n g of the Greek < f i l e > . grk, independently of
the word processor, remaining harmlessly unused
with the English characters. It requires TEX com-
mands to be in English because TEX reads them
before the character substitution and does not rec-
ognize them in Greek. In w i n g one should now
include the extension . grk

t e x < f i l e > . grk or
t e x &greek < f i l e> .g r k

TUGboat, Volume 13 (1992), No. 1 47

Seeing Greek characters on the screen makes reading
easier and more pleasant, and helps prevent all the
mistypings of the characters with a 'not obvious'
English correspondence (Table 11).

If hard copy of the (u n - w e d) Greek file is
desired and Greek printer fonts are not available,
one should be content with the English transcription
which can be printed without actually creating the
file < f i l e > . tex . Without the dot line ". 0 : . . ."
in the text file, the pressing of CALT-Q> directs the
transcription of < f i l e > . GRK to the printer (provided
PR . TEX has been renamed PR . DEF).

Summary and Conclusion. We presented a new
set of Greek fonts with all the required characters
for Modern and Classical Greek, in regular, bold,
sans serif, sans serif bold, upright and slanted,
and the corresponding caps-small-caps fonts, each
placed in a pair of 128-position groups; and a system
which accesses both groups as if they were a single
256-character font, though without kerning between
characters in different groups. The system can be
easily extended to use three 128-position groups or,
with 256-code systems, two or more 256-position
groups of characters as if they were one large font.
provided each group is composed of characters with
a common trait which may be used for shifting
access to that group. This method of shifting to
adjunct fonts should be useful for languages with
large numbers of characters.

With 256-position fonts it would seem advan-
tageous to place all characters and symbols of uni-
accent Greek in the lower 128 positions, where they
may then be easily separated into a 128-position
Modern Greek font for the less fortunate users of
the smaller size fonts. Several empty lower-128 po-
sitions may be filled with classical Greek characters
such as accented vowels (without breathing). Vow-
els with breathings and other symbols of Classical
Greek or lexicography would seem better placed in
the upper 128 positions: to be easily converted into
a 128-code adjunct font for writing Classical Greek
even with the smaller size fonts.

Conversely with the system of virtual fonts
one could join our main and adjunct font into
one 256-position font, or select 256 characters for
any particular application from several 128- or 256-
position adjunct fonts, with kerning even between
characters of different original fonts.

The purpose of this artacle is to present the
work we have done and the system of adjunct fonts

we have devised. Our coding scheme is described
in order to show how this system makes possible
the use of two 128-position fonts as if they were
one 256-position font, and not as a candidate for
standardization, though we hope that it shows
some useful possibilities for future standardization
work. It should be kept in mind, however, that a
suitable transliteration program similar to the one
we presented could automatically match a particular
coding to an established standard.

Remarks. METAFONT is an excellent font-making
system permitting the precise creation of characters
of any design, and we were delighted to use it. The
individual fontmaking steps are reasonably rapid
but must be repeated so many times that the whole
font-making process becomes quite long. Even the
use of a RAM-disk containing all necessary files
does not speed-up the process significantly. The
acceptance of each character and of the font as a
whole is purely a matter of aesthetics, and requires
repeated changes in the program file followed by
judging the display of the enlarged character. This
cycle is repeated some 10 to 20 times for each
character, even more with complex characters like
'k', a process lasting from about a half to two
days for each character, less for the same character
in a different font. The satisfactory character
is then formed in proofmode and printed, only
to be found awry or deficient in some details.
A new cycle of corrections follows and usually
produces a print which survives only a few hours
before crying faults are discovered. The cycle is
repeated with decreasing frequency until the proof
survives a week or two. New changes are then
made for certain groups of characters or when
a macro of wider application is introduced, or
when forming accents and breathings and making
the macros for their precise positioning over each
vowel. After all characters are done, the font
is created with METAFONT, preferably at a few
magnifications, each taking from 9 to 12 minutes on
a PC AT compatible at 8MHZ, and the uniformity
and compatibility of the characters is checked and
adjusted after several printouts, each ending with
a re-creation of the corrected font. In particular
the characters cp @ o required special attention and
re-designing in order to come out symmetric on
an HP Laserjet IIP printer (early attempts on a
180DPI dot matrix printer were hopeless). Finally
the kerning is adjusted in several steps from spacing
estimates made on printouts of matrices containing
all possible character pairs, each step requiring a
new fontmaking. The whole process, together with

TUGboat, Volume 13 (1992), No. 1

learning the tricks of METRFONT, lasted almost two
year (which is not bad - not referring to quality -
in comparison with the years taken by Louis XIV's
commission to design the Royal Alphabet [14] or
with the duration of the "Euler Project" [15]), but
additional adjustments have been postponed until
additional kerning is available. Here are some of the
thoughts and wishes which kept recurring during
this long process.

1. METAFONT does not use the coprocessor for
calculating points and curves and pixels, but
works with some internal process of its own.
Would the use of the coprocessor speed things
up, and how could this be achieved?

2. Could an extension of METAFONT be made to
recalculate only the altered parts of a character
and, even better, show the change on the
displayed character?

3. Could an extension of METAFONT remake sin-
gle characters or adjust kerns without recreat-
ing the full font?

Acknowledgment. We wish to thank several
friends who helped us. Without Barbara Beeton's
great help with advice and information this project
would not have started. Professor S. Levy's kind
offer of all program files of his excellent Greek
system and fonts made it possible for us to start
our system at an advanced stage. Professor Alan
Boegehold of the Classics Department at Brown
University and presently chairman of the Managing
Committee of the American School of Classical
Studies at Athens read the original draft and
advised us on sources of ancient scripts. His
criticism led to changes which significantly simplify
the typesetting of Greek. David Durand kindly
helped one of the authors correct several errors, and
Elli Mylonas, project manager of the PANDORA
program [2], did the search for diacritized vowels in
the classical literature. We are grateful to all.

References

1. Levy, S., Using Greek Fonts with TEX, TUGboat,
9(1), 1988, 20-24

2. As indicated by a preliminary computer search
of the index of words in the Greek literature from
Homer t o the 6th century AD on the CD ROM
of the Thesaurus Linguae Graecae (UC-Irvine) .
The search for diacritized vowels was done with
the program PANDORA 2.3produced under the
auspices of the PERSEUS project at Harvard U.

An acute single accent is used in the book 'Ehhq-
V I K ~ ~ MuOohoyia (Greek Mythology), Athens
1986, of Professor I.Kakridis, early proponent
of the single accent and hero of the (in-)famous
'Trial of the Accents' in the forties in Athens.
Haralambous, Y., and Thull, K., Typesetting
Modern Greek with 128-character codes, TUG-
boat, 10(3), 1989, 354-9

Haralambous, Y., On T@ and Greek ..., TUG-
boat, 12(2), 1991.

Fulling, S.A., Where's the Greek Shift Key?,
TUGboat, 11(3), 1990, 371-2

Found only in Willetts, R.F., The Great Lawcode
of Gortyna, Oxford Un.Press, 1967.

Korais' books and products of Didot's printing
presses in Greek towns exist at the Gennadeion
Library, American School of Classical Studies
at Athens. See also: Walton, R.W., The
Greek Book 1476-1825, Tenth Int. Congress of
Bibliophiles, Athens Sept. 30, 1987.

Gardthausen, V., Griechische Palaeographie,
Veit, Leipzig, 1911. Vo1.2, Tables 1-12.

Berry, K., Filenames for fonts, TUGboat, 11(4),
1990, 517-20.

Personal m, Inc., 12 Madrona Ave., Mill
Valley, CA 94941

Haralambous, Y., Typesetting Modern Greek -
An Update, TUGboat, 11(1), 1990, 26.

Quicksoft, Inc., 219 1st Ave N # 224, Seattle,
WA 98109-9911

Knuth, D.E., Mathematical Typography, Bull. of
the Am. Math. Soc., v.1, n.2, March, 1979., and
7&X and METRFONT, Am. Math. Soc., 1979.

Siegel, D.R., The Euler Project at Stanford, Dpt.
of Computer Science, Stanford Univ., 1985.

First submitted: 2-16-91. In final form: 12-21-91.

o C.Mylonas o Ron Whitney
Kouv~oupt6~q 5 7&X Users Group
14563 Kqcpma rfwQMath.AMS.com
Athens, Greece

or at times:
Engineering, Brown University
Providence, R.I. 02906

TUGboat, Volume 13 (1992)' No. 1

TABLE IV

Font GMlO x 1.44 Adjunct Font GPlO x 1.44

TUGboat, Volume 13 (1992), No. 1

Comments on "Filenames for Fonts"
(TUGboat 11, no. 4)'

Frank Mittelbach

Abstract

In TUGboat 11, no. 4, a nomenclature for font files
was proposed by Karl Berry. I disagree with Berry's
proposal in some important points and would like
to put these in writing in the hope that we will find
some suitable agreement before anything is adopted
as a standard.l I was aware of an ongoing email
discussion about this topic but unfortunately didn't
pay enough attention to realise that this would lead
at this stage to a definite proposal.

Although this article points out several possi-
bilities, it is not meant as a counter proposal. It is
written in the hope that re-opening the discussion
will lead to the best possible solution. In its current
state, Berry's proposal cannot be used for I4w 3.0
(cf. sections 2 and 4) and this means that the ma-
jority of w users will be forced to use something
different.' Thus, however consistent and rational it
may be, his scheme can never become a universal
standard.

1 Identifying font characteristics

Berry said that his proposal follows and simplifies
the scheme we adopted for the new font selection
scheme of I4W [ll]. But in my opinion it makes
the same mistake as we did in our first proposal
for a new font selection scheme for 'I)$ fonts [lo].
The main idea behind identifying certain properties
of fonts individually is the desire to change them
independently. If, for example, a designer defines
the layout of a heading to appear in 'bold extended'
typeface, then a part of this heading that is to be
emphasized should appear in a corresponding font,
preferably in 'bold extended italic' or at least in
'bold italic'. This is possible if one identifies 'bold'

* The assistance of Chris Rowley is acknowl-
edged with pleasure.

The re-implementation of IPw will allow the
user to access a broader range of fonts and it would
be a big disadvantage if the method used imple-
ments a standard different from the one used in
other macro packages.

At the moment, only comparatively few users
are in a position to actually use the new typefaces
and most therefore have to rely on Computer Mod-
ern or a virtual variant thereof (implementing a
standard TEX encoding).

as the weight, 'extended' as the width and 'italic' as
the shape or variant of the current font.

However, Berry identifies both 'sans serif' and
'typewriter' as variants, whereas we think that these
are invariants of a font family and consequently
should appear in the font family name. The rea-
son for this decision is the fact that there is practi-
cally no font family which consists of both a 'serif'
and a 'sans serif' variant or which contains an ad-
ditional 'typewriter' variant. We do not view the
Computer Modern Family as a counter example: it
is a meta-family consisting of several independent
font families which are only loosely connected by
design principles. Otherwise one has to accept Con-
crete Roman as part of this family3 and this seems
a bit far-fetched.

2 The Computer Modern families

It is true that more and more fonts are becoming
accessible through T@ and that it is therefore time
to introduce a naming convention which allows them
to be handled in a consistent manner. However, the
main fonts in use are still public domain fonts gen-
erated by METAFONT. This is because, firstly, they
cost nothing (or almost nothing) and, secondly, they
ensure compatibility since most of them are included
in the standard T@ distributions. For these reasons
a scheme that does not cover these fonts is only of
limited use. Berry never mentions how Computer
Modern by Knuth [7] or Pandora by Billawala [2]
could be integrated into his ~ c h e m e . ~

3 Font names of eight characters

As Berry correctly states, eight characters are def-
initely not enough to cover all possible font fam-
ilies with all their variations, at least not if ver-
bose naming is used. However, if we encode the
font names into arbitrary sequences of letters and

The Concrete Roman family is constructed by
using the Computer Modern METAFONT sources
and applying new parameter sets. In our nota-
tion the family 'concrete roman' consists of the
variants 'normal', 'italic' and 'small caps', all in
medium width and weight. Additionally a 'slanted'
or 'sloped' variant in 'condensed' width exists. Ex-
amples of this typeface can be found in [I l l .

While it might be possible to come up with
some two-letter combinations for the typeface names
and perhaps 't' (i.e. distribution) for the
foundry, there is no possibility in Berry's scheme
of including virtual fonts that extend METAFONT
fonts to 256-character codepages, cf. section 4.

52 TUGboat, Volume 13 (1992), No. 1

numbers (beginning with a letter) then we can ad-
dress 26 x 367 = ? different fonts.5 I suppose that
nobody would like to remember Times-Roman as
z5zcvp49, so perhaps a more readable encoding has
to be found, but we should not choose a system that
already has difficulties in covering the current range
of available fonts.

However, depending on the addressing method
used within m, the actual names of the files can
be of minor importance since they need concern only
format developers. For example, in the new font
selection scheme for I P m [ll], the user will specify
fonts by characteristics which consist, in principle, of
arbitrarily long strings.6 At the most primitive level,
this user-interface consists of command sequences
such as

\familyCtim)\series{bc)%
\shapeCsc)\selectf ont

this loads a small caps variant of Times-Roman in
weightlwidth bold condensed (in the current size).
This might indeed correspond to some external file
named z5zcvp49, without forcing the user to learn
this fact. To use such a scheme successfully we have
to ensure that there no longer exist situations where
the user is forced to return to I P m ' s \newfont
command or m ' s \font primitive. In particular,
this requires proper documentation7 of the available
fonts in the form of tables for \family, \ ser ies ,
etc., together with the ability to access fonts in arbi-
trary sizes since many fonts can be scaled nowadays
by the output devices. This important feature will
be added to the new font selection scheme in the
near future; the implementation is currently under
way.

The following sections deal with individual
parts of Berry's proposal. They are nothing more
than observations and do not add up to a new pro-
posal for using the available number of characters.

Similar considerations apply to the case of user
names on length-restricted systems. While pzf 5hz
is perhaps difficult to connect with "Mittelbach",
this approach allows over 60 000 EDS employees ac-
cess to the company's net without conflicts.

It should be pointed out that the new font se-
lection scheme is independent of I P W and could
therefore serve as a new standard, just like the old
one proposed by Knuth [9, pp. 414-4151 at a time
when only a few fonts were available and subse-
quently implemented in most macro packages.

A task that has still to be undertaken for
I P m 3.0: any volunteers?

Denoting t h e foundry While it seems nice to
have names that are easy to remember8, I have
some reservations about the foundry table given in
[I, p. 5171. It might be possible to cover the ma-
jor foundries of the western world, but the market
is young and will certainly expand enormously in
the near f ~ t u r e . ~ The present list is nowhere near
complete: where, for example, are Monotype and
Linotype?

Denot ing the typeface family The table of type-
face families reads like a Postscript brochure. While
at present this is certainly an important source of
non-METRFONT fonts used with W, one should
look closely at all the other families provided by the
major printer companies to see whether or not they
fit into any proposed scheme.1°

Denoting t h e weight and expansion Given the
constraints on available characters for use in the
font names, I would suggest squeezing this infor-
mation into one character. One can probably use
'memorable' characters for the most usual combi-
nations and assign the remaining characters to all
other combinations. To reduce the number of pos-
sible combinations one should drop the distinction
between human and automatic scaling in expansion.
While this is an interesting fact, I doubt whether any
foundry supplies the same typeface in both ways.

Denoting the variant My only concerns here are
those I expressed earlier (see section 1) about what
constitutes a variant.

Denoting the size To avoid the problem of un-
specifiable font sizes, I suggest the use of a two-digit
hexadecimal (or even base-36) number. For stan-
dard sizes, i.e. those in the range 5pt to 20pt, this is
as readable as a decimal number; and for the usual
display sizes (e.g. 72pt) one would surely get used
to it. This would also allow the packing of addi-
tional information into this part of the font name,
as explained in the next section.

Whatever this means when only a single char-
acter is to be used.

Since it is already difficult to assign appropri-
ate letters, one might think of dropping this ap-
proach completely to avoid giving certain foundries
preference over others.

lo There exist by now tools to generate .tfm files
from down-loadable fonts for many font formats in
different printer languages.

TUGboat, Volume 13 (1992), No. I

4 Font Encoding Schemes

Berry mentions the problem of virtual fonts. It is
in principle possible to generate arbitrary fonts by
combining characters from different typefaces into
one virtual font. While this method allows the cre-
ation of an unlimited number of fonts and could
certainly blow up any scheme, it seems question-
able whether this will actually happen. A natural
usage of this concept would be to add certain miss-
ing characters or symbols to a font so that it can
be used with a standard macro package. In such a
case, however, the resulting virtual font would still
be clearly identifiable by its major raw font. On the
other hand, virtual fonts could completely dispose
of the problem of font encoding, provided that the

community can agree on a few standard layouts
for 'latin' (cf. [3]), 'math', etc.

The use of 'r' for raw . tfm files, as pointed out
by Berry, works only for fonts which have no design
size and this again rules out any font produced with
METAFONT, since virtual fonts for such families (fol-
lowing the coding scheme as proposed in [3])11 can-
not be specified within Berry's naming conventions.
I therefore suggest coding this information within
the design size, by adding a suitable number to the
actual design size to indicate that a raw .tfm file is
to be used.12 If the design size were coded in hex-
adecimal notation, this would allow design sizes up
to 127pt ("00-"7F) for the (virtual) fonts which are
actually used (and which have a standard TEX en-
coding scheme), the accompanying range ("80GNFF)
being left for raw . tfm files.

To my knowledge, this work (for the Computer
Modern families) has already been undertaken in
Germany and is at the moment in ,B-testing.

l2 The use of unusual font sizes for the raw . tfm
seems appropriate since these font metric files are
of interest only to those who have to set up virtual
fonts.

53

References

Karl Berry. Filenames for fonts. TUGboat,
11(4):517-520, 1990.
Nazneen N. Billawala. Metamarks: Preliminary
studies for a Pandora's Box of shapes. Techni-
cal Report STAN-CS-89-1256, Stanford Univer-
sity, Department of Computer Science, Stan-
ford, California 94305, 1989.
Michael J . Ferguson. Report on multilingual
activities. TUGboat, 11(4):514-516, 1990.
Donald E. Knuth. Computers & Typeset-
ting. Addison-Wesley, Reading, Massachusetts,
1986. Consists of [9, 8, 6, 5, 71.
Donald E. Knuth. METRFONT: The Program.
Volume D of Computers & Typesetting 141,
1986.
Donald E. Knuth. The M E T F I F O N T ~ O O ~ . Vol-
ume C of Computers & Typesetting [4], 1986.
Donald E. Knuth. Computer Modern Type-
faces. Volume E of Computers & Typesetting
[4], July 1987. Reprint with corrections.
Donald E. Knuth. m: The Program. Vol-
ume B of Computers & Typesetting [4], May
1988. Reprint with corrections.
Donald E. Knuth. The Wbook . Volume A of
Computers & Typesetting [4], May 1989. Eighth
printing.
Frank Mittelbach and Rainer Schopf. A new
font selection scheme for macro packages-
the basic macros. TUGboat, 10(2):222-238,
July 1989.
Frank Mittelbach and Rainer Schopf. Reprint
(with corrections): The new font family selec-
tion - user interface to standard U r n . TUG-
boat, 11(2):297-305, June 1990.

o Frank Mittelbach
Electronic Data Systems

(Deutschland) GmbH
Eisenstrafle 56 (N 15), D-6090

Riisselsheim, Federal Republic
of Germany

Tel. f49 6142 803267
mittelbachQrnzdmza.zdv.uni-mainz.de

TUGboat, Volume 13 (1992), No. 1

Output Devices

The D V I Driver Standard, Level 0

The TUG D V I Driver Standards Committee

Abstract

The TUG DVI Driver Standard defines functional
and interface requirements for computer programs
(DVI processors) that read and translate files in the
D V I page description language. This document is
the subset of the D V I standard (level 0) applying to
minimally functional D V I processors. The specifica-
tions here should be considered minimal; develop-
ers are encouraged to write drivers exceeding these
specifications.

(The version of the Level 0 Standard presented
here is draft 0.05. It has been reviewed by the TUG
D V I Driver Standards Committee and is now being
presented to the TUG membership at large for re-
view.)

The complete standard will be presented as a se-
ries of tiers requiring increasingly stringent control
over the output of D V I processors.

Notes from the Secretary

Over the last year and a half the TUG D V I Driver
Standards Commit tee has been developing this doc-
ument, the level-0 standard draft, which is presented
now to the membership-at-large. The Committee
plans to transform this draft into an official TUG
standard as quickly as possible.

If you have any comments on this draft, you may
address them within two months after publication
to the Secretary. Please note that i t is intentional
that this draft does not define inclusion of graphics,
\ spec ia l syntax, page selection, etc. Refer to the
section below and to the report published in TUG-
boat 12, no. 2 (May 1991) for the reasons.

Owing to their length we have omitted the appen-
dices from this publication. They contain the de-
scription of relevant file formats: Appendix A: DVI;
Appendix B: GF; Appendix C: PK; and Appendix D:
TFM. These appendices are available over the Net,
and may also be ordered on demand from the Secre-
tary (the address is given at the end of this article).

This Notes section is not part of the draft.

1 Purpose of the level-0 standard

The level-0 standard (hereafter called the standard)
is meant to be a base standard to which all D V I -
processing programs must adhere. It provides a base

level of support for both DVI-to-output-device trans-
lators (so called drivers) and DVI-to-DVI preproces-
sors (e.g., dv ise lect) . The standard hereafter calls
such DVI-processing programs "DVI processors" or
just 'Lprocessors". This standard allows all reason-
able documents to be rendered (i.e., printed or dis-
played) accurately. When we refer to accurate ren-
dering, we mean that when the data generated by
the D V I processor(s) are transmitted to an output
device the latter shall produce a page accurately de-
picting the page described by the D V I file (disregard-
ing resolution effects and output technology).

The basis for many of the specifications in this
standard is the possible output of m 8 2 although
some requirements are based on assumptions that
cannot occur with m82 -based output; functions
which can be implemented via a pre-processor are
generally omitted (e.g., page selection and sorting).

2 The D V I file

D V I processors must be able to read and interpret
any valid D V I file as specified in appendix A. They
shall also correctly render any D V I file which falls
within all of the limits specified below. If these re-
quirements cannot be met due to limitations of the
computer or the output device they shall be fulfilled
as completely as possible and the limitations docu-
mented. Aside from this exception, these specifica-
tions are a minimum; good processors will probably
be able to handle D V I files exceeding these limits
(DVI files which exceed the limits are likely to be
rare, but might still occur).
Explanation: This exception is necessary because
certain output devices have varying capacity depending
on the amount of on-board memory or similar condi-
tions. For example, an HP LaserJet Plus with 512KB
of memory is capable of holding in memory only 3056
distinct downloaded characters; a full page bitmap is
also not possible with this configuration.

D V I commands The D V I processor must be able to
interpret every D V I command listed in Appendix A.
Explanation: Some commands, e.g., putd, are gener-
ally used for conditions outside those enumerated below;
despite this, DVI-translating programs are expected to
accurately interpret these commands and execute them
if they do specify an action within the specified minimum
limits.

Characters

Number of characters in a font

The D V I processor must be able to handle fonts
which have characters at any code c in the range
0 5 c < 256.

TUGboat, Volume 13 (1992), No. 1 55

Explanation: Some printers with download possibil-
ities require fonts with more than a certain number of
characters to be broken into two or more device fonts
when downloaded to the printer. Please note that this
requirement alone is not sufficient to allow the exception
for device limitations given in section 2 to apply.

Character size

The D V I processor must be able to render any char-
acter up to a size of 600pt (horizontal) by 800pt
(vertical) unless this is not possible due to device
constraints as outlined in section 2.
Explanation: This size is the glyph size, not the size
given in the TFM files. These two sizes are not connected;
i.e., the glyph might be outside the bounding box given
by the dimensions of the TFM files.

Number of characters per page

The D V I processor must be able to render a page
containing up to 20 000 characters unless this is not
possible due t o device constraints as outlined in sec-
tion 2.

Unusual characters

The D V I processor must correctly render any charac-
ter which meets the specifications in appendices A,
C, and B (if the processor uses GF format). This in-
cludes, but is not limited to: (a) characters with
empty bitmaps (e.g., the SLITEX fonts), includ-
ing characters whose horizontal escapement is 0,
(b) characters whose printable image is wider than
their horizontal escapement, and (c) characters with
a negative horizontal escapement.

Rules

Rule size

The D V I processor must be able to render rules of
any size up to 600 pt (horizontal) by 800 pt (vertical)
unless this is not possible due to device constraints
as outlined in section 2.

Placement of rules on the page

The lower left corner of a rule is to be placed on the
page at the location given by rounding the current
D V I coordinates as indicated in section 2. The height
and width of the rule are given by the formula [Kn]
where n is the dimension in D V I units and K is a
constant which converts from D V I units to device
units.
Explanation: Devices with aspect ratios unequal to
one will need to maintain separate constants for vertical
and horizontal dimensions.

No rule is rendered if n 5 0, as specified in ap-
pendix A.

Number of rules per page

The D V I processor must be able to render a page
containing up to 1000 rules unless this is not possible
due to device constraints as outlined in section 2.

Stack The D V I processor must be able to handle
D V I files whose pushlpop stack nests up to 100 levels.

Positioning on the page

Location of the origin

The D V I processor must locate the origin (0,O) at a
point one inch (25.4mm) from the top of the page
and one inch (25.4 mm) from the left side of the
page.
Explanation: While these default margins are incon-
venient for users of non-U.S.-sized paper, the advantage
of having a universally standard default location of (0,O)
and the widespread assumption of these defaults in most
macro packages outweighs the inconveniences. For some
DVI processors (e.g., screen previewers), this specifica-
tion refers to a virtual page and not the physical output.

Changes in position due to characters and
rules

The definition of D V I files refers to six registers,
(h. v, w, x, y, z) , which hold integer values in D V I
units. In practice, we also need registers hh and
vv, the pixel counterparts of h and v, since it is
not always true that hh = pixelround(h) or vv =
pixelround(v) where pixelround(n) is defined as
sign(Kn) . Labs(Kn) + 0.51 with sign(i) resulting
in -1 if i < 0 and in 1 otherwise.

Whenever the D V I processor encounters an in-
struction that changes the current position, it must
update h and v. If the change in position is due to a
command which sets a character, the processor adds
the horizontal escapement value from the PK or GF
file to hh to get the new value for hh.

For a horizontal movement of x D V I units from any
other command, hh will be set to hh+pixelround(x)
if x < word-space for a horizontal movement to
the right or if x > -back-space for a horizontal
movement to the left. word-space is defined as
space - space-shrznk, and backspace is defined as
0.9 quad if the processor uses TFM files. If the pro-
cessor does not use TFM files the design size of the
current font in the D V I file (after all necessary mag-
nifications have been applied) may be used for a
quad, and 0.2 quad must be used for word-space. If
x exceeds the bounds outlined above, hh is set to
pixelround(h + x). In this way, rounding errors are
absorbed by interword spaces.

For a vertical movement of y D V I units. vv
is set similarly except that vv is set to vv +

56 TUGboat, Volume 13 (1992), No. 1

pixelround(y) if -0.8quad < y < 0.8quad and set
to pixelround(v + y) otherwise. This allows verti-
cal rounding errors to be absorbed in the interline
spacing while still allowing fractions and super- and
subscripts to be printed consistently.

After any horizontal movement, a final check is
made as to whether dist > max-drift with dist de-
fined as abs(hh - pixelround(Kh)) and max-drij?
defined as outlined below. If it is, then hh is
set to pixelround(Kh) + sign(dist) . max-drifl. A
similar check is made with uu and u. max-drift
should be set to 2 for output devices with device
units smaller than or equal to 0.005 in (0.127mm),
1 for output devices with device units greater than
0.005 in (0.127mm) but less than or equal to 0.01 in
(0.254mm) and 0 for output devices with device
units greater than 0.01 in (0.254 mm).
Explanation: This method for tracking the positions
is oriented towards the typesetting of text. It does not fix
positioning problems with lines consisting completely of
characters of a fixed-width font, where one line consists
only of characters without any movements and the next
line contains movements. Other problematic areas are
line graphics produced with line segment characters in
fonts. These line segments may not align.

Range of movement

The D V I processor must handle movements in the
D V I file up to a total of 231 - 1 D V I units in any
direction from the origin.

Objects off the page

Any printable object which would lie entirely off the
physical page must not be rendered; any changes
to positioning must still be obeyed. Any printable
object which would lie partially off the physical page
must either be clipped so that the portion of the
object that lies off the page is not printed or else
omitted entirely, unless this is not possible due to
device constraints as outlined in section 2.
Explanation: Because some output devices do unpre-
dictable things when objects are rendered partially or
completely off the edge of the page, it is up to the D V I
processor to make sure that objects printed partially off
the page are handled correctly.

Fonts

Font numbers

The D V I processor must be able to accept a font
number k, given by a fnt-def command, in the range
0 5 k < 256.

Distinct fonts

The D V I processor must be able to handle any doc-
ument containing 64 or fewer distinct fonts.

Specials A "special" is the parameter to the D V I
commands xxxl , xxx2, xxx3, and xxx4 . This stan-
dard does not define the meaning of any special.
Specials not officially defined by the DVI processor
standards committee should be flagged with a warn-
ing when read from the D V I file. If any specials
are encountered that are ignored by the processor,
the processor must issue a warning message. These
warning messages may optionally be turned off a t
run time.

3 Configuration

I t must be possible for the installer of a D V I proces-
sor to configure such things as the location and nam-
ing scheme of fonts, default paper size, etc., without
having to recompile or relink the processor.
Explanation: LLetc." means "make as many things
configurable as possible." This should be more detailed
(hint due to Karl Berry).

4 Font files

Font formats The D V I processor must be able to
read PK fonts with the location specifiable at run
time. The PK format is given in appendix C. GF
support is optional. The GF format is given in ap-
pendix B.
Explanation: The PK format is the preferred format
for bitmap fonts because (a) it is the most compact for-
mat in the m world and (b) included in the PK format
are pieces of information about the font (e.g., the hor-
izontal escapement in pixels for each character) which
are essential for fulfilling the typesetting requirements
of section 2.

The scaling number The magnification and reso-
lution of a font are combined into a scaling number
in one of two ways:

Resolution number
The resolution number is given by resolution x
magnification where the resolution is given in
dots per inch (on devices with a aspect ratio un-
equal to one, the horizontal resolution should be
used) and a magnification of 1 indicates normal
sizing. This is the preferred specification for GF
and PK files.

Magnification number
The magnification number is given by 5 x
resolution x magnification where both values are
as above.

TUGboat, Volume 13 (1992), No. 1 5 7

Magnifications

Minimum set of magnifications

The D V I processor must be able to use fonts at least
at the following magnifications of its target resolu-
tion:

1 (magstepo),
1.095 (magstep0.5),
1.2 (magstepl),
1.44 (magstep2),
1.728 (magstep3),
2.074 (magst ep4),
2.488 (magstep5),
2.986 (magst ep6),
3.583 (magstep7),
4.3 (magstepg), and
5.160 (magstep9).

Explanation: The term magstep n stems from the
7&X and METRFONT control sequences with the same
name. Its meaning is 1.2".

D V I processor authors are encouraged to support all
possible magnifications.

Margin of error

If a D V I file requests a font at a size that does not
exist, but the requested size is within 0.2 % of a sup-
ported magnification with the font at that size ex-
isting, the D V I processor must use the latter font
without warning.
Explanation: TQX and METAFONT compute font
magnifications with different precisions. Further; calcu-
lations done by TEX and/or a DVI processor are subject
to roundoff errors. The margin prescribed is sufficient for
accomodating most of these errors. It is not intended to
compensate for fonts requested at an incorrect size.

Missing fonts If a font is missing the D V I proces-
sor must continue processing and, after issuing an
appropriate warning message, deal with the missing
font in one of three ways:

I . Insert appropriate white space where characters
of the font would appear.

2. Insert black rectangles of the size of the char-
acters given in the TFM file for the font.

3. Print the characters from that font at a different
size or from another font at the same size.

If method 1 or 2 is used and the processor is unable
to determine size information for the font in ques-
tion, then the processor may simply ignore any char-
acter setting command that occurs while the current
font is that font.

Under no circumstances should a missing font
cause a fatal error.

o The TUG DVI Driver Standards
Committee
Joachim Schrod, Secretary

Technical University of Darmstadt
Institut fiir Theoretische Informatik
Alexanderstr. 10
W-6100 Darrnstadt
Federal Republic of Germany
schrodBiti.informatik.th-darmstadt.de

Resources

New books on TEX

Victor Eijkhout

Editor's note: [~ike*the rest of this issue of TUG-
boat, this review was postponed from autumn 1991;
by the time you read this, a corrected reprint of the
subject book should be in circulation, incorporating
some of the comments that appear here as well as
other amendments.]

Even though English seems to be understood by
just about everyone nowadays, rn books in other
languages still serve a useful purpose. Sometimes
it looks as if the whole of Germany learned IPW
from Helmut Kopka instead of from Leslie Lamport,
and in France Raymond Seroul's Le petit livre de
TjjX is very popular. In both cases, the rest of the
world is getting a chance to see what it's been miss-
ing. Kopka's introductory volume is being trans-
lated, and Seroul's book has just appeared, under
joint authorship with its translator, Silvio Levy.

A Beginner's Book of TjjX (Springer Verlag, New
York, 1991, ISBN 0-387-97562-4) is more than just
a translation of the earlier book1. Levy is described
as 'translator-turned-coauthor', and the most visible
difference is the incorporation of the features of
version 3. The result is a rather handsome volume.
For one, the text is very well-written, never feeling
like a translation. The worst errors that I found
were the misspelling 'wierd' which appears twice;
the idiom 'head over heels' is used where something

In this reviewer's opinion, however, the title
has suffered from the translation. The original title
had more of a je ne sais quoi.

58 TUGboat, Volume 13 (1992), No. 1

like 'topsy-turvy' was meant, and the reader is told
once that by finding an error in 'you'll earn
your prize and a place in the official listing of m ' s
(former) bugs'. In general, the style of writing is the
type of 'dialogue with the reader' that characterizes
The m b o o k .

Another good point about the book is the rather
open layout. The typefaces used are Times Roman
and (its inevitable companion) Helvetica. Choos-
ing these typefaces instead of Computer Modern,
while in itself not too adventurous, removes the book
immediately from the spheres of 'yet another book
done with the font'. The Computer Modern
family is used to show examples of TI$ output.
A nice idea, although the effect is sometimes rather
subtle, if just a single word of Computer Modern
appears in a paragraph of Times.

My only criticism of the layout is that the book
itself uses \parindent=Opt, so the output of some
of the examples is different from what the ordinary
user (who sticks to the default value of the inden-
tation) will get. The authors should have made a
remark about this, or prevented it from happening
altogether. Li

The structure of the book is as follows. Chapter 1
is an introduction, chapter 13 is the 'Dictionary and
Index', and in between are chapters that each treat
an aspect of m, for instance modes, glue, para-
graphs, math. or TEX programming. Although the
final chapter is at 90 pages a generous one, and,

- well-stocked with examples, more than a mere index,
I was most impressed with the expository chapters.
They are meant for careful reading through them,
rather than for easy reference (although the index
refers back to them), but they contain an amount
of information that is very respectable for an intro-
ductory book. It pleased me particularly to read the
section on modes, a subject that is shunned by all
other introductory books on TI$ so far. The book
contains many examples that illustrate their point
well.

Of course, this book doesn't treat everything
about T@. The chapter on page layout has many
examples, but, understandably, doesn't go very
deeply into output routines. The control sequence
\expandafter appears only in the Dictionary, and
even there the reader is told that 'this subtle prim-
itive is not for beginners'.

I have one comment about the Index/Dictionary,
and that is that it contains too many irrelevant en-
tries for my taste. It was the authors' idea to make
the index refer to the examples 'by content', but it
irritates me finding the likes of Humpty Dumpty and
Bilbo Baggins all over the place.

In general, however, I found little to complain
about in this book. There are hardly any Q X er-
rors, and the ones that I found are not very serious.
The worst error was that the authors claim that the
keywords height, depth, and width have to appear
in that order, whereas they may appear in any or-
der. A case of misleading information is that the
authors repeatedly recommend \vglue where the
plain format of version 3 has \topglue. Some
other comments: the authors talk about 'the fam-
ily \ fami ' as if it were an identifier like 'the font
\MyFontl, whereas it is an assignment; calling $ with
category 1 2 an 'active character' because it prints as
a dollar (page 173) is an unfortunate choice of words;
and the reason that there are 18 mu to a quad may
be obscure, but it is not 'only known to Knuth' as
the authors state: the division of a quad in 18 basic
units has been the standard for Monotype equip-
ment for ages (this fact also appears in the space of
the Computer Modern fonts: for the roman font the
space is l/ym plus l/sem minus 1/9em).

All of this is minor squabbling. This book does
an admirable job of bringing together in single chap-
ters enough information about topics in TEX for a
starting m e r to be able to 'typeset just about any
document'. It is superb as an introductory read-
ing text, and the Dictionary/Index can be used for
reference later on.

o Victor Eijkhout
Department of Computer Science
University of Tennessee
104 Ayres Hall
Knoxville TN 37996, USA
eijkhoutmcs .utk.edu

New books on IPT@
Nico Poppelier

L A W - Eine Einfuhrung, Helmut Kopka, 3rd
revised edition, Addison Wesley (Germany) 1991.
hardbound, 375 pages.

- Erweiterungsmoglichkeiten mit einer
Einfuhrung in METRFONT, Helmut Kopka, 2nd
revised edition, Addison Wesley (Germany) 1991.
hardbound, 552 pages.

In view of the tremendous popularity of IPw
within the European TEX communities it is not re-
ally a surprise that two good books on IPW, @Q$

TUGboat, Volume 13 (1992), No. 1 59

- Eine Einfiihrung (An introduction) and L A W -
Erweiterungsmoglichkeiten mit einer Einfiihrung in
METRFONT (Possibilities for extension and an in-
troduction to METAFONT), have appeared in Eu-
rope. These two books were written by DANTE
member Helmut Kopka, and will soon appear in an
English version.

The first book consists of nine chapters and four
appendices. The chapters discuss the fundamentals
of I P W , commands and environments, document
styles and page styles, text producing commands,
mathematical formulas (a very nice chapter, with
lots of examples), pictures, user-defined structures
and error handling. The appendices treat produc-
tion of letters, B I B W , fonts, and I P W extensions
for the German language.

A description of MakeIndex and/or other indexing
tools is missing, which is unfortunate since no I47J?J
system is complete without B I B W and MakeIndex.
What is also lacking in this introductory volume is a
description of the basic idea behind I P W , namely
the separation of logical structure from visual struc-
ture. The author presents IP7J?J as a bag of tricks.
Maybe a big bag, and maybe useful tricks. but a bag
of tricks nevertheless.

In chapter 4 the author discusses typefaces, type-
face sizes and environments that explicitly con-
cern layout, e.g. center and f l ush le f t , before the
ones that concern structure, such as itemize and
enumerate. A tell-tale sign of the author's approach
to P?fEx is the fact that already in chapter 3 he dis-
cusses various layout commands, such as line breaks
and page dimensions.

The book contains a few errors, of which I give
one example: on page 158 the author explains how
to typeset chemical formulas. He explains how you
can get all subscripts on one level, whether or not
a superscript is present, by changing \f ontdimenl6
and \font dimenl7. What the author forgets is that
these are global changes, no many how many braces
you put around them.

Nevertheless, it is a very useful book, full of in-
formation, with a list of all commands with a short
description of each, and an extensive index.

The second book consists of three parts and three
appendices. Part 1 describes extensions to I P W ,
for example the option 'german', A M S - W and
its fonts, S L ~ , PICI'EX and MakeIndex. Since
MakeIndex is not an extension, but an essential part
of I P W , it should have appeared in the first book.
Furthermore, the description of AMS-QX should
be replaced by a description of AMS-IPW.

Part 2 is called ' I P W for advanced users'. It
discusses the structure of the I4w system, includ-
ing document styles, and gives a short introduc-
tion to W . Part 3 is the short introduction to
METAFONT. The appendices treat WEB, the var-
ious other programs related to W, and a sample
application in CWEB.

All in all, this is a useful book, because it brings
together information about the complete sys-
tem. Also, it is the only real description of I P W ' s
document-style mechanism.

The author has told me that the English version
of his books will not be a mere translation of the
German originals, but an internationalized version.
I would like to suggest that in the rewriting process
parts specific to the German language are removed
in favour of international extensions to I P W , e.g.
'a4' and 'babel', that some parts are moved from
book 1 to book 2 or vice versa, and that book 2
discusses the new font-selection scheme for I4W.

A general criticism: these books appear to be pro-
duced from low-resolution camera copy, which is a
practice I think should be abandoned. Some of the
illustrations in the introduction to METAFONT, in
the second book, are particularly bad. W ' s high-
quality output deserves better, namely

a real layout, i.e. not one of the standard styles
modified by the author or the publisher, but
one created by a real designer
real typefaces, i.e. not Computer Modern at a
low resolution. Computer Modern is not syn-
onymous with W ! Besides, it's old-fashioned.

Finally: let's hope that these books appear soon,
so that they can still be used for a number of years.
After all, I P W 3 is in the making . . .

o Nico Poppelier
Elsevier Science Publishers BV
Amsterdam, The Netherlands
n.poppelier@elsevier.nl

TUGboat, Volume 13 (1992), No. 1

JUST PLAIN Q&A: Of Partitioned Matrices
and Doublespacing.

Alan Hoenig

This column serves as a forum in which people can
seek answers to 7Q$ questions, with an emphasis
on plain l&X. Questions at all levels of difficulty
are welcome. We hope to hear from you.

How Do You Typeset Partitioned Matrices?

David Handelman sent a request for aid on the
typesetting of partitioned matrices. His question
lay on my desk for a shamefully long time, and my
apologies to him. I hope he will agree that this
response is worth the wait, as a superior set of tools
has appeared to make his life much easier.

David seeks to typeset partitioned matrices,
which are things of this ilk:

that is, rectangular arrays of expressions (matrices)
pierced through by solid or dashed vertical and
horizontal line segments.

Since David posed his query, Mike Spivak has
created the M - S - r n macro package which handles
this type of thing. At the July 1991 TUG meeting
in Dedham, Mike announced the placing of this
extensive package in the public domain. It can be
downloaded from any of several 7$JK archives.

Here's how you can typeset matrix (A). First,
load in the appropriate macro and style files at the
beginning of the document.

\ i npu t / lamstex/amstexl
\ i npu t / lamstex/lamstex
\ i npu t /lamst ex/ptmatr ix

File amstexl is subset of normal AMS-TEX, and
lamstex is the core set of I~MS-TEX macros. The
partitioned matrix macros are in ptmatrix. In
math display mode, enter

\ l e f t (
\ pa r t it ion
\mat r ix
A-l&Z\ \
A-3&A-4
\endmatr ix
\ v s o l i d 1:02
\ h s o l i d 1:02

\endpart it ion
\ r i g h t)

where the syntax resembles that of AMS-T~~X with
a few obvious additions. The \ vso l id command
specifies a vertical solid rule after column one
extending from the top of row 0 (bottom of the
matrix) to the top of row 2. \ hso l id directs the
creation of a solid horizontal line after row 1 which
extends from the zeroth column (left of the matrix)
to the second column.

More complicated examples are possible, such

which comes from

Many additional options exist for twiddling with
the position and appearance of the rules.

The ItP-S-7$JK macro package contains many
powerful and useful features. It's an extension of
A M S - r n with the functionality of IP7$JK (but more
concise syntax). Automatic numbering schemes are
very flexible, and can easily be modified for special
circumstances. Extensive table-making abilities
are part of the package. It's possible too to
create complicated and professional commutative
diagrams along with partitioned matrices. An index
program comes with WMS-T~X, and V M S - W

TUGboat, Volume 13 (1992), No. 1 61

now interfaces with BIBTEX. NO commands are
fragile. And much, much more. You may contact
the author via e-mail at sp ivakbath . r i c e . edu.
Manuals for the package may be purchased from
the 'I&Xplorators Corporation, 3701 W. Alabama,
Suite 450-273, Houston, TX 77027.

Controlling Interline Spacing in and
I-mE!x
I'd like to present a limited discussion of double-
spacing on behalf of the many people over the years
who have wanted to doublespace their 7&X and
IPm documents. At first blush, you might wonder
why such an anachronism is needed in this day and
age, but copy editors still demand a doublespaced
manuscript to ensure enough room for their red
pencils. If this is why you need doublespacing, then
it's reasonably easy to jury-rig important double-
spacing details. If you need doublespacing because
of the archaic needs of a thesis style, say, then you
can embed all the proper doublespace formatting in
your style file. (Or perhaps the style file you use
already takes it into account.)

It's not enough simply to reset \baselineskip,
because there are plenty of situations where other
parameters such as \ l inesk ip control the interline
spacing. A better idea is to reset all the relevant
parameters by meam of the \openup command:

for example.
Even this is not enough, though. There may

well be groups within which \o f f in te r l inesk ip
has been set and spacing is controlled by \strut 's.
(This is often the case within specialized table
macros.) Here is one way to extend a strut after
you've \openup'ed the baseline.

\newbox\newstrutbox
\setbox\newstrutbox=
\hboxi\vrule height.7\baselineskip
depth .3\baselineskip widthopt)

\setbox\strutbox=\box\newstrutbox

It's easy to combine all these details into a single
macro.

You may also want to increase the space above
and below a display with commands like

or whatever, and similarly for
\abovedisplayshortskip, \belowdisplayskip,
and \belowdisplayshortskip.

But of course this will not give exact double-
spacing in all circumstances. If you \openuplpc,
then a footnote whose original baseline is 8pt will
have a new baseline of 20 pt (remember, 20 = 8-k 12)
rather than the 16pt that you might prefer. If you
are running off a quick draft for a copy editor,
you probably don't care. If this is your thesis,
well, you'll have to work a bit harder with your
\footnote macro.

For I4m users, the same considerations ap-
ply, but you must implement them in proper
TP7$X syntax. The details are in two files that
are easily ftp'able. The first, put together by
S. Page and subsequently modified by J.-F. Lamy,
is doublespace. s t y at sun. soe . clarkson. edu in
the directory pub/tex/latex-style. The same
file, with additional modifications by S. Rahtz to
render it useful when using the new font selection
scheme of Mittelbach and Schopf, resides in the
ymir archive in [anonymous. t ex. inputs . la tex-
contr ib l . Check the TUG resource directory for
assistance in retrieving these (or any) files from the
archives.

Department of Amplification

Bernd Raichle, Dante coordinator for german. s ty ,
has pointed out that the macros I presented last time
for playing around with \fontdimen parameters
could be easily defeated by users with a sense of
the macabre. (But my apologies nevertheless for
not being more rigorous in my own testing.) He
has taken the trouble to fortify those macros, for
which I thank him, and I present them here with
his comments, together with a short test.

% changed g lobal , i nd ica tes need t o r e s e t
\newif \ i f spec

% changed l o c a l , i n d i c a t e s cur rent spacing
% For normal spacing,
% c a l l \se lectspac ing with \ spec fa lse
% and switch t o \roman fon t
%
\def\rm(\specfalse \se lectspac ing \roman)
% For l a r g e spacing, c a l l \se lectspac ing
% with \spect rue, remember t h a t we have
% t o change t h e spacing a f t e r t h e group
% and switch t o \specroman f o n t .
%

TUGboat, Volume 13 (1992), No. 1

\def\specrm{\spectrue \selectspacing
\aftergroup\selectspacing \specroman}

% Swltch to large spacing and remember
% in \ifreset that we have to switch
% back after the group.
%
\def\setdimen{%

\fontdimen2\specroman=\specialvalue
\global\resettrue)

% Switch to normal spacing.
% If there is a call to
% \selectspacing after the group,
% there's no need to switch.
%
\def\resetdimen{%

\fontdimen2\specroman=\savedvalue
\global\resetfalse}
This macro does two things:

% I . If we have changed to larger spacing,
% we switch back to normal spacing
% (only if \resettrue).
% 2. If \ifspec is true for the
% current group we switch to
% larger spacing. (The correct \font
% change to \specroman is done
% by TeX if this macro is called
% afteragroup.)
%
\def \selectspacing{%

\ifreset \resetdimen \fi
\ifspec \setdimen \fi)

% A short test:
%
\obeylines
\ r m n o r m a l
\specrm s p e c
{\specrm s p e c
\ r m n o r m a l
\ r m n o r m a l
{\specrm s p e c}
n o r m a l
\specrm s p e c

>
s p e c
\specrm s p e c
\ r m n o r m a l

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743
(516) 385-0736
ajhj jBcunyvm

I Tutorials I
Elementary Text Processing
and Parsing in T'X
- the appreciation of tokens -

L. Siebenmann

Background

Token lists make up the material found in the upper
digestive tract of m, and token list registers are
very useful means to improve W'S digestion. I be-
gin this tutorial by showing how to do elementary
'text processing' with token lists. Then I apply
this 'token list processing' to parsing of classical
keyword syntax where the keys come in any order
and their fields (or arguments) are terminated by
nothing more than the next keyword. This pro-
cessing and parsing are simple concepts that many
m p e r t s , not to mention beginners, have largely
neglected. I find that m assimilates them well,
and hope they will see wider use in the future.

I originally explored this parsing as a possible
method to fix a subtle line-breaking bug in AMS-
TQX bibliographies that was pointed out by Barbara
Beeton in 1990. This remains a convenient example
to test methods; but in truth an academic one, since
Michael Downes [Do] has successfully fixed the bug
(for version 2.1 of July 1991) using a very different
\vbox trick proposed by Don Knuth. The general
subject of parsing in language, to which this
tutorial contributes two methods called (A) and (B)
below, was introduced by W. Appelt in his book
[APP~.

I want to thank Michael Downes. Victor Eijk-
hout, and Ron Whitney for contributing many
helpful comments as this tutorial evolved. My
ignorance and uncertainty about what all can or
cannot be found in The m b o o k was a problem
that delayed this tutorial; one remedy I enjoyed
using is surely of interest to readers of TUGboat,
namely string searches in an online version of The
 book.') Perhaps a "HyperT@? soon will
combine this brute force information processing
with The 7)$book1s beauty and readability. It will

1) The . tex file for The m b o o k can for example be
obtained by anonymous ftp from the archives

1abrea.stanford.edu
rusinfo.rus.uni-stuttgart.de

It fits on a diskette and can conveniently be used on
a microcomputer.

TUGboat, Volume 13 (1992), No. 1 63

not be long before the mass of articles in TUGboat
merits similar treatment.

Section 0. Token Lists and Registers

As reads in a file, it builds,') from the in-
coming stream of characters (or octets), a closely
corresponding stream of 'tokens', i.e., of control
sequences and characters-with-category. For exam-
ple, the ASCII characters \TeX-including spaces
after X-become a single control sequence token
representing the logo, and an ordinary (En-
glish) word becomes its usual sequence of ASCII

characters each with category 11 (= letter). The
details (worth re-reading often!) are found in The
QXbook, particularly [Chapter 7].3)

For our purposes, it is not too far from the
truth to say that a control sequence is a token
that one can specify in the input stream using a
backslash followed by a finite sequence of letters
(category 11) or a backslash followed by a single
character of another category. However, once inside
w, this control sequence name is, for efficiency,
left in a cloakroom, and, in all internal activities,
it is represented by a number of fixed length (four
or five octets). This means that a control sequence
with a long name is no harder for to manipulate
than one with a short name.

Control sequences come in many formally rec-
ognized varieties, somewhat like the professions of
man. The command \show\mycs should make TEX
tell you the 'profession' of \mycs along with some
further details: perhaps \mycs is a macro, a token
list register, a dimension register, a primitive, unde-
fined, etc. We are most concerned with macros and
token list registers. Both of these are 'white-collar
workers' that would never get down to the dirty
details of typesetting without help from typographic
'primitives' like \char and \hbox. Both have the
same sort of information content, namely a token
list, which means they are in some sense just con-
tainers holding other tokens! What makes macros
and token lists different is their syntax and activity;
for example, macros naturally expand while token
list registers are fairly inert.

Let us get down to specifics. Given, for
example, the token list produced by Plain m

2) With its 'lips', to use Knuth's helpful digestive tract
analogy. Token list manipulation is done in m's
'mouth' and so could be called 'mastication'.

3) In the absence of more explicit indications, citations
in square brackets refer to The Wbook.

reading C\TeX) is useful , as every program-
mer knows. we can define a macro called \mymacro
whose content or 'expansion' is this token list, by
typing

\def\mymacro({\TeX) i s useful)

Check this by executing \show\mymacro; there are
eight alphabetical characters, two space tokens, one
control sequence \TeX, and two brace characters.

But, we can also allocate a token list register
\mytoks by typing \newtoks\mytoks and give it
the same contents by typing

\mytoks=C(\TeX) is useful)

Here the equal sign is optional; we will often
omit it. One checks the contents by executing
\showthe\mytoks.

There are exactly 256 token list registers
\toksO, . . . ,\toks255 and \mytoks has been made
to stand for one of these by use of a primitive
\toksdef which is called by the macro \newtoks
above. This limited number of registers is fixed by
the structure and documentation of Q X , whereas
the number of control sequences (= hash size) is
either flexible or decided by the programmer who
compiled your I)@. O z m for example has a
configuration file letting you set hash size (up to
6500) along with many other parameters.

There is a clear distinction between a token list
register and the token list it contains-analogous
to the distinction between the wine bottle and the
wine. Thus it is an 'abuse' of language (in the
benign sense of N. Bourbaki) when one nevertheless
talks of 'a token list \mytoks'. The word 'toks'
will often be used in what follows as an informal
abbreviation for 'token list'.

The contents of \mymacro can be transferred
to \mytoks and the other way around as (1) and
(2) indicate.

\myt oks=\expandaf ter{\mymacro) (1)

\expandafter\def \expandafter\mymacro
\expandaf ter(\the\mytoks> (2)

To understand these formulas, recall that the prim-
itive \expandafter serves to modify w ' s rea-
sonably 'straight-ahead' expansion procedure by
expanding the token next-but-one to the right.
Thus, in (I) , it causes \mymacro to be replaced
by its expansion token list before the token list
register \mytoks has its value assigned. In (2), the
first \expandafter acts on the second which then
acts on the third which acts on \ the to replace
\the\mytoks by the token list in \mytoks to give
the intermediate result

\def \mymacroC(the toks in \mytoks))

64 TUGboat, Volume 13 (1992), No. 1

Further uses of \expandafter will occur below.
Try now the following less well known alterna-

tive to formula (2):

\edef \mymacro{\the\mytoks) (2*)

An alert reader may wish to protest at this point
that this formula will fail whenever the token lists
in \mytoks would itself admit expansion by \edef.
Wrongly! In fact, although \edef usually does a
maximum of the 'formal' expansions, it does just a
single expansion of anything of the form \the(token
register); see [p. 216 (top)]-a very convenient
exception.

Speed as well as elegance argues for using
formula (2*) rather than (2). I was surprised to
find that (2*) runs at over twice the speed of (2) or
of (1). (In principle, speed ratios could vary with
the implementation of m .)

It is probably because of this 'material equiva-
lence' of macros (simple ones without parameters)
and token list registers, that most TEX users and
programmers very much neglect token list registers.
Notwithstanding, I hope to gradually convince the
reader that token list registers are helpful, both
conceptually and practically, and deserve a place on
every W p e r t ' s workbench.

Some pitfalls involving token lists

Exposition in physics should be as simple
as possible. But not simpler.

A. Einstein

(1) Where token list registers are concerned, we
should always restrict ourselves to token lists that
are balanced in the usual sense that the grouping
symbols { and 1 balance. For example C) and
C O O) are balanced while 3) and){ are not.
Knuth assures us [p. 375 (bottom)] that it is
impossible t o put an unbalanced token list into a
token register.

Note that there is absolutely no requirement
that a token list in a toks register be balanced with
respect to other standard grouping pairs such as
\bgroup, \egroup and \begingroup, \endgroup.
(2) Be prepared for some mind-boggling distinc-
tions among the three grouping pairs just met. For
example, in the token assignment \mytoks{.. .),
the { can be replaced by \bgroup but not by
\begingroup. On the other hand 3 cannot be
replaced at all! This is carefully documented on
page 276 of The m b o o k .
(3) To put one sharp character #, with its usual
category (6=Parameter), into the token list that is
the expansion text of a macro \mymacro requires one

to input two sharps ##. Thus \def\mymacro{##3
makes the expansion a single sharp. The sin-
gle sharp in macro definition input is reserved for
macro parameters. In token list register input,
this complication does not exist: \mytoks={#)
puts one sharp into \mytoks. Many (all?) out-
put functions to screen or file double each (cat-
egory 6) sharp, notably \show and \showthe;
thus \mytoks={#)\showthe\mytoks yields ##. The
reader will have to be aware of doubling phenomena
for # to understand the formulas for parsing in the
sidebar of section 2. See [pages 203-204, 216, 2281.
(4) About \edef and its cohorts. Each macro
has an expansion to a token list. It is tempting
to believe that, analogously, (balanced) token lists
have an 'immediate expansion' provided by \edef.
To expand the token list in \mymacro execute

\edef\mymacro{\mymacro)

Use \show\mymacro before and after to see the
effect; the expansion is in some sense complete and
immediate.

Alas, this 'complete expansion' is not always
defined, and when defined may be utter nonsense;
for example, if the token expansion for \mymacro is
\def \aaa{AAA) where \aaa is not already defined
then will balk, while if \aaa is defined to be
aaa then one gets \def aaa{AAA)!

l$jX also has a surprise in store for you if
you believe that, when you change an occurrence
of \def to \edef, the (unexpanded) definition text
read in will necessarily be the same for each; see
[Exercise 20.171.

The rules for \edef are carefully laid out in
The m b o o k [p. 215 (bottom) and p. 216 (top)].
The double bends there are justified by the subtlety
of \edef, not by its rarity or lack of importance!
The rules are all the more worth learning be-
cause they apply with only minor modification to
\mark{. . .). \message{. . .), \errmessage{. . .),
\special{. . .), and \write{. . .); see [p. 216 be-
low 20.161. Roughly speaking, \edef and these
'cohorts' do all the formal expansion that is pos-
sible subject to an overriding condition that this
expansion process should change nothing in the m
environment other than the ultimate expansion to-
ken list for the macro being defined. It in fact does
slightly less than that because of the important
single expansion rule [p. 216 (top)] for \the(token
register) that we have already encountered.

Always keep in mind that \edef and its cohorts
can only be used when the programmer has such
intimate knowledge of the toks to be expanded that
he can guarantee the results are well-defined and

TUGboat, Volume 13 (1992), No. 1 65

suitable for his purposes. (In other cases, simpler
tools such as \expandafter and \noexpand may
prove useful.) Since the \edef primitive is powerful,
and can often do more for us in less time and with
less programming effort than competing tools, its
(prudent!) use is to be encouraged.

The single expansion rule above for \the(token
register) with respect to \edef and its cohorts
offers the only way I know to efficiently suppress
expansion of a long list of tokens; the primitive
\noexpand applies to only a single token.

Section 1.
Elementary 'text processing' with
Token Lists

It is well known that 7JjX can dabble in computer
graphics (LATEX does) and even in number theory
[p. 2181, so it should come as no surprise that it can
master the rudiments of classical text processing.
But although this ability is obviously relevant to
m ' s main purpose, typesetting, it seems little
attention has been paid to it.

The most basic operations of text processing
on a list of characters (or more generally of tokens)
are:

(a) copying.
(b) concatenating two lists x and y to form a
composed list xy.
(c) searching for one list x in another z (is x a
sublist of z?).
(d) splitting a token list z at a sublist x (known to
be present) into parts a, x, and b, so that z is the
concatenation axb.

The problems these token list processing oper-
ations pose for us are practical problems of coaxing

to perform these useful operations efficiently.
It turns out that most of them are a bit tricky to
define, but reasonably compact and efficient once
defined. To keep the formulas simple, I often do
not give the operations a catch-all syntax, as might
be desirable in a large macro package. That can be
left to the programmer.

One can at first imagine that the token lists
are segments of English prose, but in general there
are control sequence tokens as well as character
tokens. The situation is somewhat analogous in
computer printer scripts of the 1970's and in some
wordprocessor files that represent changes of font
style, etc., as tokens intermixed with the ordinary
characters.

TEX forces on us a very stringent notion of
equivalence for token lists, namely one-to-one order
preserving correspondence of the tokens in the lists

so that corresponding tokens are identical (not just
\let-equal or identical-after-expansion). Coarser
notions are probably best approached by doing
some preliminary macro expansion. Assuming two
toks are the expansions of \mymacro and \thymacro
respectively, the standard test for equivalence uses
\ i f x as in

\ifx\mymacro\thymacro\messageCEQUIVALENT~
\else\messageCINEQUIVALENT)\fi

We assume below that \xtoks, \ytoks, \ztoks,
\atoks, \btoks, are allocated token list registers,
cf. section 0.

Copying token lists

To copy the toks in register \atoks into the toks
register \btoks is a simple matter:

\btoks=\atoks

This is analogous to \ let \b=\a; speed is great and
independent of the contents of the register \atoks.
Quite the opposite can be said of the alternative
formula \btoks=\expandafterC\the\atoks).

There is another form of copying: macro
arguments, written #1, #2, etc., represent token
lists too and, in the definition of a macro with
arguments [Chap. 201, they can be stuffed directly
into a token list register or a macro expansion. See
the splitting macro \SPLITTQ below for a simple
example.

The \read primitive provides still another
form of copying: it reads in a line from an open file
\myf i l e thus:

\read\myfile\mymacro

converting it to the expansion toks of the macro
\mymacro. The inverse operation can be accom-
plished') by

\mytoks=\expandaf terC\mymacro)
\immediate\write\myfile~\the\mytoks)

Recall that \wri te is one of the cohorts of \edef;
this is another use of the 'single expansion' phe-
nomenon. Beware that because of category codes

1) Ron Whitney [Wh] has shown how to do this inverse
operation using \meaning in place of a toks register.
His approach is preferable for non-immediate writes
which are often used in index construction; the
difficulty with the toks register approach is revealed
by executing

Whitney's approach is much simpler and not less
effective than an earlier one of Todd Allen [p. 3771.

66 TUGboat, Volume 13 (1992), No. 1

and w ' s reading conventions these two operations
may not be strictly inverse one to the other.

Concatenating

We propose to concatenate \xtoks and \ytoks and
put the result in \ztoks.

The following simple formula gives the right
idea but fails dismally

\ztoks{\the\xtoks\the\ytoks) (1x1

because of the distinction between wine bottle
and wine. It is well known that cunning use of
the primitive \expandaf t er can correct this. W e
assume \let\e=\expandafter henceforth. The
most usual formula is impressive

\e\zt oks\e\e\e
C\e\the\e\xtoks\the\ytoks) (la)

and also fun to expand: to begin, the five odd-
numbered tokens from the left (all \expandafter1s)
go off in sequence like a long fuse and detonate the
last \the to produce an intermediate form:

\ztoks\e{\the\xtoks(the toks in \ytoks))

From this point, a short fuse consisting of just one
\e similarly detonates the first \the to produce a
second intermediate result

\ztoksI(the toks in \xtoks)%
(the toks in \ytoks))

which is then normally executed to give the desired
result.

Do not bother to memorize intimidating for-
mulas like (la)! You just have to remember the
intermediate stages and work backwards stringing
out your fuse lines of \e's.

And do not go out of y o u way to use them
in serious programming! They often execute more
slowly than than alternatives. In this case there is
an alternative that entirely avoids \expandafter,
exploiting \edef instead:

\edef\dummyI\ztoks=C%
\the\xtoks\the\ytoks))\dummy (lb)

It executes 15% faster than (la) . There are many
less elegant solutions that execute as quickly, e.g.

\edef\dummyC\the\xtoks\the\ytoks)
\ztoks=\e(\dummy)

Concatenation can also be done directly for the
toks of macro expansions; the trickery is much the
same. Indeed, given \x and \y, we can define \z as
follows

\e\e\e\def \e\e\e\z\e\e\ei\e\x\yl (2a)

\toksO=\e{\x) \toks2=\e{\y)
\edef\z(\the\toksO \the\toks2) (2b)

In (2b), we have used two of the five local 'scratch'
toks registers, numbers 0, 2, 4, 6, 8, that
reserves for temporary storage [p. 3461; this merely
avoids allocating special registers for the purpose,
using \newtoks. Caution: Many technicalities arise
in using explicit registers. For one, the odd registers
1, 3. 5, 7, 9 are reserved for global definitions; see
[p. 3461. For another, space after the second \toksO
above is obligatory. Indeed, without it (or some
alternative like \relax), T)$ expands \the\toks2
in the process of assimilating \the\toksO and then
a full expansion of \the\toks2 is attempted, which
is not what we want here.

Searching for one token list in another

Our goal is to decide whether a toks (toks sought)
is equivalent to a sublist of another toks (toks to be
searched).

The notion of a sublist of a (balanced!) token
list that we shall use is restricted to balanced sublists
occurring at nesting level zero for the T@ grouping
symbols { and 1. Such sublists of a balanced list
z are precisely those sublists x inducing a splitting
z = axb with all three of a, x, and b balanced. Call
such sublists admissible. For example, the sublist
st in the seven token list r{st)uv is a balanced
but inadmissible sublist, being at brace level 1. On
the other hand, {st)u is a balanced and admissible
sublist. (If this notion is not to your liking, see
[p. 376 (middle)].)

The tool we use for searching is the full
macro mechanism including parameters and

match text. As Knuth treats search macros in a
highly condensed fashion in the dirty tricks chapter
[Appendix Dl, a motivated discussion will be given
here.

To get the main idea, observe that a definition

\def \mymacro#i(toks sought){. . .) (*I
of a macro with match text [p. 2031 will make
\mymacro look for the first occurrence of the token
list (toks sought) in the input after \mymacro2) and
make #I be the token list (possibly empty) between
the two.

This approach imposes a significant restriction
on (toks sought) that is admittedly quite undesir-
able. Since it is a macro match text, (toks sought)
must contain no brace characters, for if it did T)$
would see a shorter macro definition in (*)!

2) If there is none before the next occurrence of \par
an error will result, unless \long\def replaces \def.

TUGboat, Volume 13 (1992), No. 1 6 7

Next observe that to prevent trouble in case
(toks sought) is absent, we can apply such a macro
to, for example:

(toks to be searched)\premarker(toks sought)%
\postmarker\endmarker (**I

Now, of course, the (toks sought) is always found
and the search problem is converted into a question
of where it is found: is it in the (toks to be searched)
or between markers? For this, one can apply to
(**) a macro with more complicated match text -
as follows:

\def \searchmacro#i(toks sought)%
#2#3\endmarker{ . . .)

(We have still to decide on the macro substitution
text C . . .)!) What happens when this is applied
to (**)? Because of \endmarker the macro uses
up the full text (**), which is all to the good- a
leftover could cause havoc. The argument #2 will be
the token immediately following the first occurrence
of (toks sought) in (**) and we conclude that #2
is \postmarker precisely if (toks sought) failed to
occur in (toks t o be searched). Thus after setting
out preliminary material

\newif \ i f found
\def \postmarkerI\uniquecs)

we specify the substitution text I . . .) to be:

(\def\this{#2)\ifx\this\postmarker
\foundtrue\else\foundfalse\fi)

Putting all this together we have a search
macro \searchmacro for a fixed toks (toks sought) .

Several improvements are given in the 'produc-
tion version' (3) below:

(a) allow (t o k s sought) to vary; this requires a
somewhat confusing layer of indirection.
(b) allow both (toks sought) and (toks t o be
searched) to be specified in terms of a token register
or macro as well as by direct typing; the solution is
to specify (t o k s t o be searched) by anything whose
first expansion is (toks to be searched), and similarly
for (toks sought) .
(c) make direct typing of (toks sought) and (toks
to be searched) convenient (our first attempt ignores
initial spaces); the strings 0 (zero. not Lob') and QO
in the production version permit this.
(d) keep the macro and related apparatus out of
the way of non-programmers by use of @ with
category 11 (letter).

The production version below was adapted
from one in AMS-W by Mike Spivak, which in
turn was adapted from [p. 3753. I had to generalize
somewhat to allow # I to be a token list rather

than a character and to assure features (a)-(d).
Also I spent a few extra control sequences on
readability.3)

Roughly speaking, the \INQO#lQ#2Q below sets
the condition \ i f INQ to true if the toks for #I is a
sublist of the toks for #2 and otherwise sets it to
false. More precisely # i and #2 should be things
whose first expansions are the toks in question-
so that arguments # i and #2 can be of the form
\mymacro or \the\mytoks.

\newif\ i f INQ
\def \INQC\e\INNQ\e)
\def\INN@O#iQ#2@%

{\def\NIQ##l#l##2##3\ENDNIQ
C\ifx\mQrker##2\INQfalse
\e lse\ INQtrue\ f i)%

\e\NIQ#2QQ#l\mOrker\ENDNIQ)
\def\mQrker{\mQQrker) (3)

There are some reasonable technical restrictions
on this macro. It is to be defined and used inside
macro packages where Q has been given catcode 11
(= letter). Neither token list produced by # I and
#2 should contain a \par4), nor a character token
Q with catcode 11 -something easily avoided as
they are either under the programmer's control or
come from the user's world where has catcode 12
(= other) or 13 (= active). Further, neither should
contain a token (like \mQrker), whose expansion
begins with \mQQrker.

There is also one annoying restriction explained
above. T h e toks for #I, z.e., (toks t o f ind), must
contazn n o braces.5) However, braces (balanced of
course) are permitted in (toks t o be searched).

The above production version is admittedly
very technical; fortunately no understanding of how
all the the details work together is essential for what
follows. Incidentally, the splitting macro below is
more transparent and could serve as a stepping
stone.

3) For hints on recovering these examine [p. 3751.
4) To allow \par one uses \long\def in place of \def.
5) One way to work around this restriction without

resorting to the slow token-by-token approach of
[p. 376 (middle)] might be to use the \meaning
primitive to first convert braces to category 12
characters, cf. Ron Whitney's note [Wh]. This also
gets around the blanket restriction to 'balanced'
token list. However, it may require you to use \write
and \read to reconstitute control sequence tokens
from category 1 2 characters.

68 TUGboat, Volume 13 (1992), No. 1

Splitting at a sublist

Suppose we know (from the test above, for example)
that the toks (with no braces) in \xtoks is a sublist
of the toks in \ztoks. Then we typically want to
put into \atoks the segment of \ztoks up to the
f is t occurrence of \xtoks and put into \btoks the
segment following that occurrence of \xtoks. This
is to be accomplished by the syntax

\SPLIT@O\xtoks @\ztoks @
\a toks=\ In i t ia l toks@
\btoks=\Terminaltoks@

where \SPLIT@O#l@#2@ carries on the basic conven-
tions and design features for \IN@0#1@#2@ set out
above. The macro definitions required are

\newtoks\Init ialtoks@
\newtoks\Terminaltoks@
\def\SPLIT@I\e\SPLITTQ\e3
\def\SPLITT@O#l@#2@%
{\def\TTILPS@##1#1##2@%

{\ Ini t ia l toks@<##l)%
\Terminaltoks@(##2))%

\e\TTILPS@#2@) (4)

We have now established basic processing func-
tions for W'S token lists that are generalizations
of well known text processing functions, and that
execute a t a useful speed. They can be used to
edit pieces of text before printing them, and more
importantly to build new macros that provide users
with syntax with flexible options. This second
'parsing' theme will be pursued in the next section.

I also recommend use of token list processing
deep within macro packages; for hints on this sort
of application I suggest reading about Knuth's list
macros [Appendix D, p. 378-3791 and Appelt's stack
macros [App, Chap. 51. Incidentally, W offers
some ready-made text processing control sequences
such as \uppercase and \lowercase.

Section 2.
From Text Processing to Keyword Parsing

One of the most powerful, convenient, and wide
spread syntaxes one encounters on classical com-
puters is the 'keyword option' system. W. Appelt
[App] has advertised this system in 'l$-X program-
ming, and provided a practical sort of recipe to
implement it, after a first simple example by Knuth
[p. 376 (top)]. Here we will provide recipes offering
improvements such as more general syntax, poten-
tially greater speed or capacity, or more compact
formulas. The most general recipe is the the second
below, called (A); it will be simple application of
our token list processing of section 1. But a more

subtle process (B) will often give better results in
case the keywords are macros.

An ad hoc parsing process

The keyword option system will be illustrated first
by a \specia l command from Tom Rokicki's dvips
postscript printer driver for 'l$-X. His syntax
summary is:

\Special(psf i le=" f ilename" [key=value] *) (1)

Here the possible keys are the words: hoffset,
vof fset , hsize, vsize, hscale, vscale, angle,
and each of these keys calls for a suitable quantity
in place of value. I have perversely written
\Special for \specia l here so that (1) and (2) can
soon be assigned another meaning.

A specific example is

\Special(psfi le=myfi le
angle=90 hscale=50 vscale=50) (2)

which prints the Postscript graphics file myf i l e
rotated 90 degrees at scale 50 percent. The central
point to note is that the user can specify any number
(or zero) of keys in any order he pleases.

This command is interpreted by dvips (a printer
driver) after a preliminary expansion by ~ . l)

But let US imagine that we want to interpret
a control sequence with this sort of syntax. For
example, one might want a macro \Special
with identical syntax, that provides, in addition
to what Rokicki's \specia l gives, a T)$ box
into which the printed graphics nicely fits. Of
course, such a \Special will normally also appeal
to \specia l after composing a suitable box.

How can !&X understand or 'parse' (2)?
By making \Special a one-argument macro,

T)$ can efficiently isolate the guts of (2), namely
psf ile=myf i l e . . . vscale=50, and store it as a
token list T in a token list register, say \Ttoks.
This is the first (easy) step of parsing.

Now T is a concatenation (see section 1):

T = aa*bb*cc* ... zz* (3)
where a, b, . . . are 'keys' taken in any order from
a known family K and a*, b*, . . . are user supplied
token lists; we call a* the argument or field of the
key a, and b* the argument of b, etc.. .

The main step of parsing is to store a* , b*,
. . . in token list registers (or macros) associated
to the keys a , b, When this parsing of T
has been accomplished, T)$ has a firm grip on

1) Recall that \special is one of the cohorts of \edef
mentioned at the end of section 0.

TUGboat, Volume 13 (1992), No. 1 69

the information encoded in T and typesetting can or if we had wanted unexpanded arguments, the
proceed. following general method would have worked.

Our purpose in this section is to propose ways
to parse T in a few cases of practical importance. Parsing process (A)

First consider the specific example (I) . We are - Substitution and self-analysis
just as happy (or happier) with the full expansion
a** of a*, discussed at the end of section 0, since
one can readily believe that in the specific context
of (1) the expansion is unlikely to cause the sort of
trouble mentioned there.2)

The argument a* might well have rn condi-
tions and arithmetic (including =), while the full
expansion a** should be a dry number or dimension.
In particular, it will not contain =, which we can
then use as a tell-tale sign for a key.

We expand the whole of T (using \edef; see
section 0) and note that this gives aa**bb** . . . ,
i.e., the keys are intact. Since = is a tell-tale sign
for the next key b, we can readily determine b.
More precisely, in Rokicki's syntax, the keyword is
delimited on the left by a space and on the right by
=.3) We can thus split at b-or for greater speed
use just the idea of formula (*) in section 2 -to get
a** and bb**cc** We store away a** for key a,
then iterate the process to get a grip on b**, c**, . . .
similarly.

In summary, in case the next key is always
readily accessible, keyword parsing is a straightfor-
ward process. The time required seems then to be
the least time for all the processes we will consider.
Qualitatively speaking, the time per key is constant
and independent of the number of keys.

The syntax discussed by Appelt [App, Chap. 5
(end)] is of this simple sort; his next keyword lies
between the next semicolon and the next equal
sign. (Appelt formulas nevertheless run through
all keywords to find the next key, something to be
avoided if there are many keys.)

The accessibility of the next key in Rokicki's
case was probably a well-planned accident -related
to Rokicki's driver wanting to parse this syntax in
a hurry. In the absence of the tell-tale = above,

2) The reason is that TJjX always does this sort of ex-
pansion on the argument of \special before stuffing
the result into the .dvi file for further processing by
the printer driver. Clearly, the user will have himself
to blame if he attempts for \Special what fails for
\special!

3) To be more user-friendly, it would be advisable to
allow space between (for example) hsize and =.
Although this may double the time to locate the next
keyword, one still does not have to run through all
the keywords.

This is a simple and general process that depends
heavily on our token list processing in section 1. It
is practical if there are just a few keys.

For each key k in K, search4) for k in the toks
T of form (3) and, if k is present, replace it (using
splitting and concatenation of section 1) by the two
tokens \zzz\macrok. Thus (after doctoring the
extremities), we readily give altered T (in \Ttoks)
the form:

\macroa a*\zzz\macrob b*\zzz . . .
\macroz zS\zzz (4)

This completes the substitution step.
Now for each k in K, we are at liberty to

define \macrok#1\zzz as a one-argument macro
which places token list #1 in a token list register (or
macro) associated to k. Then writing \the\Ttoks
as a command, we execute (4), and the result is to
complete the parsing. The idea of this second step
that we have subtitled 'self-analysis' has been used
by Knuth in dealing with the TJ$ data structure
called 'list' [Appendix D, p. 378-3791.

Note that if there are N keys in K, the parsing
process always has N nontrivial steps and each
applies to the whole token list. Thus the time of
execution can be estimated as roughly proportional
to nN where n is the number of keys actually
present in the token list T. Consequently for N
sufficiently large the process will be intolerably slow.
How large? My tests suggest you should be worried
for N > 5 .

The AMS-W bibliography reference macro
\ref . . . \endref is one that has well over a dozen
keys; for it, one needs a better parsing technique.
It has the peculiarity that the keys are all macros.
Consider the example

\ref
\key W \by A . Weil
\paper Sur quelques
r \ ' e s u l t a t s de Siege1

\ journal Summa B ras i l Math.
\vol 1 \yr 1946 \pages 21--39

\endref

Note that only \ ref has a balancing terminator
\endref; it lets us scoop up the whole token list

4) If one key is a subset of another, e.g., "SCALE" and
"VSCALE", deal with the larger one first.

70 TUGboat, Volume 13 (1992), No. 1

from \key to 21--39 as a macro argument. Once
again, we have a parsing problem as described
for (3).

There are six keys here: \key, \by, \ journal,
\vol, \yr , \pages. But parsing process (A) above
would require searching with well over twice as
many keys. The feature that each key is a control
sequence lets us use a new process (B) which will
be given in full detail.

Parsing process (B)
- Sequestered self-analysis

This process usually applies when each key is a
control sequence; it requires a few extra conditions
which will become clear when the process has been
described.

Since process (A) does indeed apply here, and
what follows is comparatively difficult, I had better
explain very clearly what (B) attempts to gain!
Suppose that the set K of keys is big, say N of
them (perhaps 25), and getting bigger year by year.
We ask for a process that on a given example using
n keys (perhaps n = 5) does not run substantially
slower each year as N increases. We would like
to get by with a few times n steps- to be more
precise, not more than a + bn, where a and b are
constants independent of N. In contrast, the similar
estimate for (A) would be a' + b'nN. Thus in the
usual succinct mathematical terminology, process
(A) requires O(nN) steps while (B) requires O(n).
The latter seems, qualitatively speaking, a 'nec
plus ultra' of good behavior, because it means that
the cost of parsing per field actually present is
constant. 5 ,

The 'box register' alternative to token list
parsing that is actually used by A M S ~ for the
\ r e f . . .\endref macro system enjoys the sort of
linearity that we are promising for (B). On the other
hand, the keyword parsing provided by W. Appelt
[App, Chapter 5 (end)] simply does not apply.

The idea for (B) is to make a preliminary
pass over the material between \ref and \endref
to determine, for each key \kt that is present,
the key \k that follows, and then define a macro
\kt#1\k (with argument # I and delimiter \k),
which will, on a second pass, serve, much as in
(A), to sweep up the field of \k' and store this
toks in a corresponding macro expansion. For this
first pass, subtitled 'sequestered self-analysis', one
assigns special temporary definitions to each key

to carry out this plan. A major difficulty is that
I cannot prevent extraneous typesetting activity
during the first pass; the best remedy known is to
'sequester' this extraneous material in an \hbox and
annihilate it. Unfortunately, this \hbox involves
a grouping that entraps definitions-unless one
uses some global definitions. Perhaps surprisingly,
this secondary difficulty is overcome without losing
the expected behavior of the parsing process with
respect to grouping, namely that it change
nothing outside braces enclosing the whole process.

Now we get down to programming process (B).
The functioning prototype is given in a sidebar,
but will probably have to be understood as it was
built -by stages. The programmer has to define
for each key \k in K (say \paper, to be specific) an
artificial expansion that combines \k (say \paper)
with key \kt (say \author) stored as author in a
register called (for good reason!) \LastKeytoksQ.
The definition of \paper goes roughly as follows.

\def\paper
{\global\def\authorAgentQ
C\def\author####l\paper

C\def\authorBagQC####l)\paper)%
\global\let\authorAgentQ=\relax)%

\LastKeytoksQ=Cpaper)%
\aftergroup\authorAgentQ
\def\paperC\errmessage
(*** A key has been used
twice. Once i s max. ***I)%

3 (5)
The programmer unfortunately is not in a position
to write something so explicit - for example he does
not know the actual name of the key that will pre-
cede \paper. Standard indirect methods involving
\csname . . . \endcsname apply nevertheless. This
macro depends on \k in a very simple way; so the
m p e r t can get away with writing just one (nasty)
macro \SetKeyDefQ (see sidebar) so designed that
executing \SetKeyDefQ(k) for \k in K sets things
up once and for all.

To facilitate the parsing we use an extra termi-
nal key \ t Q i l . as well as an initial key \ h e ~ d . ~)

One then executes:

\LastKeytoksQ={heQd)
\setboxO=\hbox{\the\Ttoks\t@il)
\setboxO=\hboxC3
\ l e t \ tQ i l= \ re lax
\heQd\the\Ttoks\tQil (6)

5) In contrast, I do not know how to use TEX to reverse
the order of a list of n tokens in O(n) steps!

6) The (category 11) Q in head and tQil keep these out
of the user's way. Likewise, \Ttoks, \e, \n, \cs, \ecs
should be protected elsewhere.

TUGboat, Volume 13 (1992), No. 1 7 1

The first appearance of \the\Ttoks is a dirty
trick! What we really wanted to do is execute in
order just the keys abc.. . found in T. But, as
these are buried in T and not directly accessible,
we execute all of T instead. This (unfortunately)
causes spurious typesetting activity, but we catch
the detritus in \box0 and annihilate it! 7,

The global definitions are essential to pass
information out of the first \hboxC . . . I group in
(6), using \af tergroup. This is accomplished as
follows. The tokens \aftergroup\authorAgentQ
occur inside the grouping of \hboxC. . .) and cause
the globally defined macro \authorAgentQ to be
executed after the closing brace. This in turn
prepares a second definition of \author for a second
execution of \the\Ttoks in the last line.

This second execution will be similar to the
last step in (A): the macro \author (new def-
inition) will cause the field of the key \author
to become the expansion toks of \authorBagQ-
outside the \hbox{. . .) group. This process is
carefully designed to cause no net global changes in
case it occurs within a larger group; in particular
\authorAgentQ is globally \ re lax before and af-
ter. The resulting 'escape from braces' without net
global change seems in itself a worthwhile trick.

Both executions of \the\Tt oks cost O(n) steps.
While the first involves futile typesetting, the second
is fast and purely syntactical. Let us have a closer
look at the second: after a couple of expansion
steps, what TEX sees is aa*bb*cc* . . . ; then the first
three tokens a a*b act together to put the field a* in
the expansion of the macro8) aBagQ leaving behind
bb*cc* Then bb*c act together, and so on until
all fields have been 'bagged' and only \tQil is left,
which evaporates as we have set it equal to \ relax.

The use of \af tergroup restricts the number
n of keys used in any one parsing example to be less
than the size of m ' s save stack space. This may
mean n < 100 in current implementations of T$$;
but soon your limitations should be much more
liberal; already, O z r n ' s configuration file of 1990
lets one push n up to 2000, and the total number
N of keys to about 5000. Perhaps squeamishness
about the use of \af tergroup [p. 3741 can be

relegated to the past. In any case, \af tergroup
could be replaced by some global definitions with-
out prejudicing the linear performance we have
achieved.

This process (B) does have some drawbacks
beyond the fake typesetting. (You expect a dirty
trick to have some!)

(i) It assumes that T is fit to be put in an \hbox,
and that, on execution of T, the key macros a, b,
. . . will be executed in that order.

This is a very mild restriction that refers to
the first pass; it should in practice hold if each key
field is fit to be composed on its own. If (i) is not
satisfied, one can hope it will be if one suitably
alters the TEX environment for the first pass.
(ii) The speed of parsing is a bit disappointing
to me; I get about 50-100 key fields parsed per
second with a 1987 microcomputer (16 mhz and 32
bit bus). In implementing (B), one has a great deal
of latitude in programming style; perhaps I have
made some bad choices; if so I hope some reader
will offer better coding. This slowness may not
be a serious fault if you have a sufficiently fast
computer, or if this parsing is not going to be
proportionally a major activity of rn, or if the
other T$$ material is already slow to process-for
example commutative diagrams, tables, or verbatim
material.

A good feature of (B) that I did not expect is
the brevity of the coding.

In summary, the one rather general parsing
process (A) is firmly based on our token list pro-
cessing, and is delightfully simple and safe, but,
used with a large number of possible key options, it
becomes slow. That has led us to consider process
(B), whose time cost per key field actually parsed is
essentially constantg) and independent of the total
number of possible keys. In practice it seems that
(B) is faster than (A) for N > 5.

%% Sidebar: Testbed f o r parsing method (B)
%% L. Siebenrnann 1991

7) One naturally wonders whether there is a much
neater trick. One can marginally speed up this trick
using the 'dummy' font device of the last dirty trick
9 in [Appendix D, p. 4011, but if you are not careful
you will instead lose time through overhead.

8) I have not used a token list register here to store the
key field; this permits the number of keys to exceed
the total number (256) of token list registers!

\chardef\CatAt\the\catcode'\Q\catcode'\Q=ll
\newtoks\TtoksQ \newtoks\LastKeytoksQ
\ let \e=\expandafter \let\n=\noexpand

9) This assumes fields of constant size; if not, the
dependence of time cost per field on the size of the
field is more or less linear, with a substantial positive
constant term.

TUGboat, Volume 13 (1992), No. 1

\let\cs=\csname \let\ecs\endcsname
0 0 Texpert protect \e, \n, \cs, \ecs with Q

\QK.by.\QK.key.\QK.paper.\QK.jour.\QK.yr.
\QK.pages.\QK.issue.\QK,no.\QK.vol.
\QK.publ.\QK.eds.\@K.bysame.\QK.paperinfo
\QK .book. \QK . publaddr . \QK . lang .
\@K.bookinfo.\QK.finalinfo.\QK.t@il.

\let\Typeset@\relax % stop after parsing

%% begin test
\def\Ri% for time test

\ref
\key W \by A. Weil\paper Sur quelques

r\'esultats de Siege1
\ jour Summa Brasiliensis Math.
\yr 1946 \pages 21-39

\endref 3

\show\key % all set?
\RRR % do 100 iterations

Should token list parsing have fixed the bug
in the A M - w reference macros?

As we will see presently, the answer is no, but
it seems worth examining the pros and cons since
many of them would have to be examined in any
large scale application of parsing based on token
lists.

The bug, located in amsppt . sty (versions <
2.0), prevented hyphenation after explicit hyphens,
or after mathbins and mathrels, for line-breaking in
references. As Michael Downes so nicely explained
[Do], this bug (and also the residual problems with
Knuth's fix) have occurred because, if a fragment
of a reference is put into an hbox or even a
vbox, certain stages of line-breaking may be done
prematurely and hence inappropriately in that box.

The plan for using token registers is very simple.
Place the various parts of a single bibliography
reference into as many token lists using parsing
method (B), edit these token lists as necessary
using the text processing of section 1, concatenate
them in the desired order1) to make a single token
list for the reference in question, ultimately releasing
the whole reference 'en block' into w ' s intestines
for typesetting.

The bug will not occur since one replaces
the troublesome boxes by token registers. Indeed
those aspects of typesetting related to line breaking
simply do not take place in token registers; they
are delayed until the full reference is ready for
typesetting.

Ron Whitney and Mike Downes tell me that
the idea of using token lists in place of boxes was
well known but considered to be an impasse (no
way!).

The token list approach has some intrinsic ad-
vantages over the box-oriented approach. We have
already mentioned the possibility of doing some
text editing before printing (say to replace AMS
by Amer. Math. Soc.). In this vein, there is the
possibility, not well afforded by the box approach,
of having any key's data influence the action taken
for any other, for example, when the reference is

%\show\key~a~Q \show\byBag@ % checks?
%\show\paperBagQ \show\ jourBagQ
%\show\yrBagQ \show\pagesBagQ

1) Such ordering should have a cost proportional to
n logn when n out of N keys are present. But in
d~s-l$X a cost aN with a very small is tolerated
instead for simplicity.

TUGboat, Volume 13 (1992), No. 1 73

a book the style of several entries could reason-
ably change. One can also output the references
to a file in a convenient 'data structure' format,
to facilitate further processing. This might, for
example, facilitate preparation of a citation index
(or other bibliographic data base) for journals using
AMS-W. As this idea applies to reprocessing
archived articles, the toks parsing approach may
ultimately be complementary to the box-oriented
approach even in the specific context we are consid-
ering. Another advantage already mentioned is the
virtual inexhaustability of token registers: although
there exactly 250 token registers or box registers in
the strict sense, macros, of which there are thou-
sands available, can be employed as auxiliary token
registers; they indeed were in the testbed for (B).

Nevertheless, we will have to wait for some
future occasion to see a large-scale test of the above
token-parsing ideas. There are a host of reasons
that, taken together, are quite cogent. Repair of
amsppt . s t y (where the faulty macros reside) has
already been successfully made by Mike Downes (for
amsppt . s t y version 2.1 of July 1991) using Knuth's
\vbox approach plus extra work to suppress unde-
sirable side-effects. A very practical consideration
is that Knuth's approach is comparatively close to
Spivak's, so that much less rewriting of this hefty
complex of macros was required.

Furthermore, the box approach is exceedingly
fast - to the point that bibliographies are composed
faster than most mathematics. This turns out to
be more than twice as fast as the next fastest
contender, the parsing approach (B), which is in
turn more than twice as fast as (A). See [p. 3851.

Finally, there is a general weakness (mentioned
on [p. 381-382, p. 3851) afflicting all macros having
arguments which are blindly scooped up as chunks
of input, namely: category changes wi th in the
arguments will be ignored because category is fixed
at input . We did propose to scoop up T above
using \ re f# l \endref ! One impact is that, with
our present approach, \verb (of I 4 W) and \lit
(of UMS-m) would become inoperative within a
referen~e.~) This may prove annoying, but one can
live with it by 'hand setting' or by importing literal
material in a box register. Another impact is that
language changes would have to be made so as not

to involve category changes, which fortunately is
possible. It might be be desirable to set up some
warning using \message{. . . I to be triggered by
uses of \catcode within \ r e f . . .\endref and give
indication of alternatives. These category problems
are annoying but they are not debilitating.

In summary, token list parsing in version (B)
compared to the box register alternative seems a
promising alternative because of multiple hitherto
unused possibilities we have mentioned; it equals
box registers in dealing 'linearly' with increasing
loads, but is always slower by a small integer factor;
and finally it may, alas, be penalized for blocking
category change. I rate that an honorable second
place on a tough course.

The role of token registers in Plain W,
I P W , or A M S - r n was quite marginal. But
recently, their role has become quite significant,
for example in M. Spivak's UMS-W (released
recently into the public domain). Now that rn
is no longer evolving, I expect rn programming
will still advance a long way by increasingly calling
upon currently underused resources.

Bibliography

[App] W. Appelt, w fiir Fortgeschrittene, Program-
miertechniken und Makropakete, Addison-Wesley, Bonn,
1988.
[Do] M. Downes, Linebreaking in \unhboxed text,
TUGboat 11, no. 4 (Nov. 1990) 605-612.
[Kn] D. Knuth, The w b o o k , copyright 1984, Amer.
Math. Soc., Volume 1 of Computers and Typesetting,
Addison-Wesley.
[Wh] R. Whitney, Sanitizing control sequences under
\wr i te , TUGboat 11, no. 4 (Nov. 1990) 620-622.

o L. Siebenmann
Matbmatique, BBt 425
Univ. de Paris-Sud
91405 Orsay, France
1csQmatups.matups.fr

-

2) One can in principle pick up the token list T
one token at a time watching for \verb and \lit,
in order to avoid this weakness, but that sort of
procedure is much too slow. For just this reason we
have ignored parsing procedures based on sequential
token-by-token examination, using \futurelet.

TUGboat, Volume 13 (1992), No. 1

Macros

The bag of tricks

Victor Eijkhout

Hello everyone.
Here is the second installment of the bag of

tricks, ready-to-use macros without the bother of
needing to understand them. (And contributions
from the TUGboat readership for this column are
still welcome.)

When you start fiddling around with boxes,
pretty soon you run into the fact that a \vbox is
almost immediately as wide as the whole page, even
if there is only a single character in it: \vboxCa).
Attempts such as \vbox(a\par) are not much of an
improvement. But supposes you want a box to be
as wide 'as it really is', for instance
a\par b a
c\par b c
d gives d as output,

then something else is needed. The input for this
example was (I have set \parindent first to zero):

\snugbox(\begin(verbatim)a\par b
c\par
d\end(verbat im))\quad
gives\quad
\snugbox(a\par b c \par d)\quad
as output ,
Here is the source for the \snugbox macro, to be
placed
between \catcode'@=ll (or \makeatletter) and
\catcode'Q=12 (or \makeatother):

This macro is not completely fool-proof, but it works
in a lot of cases, for instance it contains a \snugbox
to contain several paragraphs.

The example used above did not look very
pretty. Wouldn't it be better if the input and output
were centered vertically with respect to 'gives' and
'in the output'? Using \vcenter this would look
like

$\vcenter(\snugbox(. . .))$\quad
gives $\vcenter . . .
But typing all these dollars is a bit tiresome. Also
you may know that you cannot write

\setbox\mybox\vcenter~ ... 3
Both of these points are remedied by the following
macro:

\def\textvcenter~\hbox\bgroup$
\everyvbox~\everyvboxC)%

\af tergroup$%
\aftergroup\egroup)

\vcent er)

And now you write

\textvcenter(\snugbox(
\begin(verbatim)a\par b
c\par
d\end{verbatim)))\quad gives . . .
for
a\par b
c\par gives ...
d
Simple, isn't it?

See you next
anced!

0

time, and keep those braces bal-

Victor Eijkhout
Department of Computer Science
University of Tennessee
104 Ayres Hall
Knoxville, Tennessee 37996, U S A
eijkhout@cs.utk.edu

TUGboat, Volume 13 (1992), No. 1

Oral w: Erratum
TUGboat 12, no. 2, p. 272-276

Victor Eijkhout

Alert reader Bernd Raichle pointed out that my
macro for lexicographic ordering was not correct.
Here is a repaired version. Replace the definition
of \ i f a l l cha rs at the bottom of page 274, column
1, by the following.

This macro contains the slightly ridiculous sequence
of 15 \expandafter commands. However, Bernd
Raichle also supplied his own solution to string test-
ing and lexicographic ordering, which use a some-
what different principle (and are in addition shorter)
than mine.

Some Basic Control Macros for 'IjEX

Jonathan Fine

Abstract

This article is concerned with the mouth of m,
particularly macros and the primitives \ i f . . . ,
\ e l se and \ f i used to control expansion. (Recall
that the mouth expands the input stream until it
comes to something unexpandable, which is then
passed to the stomach.)

Although it can do little but absorb parameters
and expand macros, the mouth is powerful. Alan
Jeffrey (Lists in W's Mouth, TUGboat 11, no. 2
pp. 237-245, June 1990) shows that it can do the
lambda calculus.

Our purpose is more limited. It is to define
and describe macros \break. \continue, \switch,
\ re turn, \ex i t , \chain, and labels \end and ' : '
that make it easier to write 7&X macros. These
macros will be collected into a file con t ro l . s ty .

Several worked examples are given.

1 Introduction

There are now some substantial programs written
in 7&X. The source for I4m runs to 8,500 lines.

has 3,500 lines. A style file might have 120
lines of code and 300 lines of comments. is a
terse and at times cryptic language. A great deal
can be done in 26 short lines. This article is devoted
to making life easier for that suffering creature, the
writer of macros.

Acknowledgements. The author thanks the
referees for their careful comments, which have
greatly improved the article.

1.1 Ignoring spaces

T@ has rules for ignoring spaces in the input
stream that are well adapted to reading a text file
spiced with control sequences. But these rules do
not suit the macro writer, whose words are few,
and control sequences many. Many programming
languages today are 'free form'. White space is
ignored, allowing the programmer to indent or
otherwise arrange the code, so that the meaning is
more easily read.

Accordingly, by changing the category of tab,
carriage return, space, and '- '

\chardef\ ignore 9
\catcode 9\ignore
\catcodei3\ignore
\catcode32\ignore
\catcode1\- 10\relax % make - space

TUGboat, Volume 13 (1992), No. 1

we ignore all white space except when we explictly
ask for it.

1.2 Speaking clearly

All m@nn@r @f d@vic@s @re us@d t@ gener@te
priv@te c@ntr@l s@qu@nc@s in macro fil@s. I'll
say that again. All manner of devices are used to
generate private control sequences in macro files.
And they are a nuisance. Here, we will take the
programmer's side, and use names built out of
ordinary letters.

We also give our control sequences the names
we want to give them. In particular \break and
\end do not have the usual meanings.

1.3 Top-down and step-wise

The author hopes that he has used here the tech-
niques of top-down programming and step-wise re-
finement to obtain these basic control macros.

This means we first identify and solve some of
the essential features of the problem, and then go
to details. We may have to go round several times
until we are finished.

Auxiliary macros

will need some general purpose helper macros.

\def\unbrace # I { #1)
\def\gobble # I C
\def\gobbletwo # I #2 C)

Macros for loops

Repetition and termination are the essential features
of a loop.

2.1 Writing \myloop

Our first attempt

produces a loop that will, when executed, endlessly
do nothing useful. It has the required virtue of
repetition, but in excess.

First, we will make the loop do something
useful. (Then worry about stopping.) Suppose, for
example, that we wish \myloop abc. . . to have

\myoperation a
\myoperat ion b
\myoperat ion c

as its result.

We add a parameter and an action to the
definition of \myloop.

\def\myloop # I {
\myoperation # I
\myloop

}

Now worry about stopping. Suppose that
\myloop is to stop when some token, for example
\end, is passed as a parameter. Before executing
\myoperation # I we must make a test \ i f x#l\end
and if it succeeds, the loop is to be terminated.

Termination will require a strange trick which
we will call \break. (The programming language C
uses break for a similar purpose.)

We now have

\def\myloop # I I
\ i f x #I \end \break \ f i
\myoperation # I
\myloop

1
where \break, when called, terminates the loop.

2.2 \breaking from \myloop

We are now able to specify and code the \break
command. Its definition is at first less than intuitive,
although arrived at logically. To prevent repetition,
\break must absorb the lines

\myoperat i on # I
\myloop

of \myloop. We can do this by letting \myloop
delimit the argument to \break. The command

\def\break # I \myloop C)
will absorb the unwanted tokens. Sadly, it also
absorbs the \ f i , which we must put back again.
This is easy! Just put it back.

\def\break # I \myloop C \fi 3
To summarize, the code for \myloop works because

0 The expansion of \myloop terminates with
\myloop. (This is tail recursion.)

0 The expansion of \break successfully breaks
the loop.

2.3 Don't do this

Someone coding their first loop might write

\def\myloop # I C
\ i f x # l \end\e lse

\myoperat ion #1
\myloop

\f i
3

TUGboat, Volume 13 (1992), No. 1 77

which looks correct but isn't. The reason is
subtle. We will expand \myloop AB, assuming that
\myoperation is \gobble. Here it is, step-by-step.

1. \myloop AB
2. \ifx A\end \else

\myoperation A\myloop \fi B
3. \myoperation A\myloop \fi B
4. \myloop \fi B

and now we are in trouble. \myloop is about to eat
the \f i. It should be getting the B. In fact \myloop
will continue to generate and consume \f i tokens,
and will never get to B.

5. \ifx \fi \end \else
\myoperation \fi \myloop \fi B

6. \myoperation \f i \myloop \fi B
7. \myloop \fi B

For \myloop to be successful, calling itself must,
literally, be the last thing it does. Only then can
it read the next token, which is B in our example.
Computer scientists call this 'tail-recursion'. This
trick avoids another hazard, the filling up of memory
during a long loop. 5.1 gives an example of how
this can arise (see also The W b o o k , p. 219).

2.4 Coding Tail Recursion

It is traditional to use an assignment to a scratch
control sequence

\def\myloop #I C
\ifx #l\end

\let\next \relax
\else

\myoperat ion #I
\let \next \mymacro

\f i
\next

3
to achieve tail recursion.

Assignments (and other unexpandable prim-
itives) are not performed within \edef, \xdef,
\message, \errmessage, \write, \mark, \special
and also the \csname - \endcsname pair. This limits
the usefulness of the traditional design.

However, the macros of control. sty can safely
be used in these situations, and also when TFJ is
looking for a number, dimension, glue or filename.

2.5 Writing \yourloop

Now suppose you wish to use the above to code
another loop, \yourloop. A problem appears. The
definition

has \myloop coded into it, and so is not suitable
for coding \yourloop. We do not wish each loop to
need a different \break command. This would be
wasteful. We notice that the key to \break is that
it gobbles to a certain point, and then puts down a
balancing \f i. Here is a first guess to a universal
\break.

\def\break #I : { \fi 3
(C uses the colon ':' as a label to allow use of the
much-abused goto command.)

Given this \break, the definition

\def\yourloop #I i
\ifx #I \end \break \fi
\youroperation #I
:\yourloop % notice the colon!

3
is natural. However, as we have introduced a ' : ' into
each iteration of the loop, we should ensure that its
expansion is empty. (plain has \def \emptyC3.)

- -

The rules around the code indicate that it is to
be part of the macro file control. sty and not an
example.

There is another failing-\break will gobble

\youroperation #I

and leave

\yourloop % notice the colon!

which is the continue command in C! To be
successful, \break must consume also the token
that follows the ' : ' delimiter.

(The author expects \continue will be used
less often than \break. It causes the next iteration
of the loop to begin. For example, to process only
some of the input tokens, code similar to

\def \ignoresome #I I
\ifignore #I \continue \fi
% now process those tokens that
% have not been ignored
:\ignoresome

1
should be used, where \ifignore determines the
fate of the token.)

The definitions

will be refined no more in this article.

78 TUGboat, Volume 13 (19921, No. 1

3 Use \switch or \else!

Here we construct in TEX an analogue to the s u i t ch
construction provided by C. It is useful when one of
a list of cases is selected, depending on the value of
some quantity. (Note that \switch does not share
with C the fall through property. It is more like the
CASE construction in Pascal.)

3.1 The alphabetic \ f r u i t macro

Suppose we wish to write a macro \ f r u i t such
that \ f r u i t a will result in \apple, \ f r u i t b in
\banana etc. One method is to produce a cascade
of \ i f . . . \ e l se . . . \f i statements. However, we
could write

\ de f \ f r u i t #I {
\switch \ i f $1 \ i s

a \apple
b \banana
c \cherry
d \date

\end
>

if only we had a suitable \switch command. We
will produce such a command. (The reader may
benefit from trying to write such a command before

and so we have

\def\switch # I \ is
#2 #3

C
% i f (t e s t key) succeeds
#1 #2 \ex i t #3 \ f i % do option
\switch #1 \ i s

3
where \ex i t is a helper macro for \switch.

3.2 An \ex i t for \switch

As with \continue, \ex i t must gobble to some
point and restore the \f i balance

\def \ex i t #I \end C \ f i 3
but it should also pick up and reinsert the current
option

\def \ex i t # I #2 \end i \ f i #I 3
which will work in the context of \ f r u i t . It will
fail if the option has several tokens.

For example, the definitions above expand

\switch \ i f a \is a {Jonathan) \end

to 'J'.
There are several solutions to this problem.

Here is the one that executes the most rapidly.
reading on.)

First, some terms. \catcodef\@ 11- % make @ a l e t t e r
% Section 1 .2 l i e s

' \ i f #1' is the test \ l e t \ @ f i \ f i
'a \apple1 is the first alternative \def\switch #I \ is #2 #3 C
'a' is the key to the first alternative #I #2 \@exit #3 \ @ f i
' \apple' is the option for the first alternative \switch #I \ i s
It is clear that \switch must go through the

alternatives one after another, reproducing the test

\def\switch # I \ is % the t e s t
#2 #3 % key & option

C
. . .
\switch #I \ i s % reproduce

1
and doing nothing unless the key fits the test

\def\switch #I \ is % the t e s t
#2 #3 % key & option

C
I #2 . . . \ f i % t e s t key
\switch #1 \ is

3
in which case we should

gobble to the end (marked by \end) of the
expansion of \ f r u i t
insert the current option #3

3
\def\@exit # I \ @ f i #2 \end { \ f i #I 3
\catcodef \@ 12- % put @ back again

where \@exi t and \ @ f i are helper macros, private
to \switch.

3.3 Default actions for \switch

The expansion of ' \ f r u i t z' will fail horribly. As
'z' is not a key, \switch will read and discard up
to the 'd \date' alternative, and then read \end
and another parameter from the input stream. Now
we are in trouble. \switch is still expanding, and
there is no \end in sight.

Unless a matching key is sure to be found, a
\switch should have a line handling the default. If
\nof ru i t is to handle the default for \ f r u i t , the
line

#1 \nof ru i t

TUGboat, Volume 13 (1992), No. 1

should be inserted as the last alternative.
(Another method would be to have \switch

test for the \end token before reading '#I ' and '#2'.
Using macros to do this would result in a much
slower \switch. But see section 11.)

4 Applying \switch t o \markvowels

By way of an example, we apply \switch to a
problem posed and solved in Norbert Schwarz's
Introduction to QjX, Ch7 $7.

4.1 T h e problem

We wish to write a macro \markvowels that prints
the vowels of a given word in a different typeface.
For example

is to give

audacious.

(There is a subtle reason why we use \end l i s t
rather than \end. There is a surprise in the
expansion of a \switch that has \end as a key.)

4.2 T h e solut ion

Here are some pointers for the solution.

We need a \switch whose keys are a, e, i, o,
u, \ end l i s t and the default handler #I .
Every letter, vowel or not, is to be printed.
If a letter is a vowel, we apply \enbold to it.
The expansion of \markvowels is to finish with
\markvowels.
When an option is selected, all up to the
\end of the \switch is gobbled. For the
key \ end l i s t the two tokens #1 \markvowels
must be absorbed.
We are not obliged to use ' : ' when constructing
a loop.

And here it is

with helpers

5 F in i te S t a t e Au toma ta (FSA)

The stomach of TpJ, as the reader must well
be aware, can be in one of number of states-
horizontal mode, vertical mode, etc. The result of
a command, such as \hbox(A), will often depend
on the current state. There are also rules that
govern the transition from one state to another.
Similarly, the text of a document passes from state
to state-ordinary text, quotation, theorem, list
item, and so forth. M m does this by changing the
environment.

One way of coding such a device is to let
the state be represented by a macro or parameter,
whose value is then tested or altered by a single
macro that contains code for all of the automaton's
states. Although such a design is not without merit,
here we will code Finite State Automata by using
one macro for each state.

5.1 Skipping mult iple blank lines

We proceed by means of an example. Suppose that
we are \reading a file, and that we wish to ignore
all but the first of adjacent blank lines. We have
two states.

\ l as t l i neb lank
\ las t l inenotb lank

Here is a first attempt to code the states.

\def \ las t l ineblank (
\ read \ the f i l e t o \ cu r ren t l i ne
\ifx\currentline\blankline

% do nothing, c a l l same s t a t e
\ las t l i neb lank

\ e l se
\process\current l ine
\ las t l inenotb lank

\f i
}

\def \ las t l inenotb lank C
\ read\thef i l e t o \ cu r ren t l i ne
\ifx\currentline\blankline

\processblankline
\ las t l i neb lank

\e lse
\process\current l ine
\ las t l inenotb lank

\f i
1

80 TUGboat, Volume 13 (1992), No. 1

Although the above works for small files, it
has a fault. Each time a line is read, the number
of unbalanced \f i s increases by one. The missing
\f is (and other code) are pushed into the input
stream, and will produce

! TeX capacity exceeded,
sorry [input stack size=2001 .

before too long.

5.2 Using \end to \return a state

This problem arises because the next state is called
before the current state is finished. As in \switch,
at the end of each state macro we will place an \end
marker, and use \return to move the next state to
the head of the input stream. (C uses return to
terminate a function with a specified value.)

Here we go. \lastlineblank should be
\def\lastlineblank {

\read\thefile to \currentline
\ifx\currentline\blankline

\return\lastlineblank
\else

\process\currentline
\return\lastlinenotblank

\f i
\end

3
where \return

-- -- - - - -

will gobble to the \end of the current state, balance
the \f i, and place the next state at the front of the
input stream.

To end the current state and do nothing more,
the command \exit

should be called.
The command \end is merely a delimiter. We

define

so that no harm occurs should it be executed.

5.3 Dealing with end-of-file

The code above continues to \read, even when the
file has come to an end. An elegant solution is to
write

\def\lastlineblank (
\readfile\thefile\currentline\exit
\ifx\currentline\blankline

\return\lastlineblank
\else

\process\currentline
\return\lastlinenotblank

\f i
\end

3
where \readf ile takes three parameters.

#I an input stream number.
#2 the macro the stream is to be read to.
#3 the action to be taken on end of file.

Here is \readf ile (see also 7 and 9.5).

\def\readfile #I #2 #3
\ifeof #I

% #3 may be several tokens
% to be safe, we brace it
\return C #3 3

\else
\read #I to #2

\f i
\end

3

6 Choosing between ' : ' and \end

The delimiters L : ' and \end perform similar but
different functions. The programmer is advised on
their use, and introduced to the last control macro,
\chain.

6.1 The differences

' : ' and \end have the same \empty meaning. The
difference is that ' : ' delimits \break and \continue,
while \end delimits \return and \exit. Each of
these macros will jump to ' : ' or \end, and put down
a balancing \f i.

Although \break and \exit are analogues,
\return has a flexibility that \continue lacks.
We can (and must) decide what to \return but
\continue provides no such choice.

To complete the use of ' : ' we introduce \chain.
(See 9.5 for an example of its use.)

\def\chain #I #2 : #3 { \fi #I 3
% Here ends control.sty .
% If you wish, restore white space.

TUGboat, Volume 13 (1992), No. 1 8 1

6.2 Making the choice

Suppose that in the normal course of events, \my-
macro will be followed by \usualmacro, where
\usualmacro may or may not be \mymacro. Then
the form

\def \mymacro . . . C
% code goes here
% use \break, \continue
% and \chain

: \usualmacro
1

is preferred.
If there is no single most likely outcome, then

\def\mymacro . . . C
% code goes here
% use \exit and \return

\end
)

is probably best.

7 The \f i count problem

There is an error in \readf ile that the author and
the referees did not notice. However, when this
macro was used, T)$ found it.

We get the ' ! Extra \fi.' error. To un-
derstand why, suppose \thefile is at an end.
\lastlineblank calls \readf ile which \returns
\exit. At this point the \ifeof in \readfile
has been exactly matched by the \fi put down by
\return. Now \exit gobbles to the \end and puts
down another \f i. This is the error.

The problem is with the \f i count. \exit and
the like put down \f i s to balance the ones they
gobble. They have to do this, because T)$ keeps in
its main memory a record of each unbalanced \if.
When the job is finished, they are reported. If
could be told not to do this, the balancing \f i s
could be omitted and the problem would go away.

(The apology

! TeX capacity exceeded,
sorry [main memory size=655331 .

is produced when the macro

is executed.)
Given 'IjEX as it is, it seems best to produce \f i-

less verions of \exit and the like for precisely this
situation. Replacing the \exit in \lastlineblank
by

\def\gotoend #I \end { }
will make the problem go away.

Or rather, this will move the problem. The
macro writer now has to determine whether a
balancing \f i is needed.

8 The Official version of control. sty

Here we list the version of control. sty that is to
be used by macro writers. Compatibility with other
macros demands that some changes be made.

0 To allow active ':' to be used by other macro
packages, ' : ' is made a letter, and throughout
' : ' is replaced by '\ : : '.
Because the names \break and \end are
already taken, uppercase names are used
throughout.

0 The \f i-less version of \break is to be \BREAK,
while \ :BREAK puts down a balancing \f i.
There is another problem- \exit and \return

clash with \switch. All three macros use \end as
a delimiter. This is not a desirable feature, and so
\SEND (Switch-END) will be used to delimit \SWITCH.

Finally, by letting \ IS equal \f i allows lines
such as

\SWITCH \ifx #I \IS
to be correctly skipped in conditional text (see The
W b o o k , p. 211).

This article will now use these definitions.

1,\immediate\writel6(control.sty v1.O
2. --- Jonathan Fine, 24 March 1991.)
3. \immediate\writel6{ Public Domain, see
4. TUGboat (to appear) for documentation)
5.

6 . \catcoder\ : 11 \catcoder \Q 11
7. \let\::\empty \let\END\::
8.

9. \def \BREAK#l\ : : #2C)
lo. \def \CONTINUE#l\ : : C)
11. \def \CHAIN#l#2\ : : #3C#l)
12. \def \RETUFlN#1#2\ENDC#l)
13. \def \EXIT#l\ENDO
14.

~\def\:BREAK#l\::#2C\fi)
16.\def\:CONTINUE#I\::C\fi)
17.\def\:CHAIN#1#2\::#3{\fi#l~
18.\def\:RETURN#1#2\END{\fi#l)
19. \def \ : EXIT#l\END{\f i}
20.

21. \let\@f i\f i \let\IS\f i
22. \def \SWITCH#l\IS#2#3%
23. C# I#~ \@EXIT#~ \C !~~ \SWITCH# I \ IS~
24,\def\@EXIT#l\@fi#2\SENDC\fi#I}
25.

82 TUGboat, Volume 13 (1992), No. 1

T h e author would like t o receive examples of the use
of these macros, and reports of problems and bugs.

As a general rule, before using a control macro
that gobbles from a control macro A, to a label,
\END or \ : : as appropriate, B start at A and read
on until one reaches one of

a \ f i
an \ i f B

(but skip code enclosed by braces). In the first case
use the \ f i-ed version, otherwise the \f i-less.

9 Odds and Ends

Here are various bits and pieces that don't belong
anywhere else. Some are quite important.

9.1 Name and Context

Other programming languages avoid conflict of
names by giving each identifier a scope which is
usually less than global. This is done by mapping
each scoped identifier to a unique symbol, such as a
number. I have work in progress that will add this
capability to m. It will be a macro package.

9.2 Nested conditionals

Because \:BREAK et al. replace only one gobbled
\f i,

\ i f . . .
\ i f . . .

\ : BREAK -_
\f i

\f i
\ : : \nextmacro

will unbalance the \f i-count.
Rather than introduce \: :BREAK it is better for

the moment to say that such code is bad style, and
discourage it. (The author would like to see any
problem whose best solution requires breaking from
a nested \ f i.)

If the completed execution of \mymacro requires no
parameters, and buildup of the input stack is not a
problem, then instead of

\RETURN \mymacro

one can use

\mymacro \EXIT

which is slightly quicker. (\EXIT and any tokens
between it and the matching \END will be sitting
in the input stack waiting to be skipped until
\mymacro has done its work.)

9.4 Dedicated \SWITCH

If large use is made of, for example,

\SWITCH \ i f x # I \ IS

then it is better to use a specially adapted switch.

\def\SWITCHx # I #2 #3 C
\ i f x # I #2 \@EXIT #3 \ @ f i
\SWITCHx #I

3

9.5 A better \readf i l e

In the expansion of \readf i l e , #3 is read, copied
into place, and then either thrown away or read and
copied again.

In the normal course of events, \readf i l e
needs only # I and #2. The end of file action #3 will
be discarded. Thus,

\def\readf i l e # I #2 1

\read # I t o #2
\ : : \gobble % gobble '#3 '
3

is a step towards the more efficient (and smaller)

\def \ readf i le # I #2 1
\ i feof # I

\:CHAIN \unbrace
\f i
\read # I t o #2

\ : : \gobble % gobble '#3'
1
Note that \ : : is very helpful, even though

\readf i l e is not a loop.

10 Performance

It seems that once the idiom is mastered, these
basic control macros will make it easier to write
TpX macros.

The result will be code that is concise and
relatively easy to understand. Code that is compact
will load more rapidly from mass storage and use
fewer words of memory.

It also seems likely that the idiom here will
encourage utility commands, such as \readf i l e .
This will reduce the size of both the code and the
hash table.

TUGboat, Volume 13 (1992), No. 1

Where speed of execution is paramount, custom
devices are required. A carefully crafted cascade
of \ i f . . . \e l se . . . \ f i statements will run
somewhat quicker than the \ su i t ch alternative. In
other areas of programming, the prevailing wisdom
is that good algorithms make for rapid execution.

Once the program is tested and running prop-
erly, significantly quicker performance can be ob-
tained by rewriting a small amount of the code in
lower level commands.

11 Enhancements to

The Grand Wizard has said "no further changes
except to correct extremely serious bugs" (TUG-
boat 11, no. 4, p. 489, June 1990) but this does
not stop the wanting. That unbalanced \ i f s accu-
mulate in memory without limit has already been
mentioned.

Here are two devices that would improve the
basic control macros of this article.

\nil-a primitive that does nothing. Although
this is available as a macro, \def \nil{), as
an interpreted command it is over three times
slower than the primitive \ re lax, which does
slightly more!
\abort-a command which when passed as a
parameter to a macro immediately halts its
expansion. (If the macro is not \ long then
the token \par has the desired effect, but the
error condition so generated is an unwanted
side-effect .)
For the rest of the section, suppose that \abort

has both of these properties. There are nice results.
Provided we

\ l e t \SEND \abort

the \ f r u i t with no action as default becomes

\def \f r u i t #I (
\SWITCH \ i f #I \ IS

a \apple
. . .
d \date

\SEND
1

which is more intuitive.
Provided \END is also set to \abort , it can be

used to delimit \markvowels, which becomes fewer
tokens executing faster.

\def\markvowels #I {
\SWITCH \ i f x #I \ IS

a \enbold

\SEND
#I \markvowels

1
It is also simpler. The somewhat obscure line

\end l i s t \gobbletwo

is no longer needed.
Finally, we (almost) have an elegant means of

handling default values.

\ l e t \DEFAULT \abort

allows

\ de f \ f r u i t #I {
\SWITCH \ i f #I \ IS

a \apple
. . .
d \date
\DEFAULT \nof r u i t

\SEND
3

to code a default value of \no f ru i t .
(There are two problems here. If \nof ru i t

expects a parameter, it will get \SEND, which will
then \abort it! This is wrong. In this situation

\def\USE #I \SEND (#I 1
will allow

\DEFAULT \USE \nof r u i t

to correctly code such a default. The second
problem is more serious. Should a key satisfy the
test, such a \DEFAULT will \abort the \@EXIT macro
called by \SWITCH. This is wrong.)

This area needs further investigation.

12 A Groaning Pun

Asked to write a macro \goodthing that does
something useful, the design

\def\goodthing . . . 1
. . .
\END

1
was used by 7 out of 10 programmers.

This only goes to show that most \goodthings
come to an \END.

o Jonathan Fine
203 Coldhams Lane
Cambridge CB1 3HY
England
Te l +44 223 215389

84 TUGboat, Volume 13 (1992), No. 1

Self-replicating macros

Victor Eijkhout and Ron Sommeling

The problem of writing a program that gives its source as its output is one of the oldest conundrums of
computer science. (An extended discussion can for instance be found in [I].) The basic idea of any solution
is probably to write (in meta-language):

Of course there is the problem that the procedure 'Print-twice' has to be defined, and its call printed, but
that's a minor point . . .

Here are two solutions to this problem in plain TEX, first one that prints itself, in typewriter type, on
an otherwise blank page.

\outputCl\def \do#l{\catcode'#l12)\def \t~\dospecials\obeylines\tt-)
\def-#I--:{#l#l-^:\end)\t
\output{~\def\do#1{\catcode~#1l2)\def\t{\dospecials\obeylines\tt~)
\def'#IA :̂{#l#l-̂ :\end)\tz

The following solution is a variation on the original theme: it gives the source as message on the screen.

The reader may enjoy coming up with more variations, for instance a I4w document that produces itself,
or a plain rn document that produces its TpT)jX source, or . . .

References

[I] Douglas Hofstadter, Godel, Escher, Bach, an eternal golden braid. New York 1979.

o Victor Eijkhout
Department of Computer Science
University of Tennessee
104 Ayres Hall
Knoxville, Tennessee 37996, USA
eijkhoutacs .utk.edu

o Ron Sommeling
Centrum voor Wiskunde en

Informatica
Kruislaan 413
1098 SJ Amsterdam
the Netherlands
ron@cwi.nl

TUGboat, Volume 13 (1992), No. 1

A Font and a Style for Typesetting Chess
using IPT'EX or TEX

Piet Tutelaers

The Berkeley Font Catalogue [3] demonstrates how
a chess font in combination with troff can be used to
typeset chess diagrams. This article has inspired me
to build a chess font with METAFONT from the nice
font, see diagram 1, I once bought from Schaakhuis
De Haan (Arnhem, The Netherlands). This 'font'

Diagram 1: Original font
(original size of board 9 x 9 em)

consists of a set of chess boards and separate sets
of chess pieces. The pieces have to be pasted on
the board after pulling them from a sheet of paper.
This nowadays is still common practice for publish-
ers. Before I used METAFONT I made enlargements
of the pieces on graph-paper using my stereo mi-
croscope for which I have a drawing prism. This
graph-paper makes it easy to read the coordinates of
points that need to be given to METAFONT. For the
development of the font I have used AmigaMETA-
FONT which has graphical support. The design of
the chess style has been done with A m i g a w . Both
programs run comfortably on my private AmigalOOO
with 2.5 Megabytes of internal memory.

A chess font consists of 26 characters, with
one character for the empty light square and one
for the empty dark square. For each chess piece
(Pawn, kNight, Bishop, Rook, Queen, King) there
are four characters to represent that piece (White,
Black) on both squares (light, dark). The troff chess
font has also extra characters for the border of the
board. These borders are added by the chess dia-
gram macros a s horizontal and vertical rules in my

Table 1: Character encodings of chess10

approach. Table 1 shows all characters from font
chess10 (the size of a square being 10 points).

There is an extra font chessf 10 that contains
only the so-called chess figurines (King, Queen,
Rook, Bishop, kNight). With this font the move
25. N5xg3, in short algebraic notation, can be type-
set as 25. Q5xg3. In addition to chess10 there are
chess20 and chess30. The 20-point version is used
in the chess style because the diagrams made with
it fit nicely in a twocolumn A4 page. But it would
be easy to make another size font by changing only
one parameter.

The king has given me the biggest trouble to
METAfy. If you compare the original font with my
METAimitation, you will see a few differences. For
one thing, the chess board has no labels for rows and
lines. These can be added to the diagram macros if
desired. The pieces in the original font use shadings
to get a better contrast with the dark squares. The
rest of the differences have to be ascribed to my
insufficient knowledge of M ETAFONT.

I have long hesitated to publish my METAcopies
of the chess font in TUGboat. I have seriously tried
to find the designer or owner of the original font.
According to the Dutch firm that has taken over
Schaakhuis De Haan, I could safely publish them
because the fonts are not sold any longer. I hope
this article helps in finding the designer of this very
nice chess font and that he is not upset with my
METAcopy of it.

Having a nice set of chess fonts is one thing;
typesetting chess using them is another thing. When
I accepted the editorship of our 'Schaakmaatje', as
my chess club 'Schaakclub Geldrop' calls its chess
magazine, I used T) and some macros to typeset
chess diagrams. After giving the L A W course at
our Computer Center, I definitely wanted to move to
this macro set. Especially the many available styles,
and the need to have a simple macro for typesetting
tables, makes LATEX a lot simpler to use.

Chess playing macros

When some macros to play chess in W appeared
in TUGboat [2] , I used the ideas presented to make

TUGboat. Volume 13 (1992), No. 1

Diagram 2: White mates in three moves

my own chess style. As a typical example of an
annotated chess game I have used a part of the game
Fischer played against Tal during the Candidates'
Tournament of 1959. In this tournament the sixteen
year old Fischer lost four times from Tal who by
winning this tournament earned the right to meet
Botvinnik for the world championship. The game
shows a real fight between two very offensive players.
The game itself is annotated by Fischer. Both the
input and the output are included on page 6.

To typeset the main line with automatic updat-
ing of the chess position, chess. s t y has the macro
\newgame. which starts a new game, and the envi-
ronment pos i t i on , to set up a position other than
the initial one. The chess position after the 25th
move in the game Fischer-Tal (see diagram 3 on
page 6) is defined with:

\Whitetrue gives the turn to White; \Whitefalse
gives it to Black. Setting the move counter is
achieved with \movecount=25. The \global is
needed because both commands are used inside an
environment.

There exists another macro \board for defining
a chess position in case automatic updating is not
wanted. This macro is used for the mate in three
problem (see diagram 2):

{ * * * * I

Notice that the user of chess. s t y doesn't need to
know the character encodings from table I! He only
needs to know the abbreviations of pieces (uppercase
for White and lowercase for Black) and that empty
squares are represented by a , (light) or a * (dark).

To show the board in either case, one needs to
call the macro \showboard or $$\showboard$$ if
the board should be centered.

To automatically update a position defined by
the pos i t i on environment there are two macros:
\p ly and \move. If White's move is not followed by
some analysis, the macro \move can be used. Other-
wise the move has to be broken down into two plies
(half moves) with \p ly. The argument(s) of \p ly
and \move contain the from square followed by the
to square of the moving piece, or the King in case of
castling. A square is represented as a column [a-hl
followed by the row [I-81. In correspondence chess
a similar notation is used except for the columns
which are also denoted as decimals [I-81. I think
that using letters is less confusing and reflects the
way (at least in Europe) chess players think.

If a pawn arrives at its final destination, it be-
comes a Queen, Rook, Bishop or kNight C q I R I B I N).
If the promotion piece is omitted a default Queen is
taken. Moves can also be commented with things
like ! for good moves, ?? for exceptionally bad
moves, and so on. So the syntax, in a free style
of Extended Backus Kaur Form, of an argument for
both \p ly and \move can be described as:

[a-hl [I-81 [a-h] [I-81 {(Q I RI B I N)comrnent)

The translation of this move representation to long
algebraic notation is carried out by the 'invisible'
macro \@ply. For example: \@ply g l f 3 will result
in Qgl-f3 in case square f3 is empty or Qg l x f3 in
case of a capture, \@ply e l c l will result in 0-0-0.

To update and query the chess board, repre-
sented by 64 macros (\a l , \a2,. . . \h8), \@ply uses
the private macros \@set and \@get. The value of
a square can either be empty (letter E), a White
piece (9, R, B. N, P) or a Black piece (q, r, b, n.
p). To update the chess position \@ply g l f 3 does a
\@set [gl] (E) to make the square g l empty and a
\@set [f 31 (N) to move the kNight to f3. The macro
\@ply handles castling and the special pawn moves
en passant capture and promotion. Because of its
length the macro \@ply is not included. Basically,
it is just a set of nested conditionals to cover all
cases. Instead the macros \@set and \@get, that
might be of interest to other TFJ applications, are
included here. together with \@showchar (the macro
that maps a square value to the correct character

TUGboat. Volume 13 (1992)' No. 1 8 7

encoding using \@get) and \@emptyboard (a macro
for clearing the chess board using \@set) .
\def \@set [#l#21 (#3) {

%arguments: [a-hi-81 (<letter>)
\expandaf ter
\xdef\csname#i#2\endcsname{#3))

\newcount\@c % column
\newcount\Or % row
\newcount\Qsum % row+column

% inner loop needs extra C . . . 1

Analysis mode

In order to save space tournament bulletins often
prefer short algebraic notation. In this notation the
from square of a piece is omitted. If a move oth-
erwise would be ambigious, because another piece
can reach the same destination, the letter of the col-
umn or the number of the row from the originating
square is added. The short and long algebraic no-
tation is also used in analysis mode when we anno-
tate moves from the main line or a variation. To
make the typesetting of these move notations easy

and compact, I have introduced a pair of I . . . I to
activate the algebraic notation. Unfortunately this
character pair cannot be used within arguments of
macros. But you can of course use the pair out-
side the macro like I \centerl ineC25. Kf 8 ! 3 I . Or
if you prefer you can use the chess-environment
instead. Because LATEX uses this character in the
tabu la r environment to draw vertical rules I have
made an environment nochess that can be used to
prevent the I character from activating the analysis
mode. Within the nochess environment you can use
the environment chess to get analysis mode again.
Here follow some examples to show how short and
long algebraic notation can be generated in analysis
mode:

input output
121. Nf 3-e5??, 0-O! 1 21. Qf3-e5??, 0-O!
121.: Ke8*f81 21. . . ., &e8xf8
121. Nfe5, K*f81 21. Qfe5, &xf8
121.: f8Q+l 21. . . ., f8@+

In the analysis mode some characters have a special
meaning. The '*' becomes a ' x ' to denote a capture,
the '-' is mapped to '-' and the ' : ' is used as an
abbreviation for ' . . .,' as one needs if the analysis
starts with a Black move.

The chess macros also have support for differ-
ent languages thanks to the possibilities of the babel
package from Johannes Braams 141. This package
can be used within plain 'I$$ and LATEX in w 3 . 0
or in older versions. The names of the chess pieces
can be chosen according to their Dutch abbrevia-
tions by specifying the language dutch before the
chess style:

\documentstyle[dutch,chessl~ . . . I
In Dutch the letters K ('koning'), D ('dame'), T
('toren'), L ('loper') and P ('paard') are used to de-
note the king, queen, rook, bishop and knight re-
spectively. These letters are used in the macros
\move and \ply, only if you provide a promotion
piece, within the analysis mode and in the pos i t ion
environment. In the \board macro we use the same
letters to denote the White pieces and the cor-
responding lowercase letters to indicate the Black
piece. In this macro we need also a letter to rep-
resent the pawn. Because both 'pion' (pawn) and
'paard' (knight) start with a 'p' I have choosen the
letter 'I' for the 'pIonl.

Hopefully the examples above and the extract
of the game Fischer-Tal on page 6 are further self
explaining.

Tournament style

To illustrate the tournament style I have included
the complete example game of Fischer against Tal

88 TUGboat, Volume 13 (19921, No. 1

meaning

White stands slightly better
Black stands slightly better
White has the upper hand
Black has the upper hand
White has a decisive advantage
Black has a decisive advantage
with attack
better is
separated pawns

Table 2: Informant symbols

from [5] in the style that is used in the Chess Infor-
mant [7]. In this book special symbols are used for
often used chess terminology. Table 2 shows the list
of the symbols I needed in the Fischer game. In [5]
the moves 50.. . &c7 51. Eb5 are omitted. But
this is corrected in his later book [6].

BOBBY FISCHER - MIKHAIL TAL
Belgrade (ct/27) 1959

1. e 4 c5 2. Qf3 d 6 3. d 4 cd4 4. Qd4 Qf6
5. Qc3 a 6 6. Ac4 e6 7. A b 3 [7. 0-0 Ae7 8.
Ab3 @c7 9. f4 b5 10. f5 b4 11. fe6!? (11. ace2 e5
12. Qf3 A b 7 7) bc3 12. ef7 &f8 13 &g5 ag4!;c]
b5! [7.. . Ae7? 8. f4 0-0 9. @f3 @c7 10. f5! (10.
0-O? b5 11. f5 b4! 12. Q a 4 e5 13. Qe2 Ab77) e5
11, Qde2 b5 12. a3 Ab7 13. g4i-] 8. f4!? b4!
9. Qa4 Qe4 10. 0-0 g6? [-10.. . Ab7] 11.
f5! gf5 [l l . . . ef5? 12. Ad5 p a 7 13. Qf5! gf5 14.
@d4] 12. Qf5! E g 8 [.-12.. . d5 13. Qh6 Ah6 14.
g h 6 ; 12.. . ef5? 13. w d 5 p a 7 14. u d 4] 13. Ad5!
E a 7 [13. . . ed5 14. g d 5 Af5 15. g f 5 E a 7 16. We4
Ee7 17. w b 4 Ee2 18. gg5 ! Eg5 19. g g 5 @g5 20.
gb8+-PANOV] 14. Ae4? [-14. &e3! Qc5 15.
Wh5! E g 6 (15.. . Qa4 16. &a7 ed5 17. p a e l) 16.
gae l ! KEVITZ] ef5 15. Af5 Ee7! 16. &c8 w c 8
17. g f 4 ? [-17. c3! Wc6 18. g f2 ; 17. &d6? g g 2
18. &g2 g e 2 19. &f3 Ad6 20. &e2 @c2-$1 &c6!
18. @f3 %a4 [18.. . @f3 19. Xf3 Xe2 20. Ef2 Ef2
21. &f22eo] 19. A d 6 @c6! 20. Ab8 @b6 [20.. .
wf3? 21. g f 3 Ag7 22. c3+-] 21. & h l @b8 22.
@c6 [22. P a e l &d8! 23. Ed1 &c7! (23. . . &c8?
24. @c6+-) 24. Uf4 (24. Ed4 Wb7!) &b7 25. Ed6
@c7 26. w b 4 &c8 27. Ea6 @b7! 28. @b7 &b7 29.
Paf6 gg7=; 22. . . Eg6? 23. wf7 &d7 24. g d l !
Ed6 25. E d 6 &d6 26. gf6!+-] E d 7 23. E a e l
[23. g a d 1 Ad6 24. Ef7 (24. Ef6 Eg6 25. Xdd6
@d6!) wc7 ; 23. Rf7 @d6] &e7 [23.. . &d8? 24.
pf7! Ae7 25. Efe7 Ee7 26. Edl+-] 24. Xf7 &f7
25. @e6 &f8! [25.. . &g77 26. %d7+-] 26. Wd7
[26. E f l ? &g7 27. Ef7 &h8 (28. Wd7 Ed8 29. Wg4
Ue5-+)] @d6 27. @b7 E g 6 28. c3! a 5 [28.. .
bc3 29. Wc8 &d8 30. wc3=] 29. @c8 [~ 2 9 . cb4!

w b 4 (29.. . ab4 30. a3! ba3 31. ba3 g a 3 =) 30. w f3
&g7 31. &e2=] &g7 30. w c 4 &dB 31. cb4 ab4
131.. . u b 4 32. @e2=] 32. g3? [32. we4 (32.. .
k c 7 33. @e7 &g8 34. g e 8 @f8 35. @e4)] s c 6
33. R e 4 Wc4 34. g c 4 g b 6 ! [34.. . &e7? 35. a3!
] 35. &g2 &f6 36. &f3 &e5 37. &e3 &g5 38.
&e2 &d5 39. &d3 Af6 40. Ec2? A e 5 41. Xe2
E f 6 42. E c 2 Xf3 43. &e2 Elf7 44. @d3 &d4!
45. a3 [45. b3? Bf3 46. &e2 Ef2 47. w d 3 Ec2 48.
&c2 &e5+-] b 3 46. R c 8 [46. Re2 Rf3 47. a d 2
Ab2; 46. Ed2 g f 3 47. &e2 g f2] A b 2 47. E d 8
&c6 48. b8 gf3 49. &c4 g c 3 50. &b4 &c7
51. E b 5 Aal 52. a 4 b2! [53. &c3 b l u !] 0 : 1
[Fischer]
The L A W input of the above game looks like:
% Some macros to improve readability . . .
\newcommand{\f inito) [2] {%

{\bf \hf ill#l\hf ill [#2] \par))
\newenvironment{mainline) [2] {\bf

\newcommand{\result){#l)%
\newcomnand{\commentator){#2)%
\begin{chess))%
{\end{chess)\finito{\result)%

{\commentator3)
\newenviro~ent{variation){[\begingroup

\rm\ignorespaces)%
{\endgroup]\ignorespaces)

. . .
13. Bd5! Ra7

\begin{variation)
13: ed5 14. Qd5 Bf5 15. Rf5 Ra7
16. Qe4 Re7 17. qb4 Re2
18. Bg5! Rg5 19. Rg5 Qg5
20. Rb8\wdecisive
\nochess PANOV \endnochess
\end{var iat ion)

14. Be4?

The mainline is typeset in boldface and the
variations in roman. When we need to type-
set a name we have to avoid the analysis
mode by using the nochess environment. The
nochess environment can be used in L A W style
(\begin(nochess). . . \end{nochess)) or in the
shorter 7$J style (\nochess. . . \endnochess).

Using plain TEX

To use chess. s t y in plain 'l&X you need the follow-
ing line for including the chess macros:

TUGboat, Volume 13 (1992), No. 1 89

The nochess and position environments from
chess. sty should be replaced by \nochess
. . . \endnochess and \position . . . \endposition
pairs.

Further wishes

The chess font and the chess style form a good ba-
sis for publishing about chess as is demonstrated
by [I, 81. But there are still some wishes to make
the writing really enjoyable. My first wish would be
a program with a chess board interface on which I
can set up a position, play a variation and add text
to the computer generated chess moves, go back to
the main line, play another variation, and so on.
I have seen an X11-based chess interface using hy-
perbuttons which provides a good starting point to
make such a program!

Surely the chess style can be improved and
other style conventions added. If anybody does so,
please let he send me his improvements.

Availability

This article, the chess fonts and the correspond-
ing style file with the complete game of Fischer
against Tal and other examples can be retrieved
(files chess. tar. Z and chess. README) from the file
server sol. cs .ruu.nl (l3l.2ll.80.5) via anony-
mous ftp from the directory TEX.

Acknowledgements

I would like to thank Victor Eijkhout for his help
and criticism he gave me to improve both the chess
style and the readability of this article. My thanks
go also to Hugo van der Wolf for polishing my En-
glish, and to the UseNet users who have sent me bug
reports and have reported inconveniences present in
version 1.0. Most of them are solved and will be
made available in version 1.2.

References

[I] Tournooimagazine van de Halve Finale Ned.
Kampioenschap Schaken, ed. by Anjo Anjowier-
den, Enschede. 1990.

121 Typesetting Chess, by Wolfgang Appelt, TUG-
boat 9, no. 3, December 1988.

[3] Berkeley Font Catalogue, Ultrix-32 Supplemen-
tary Documents, Digital Equipment Corpora-
tion, Merrimack, New Hamshire, 1984.

[4] Babel, a multilingual style-option system for use
with LAW'S standard document styles, by Jo-
hannes Braams. TUGboat 12, no. 2, June 1991.

[5] My 60 Memorable Games, by Bobby Fischer,
Faber and Faber, London. 1969. ISBN 0-571-
09312-4

[6] Fischer's Chess Games, by Bobby Fischer, Ox-
ford University Press, Oxford. 1980. ISBN 0-19-
217566-1

[7] Chess Informant 51, ed. by Aleksandar Ma-
tanovii., ~ahovski Informator, Belgrade. 1991.
ISBN 86-7297-024-1

[8] Dragon, The Bulletin of the Cambridge Univer-
sity Chess Club, ed. by Steve Rix and John Wil-
son, December 1991. Cambridge.

o Piet Tutelaers
Computer Center
Eindhoven University of

Technology
P. 0. Box 513
5600 MB Eindhoven, NL
internet: rcptQurc . tue .n l

TUGboat, Volume 13 (1992), No. 1

Example of the I4W-input and output of an
annotated chess game using chess. sty

\begin{position)
\~hite(~hl,QeG,Rel,a2,b2,~2,g2,h2)
\~lack(~f8,Qb8,~d7,~g8,~e7,a6,b4,h7)
\global\Whitetrue\global\movecount=25
\endCposition)
\begin{f igure)
\centerline{Diagram"3: Fischer--Tal

after 25. "\ldots, {\Fig K)f 8!
$$\showboard$$
\end{f igure)

(See diagram-3.)

\ply e6d7
Not 126. Rfl+, Kg7; 27. Rf7+, Kh8;
and if 28. Q*d7, Rd8; 29. Qg4, Qe51
wins.

\ P ~ Y b8d6
\move d7b7 g8g6
Within a handful of moves the game
has changed its complexion. Now it
is White who must fight for a draw!

\ply c2c3!
Black's extra piece means less with
each pawn that's exchanged.

\ply b7c8+
On the wrong track. Right is
129. c*b4! , Q*b4 (if 29. : a*b4;
30. a3!, b*a3; 31. b*a3, Q*a3 draws);
30. Qf3+, Kg7; 31. Qe21 draws, since
Black can't possibly build up a
winning K-side attack and his own
king is too exposed.

\ P ~ Y f 8g7
\move c8c4 e7d8
\move c3b4 a5b4
On 131.: 4*b4; 32. Qe21 White should
draw with best play.
$$\showboard$$

Diagram 3: Fischer-Tal after 25. . . . , &f8!

27. @d7-b7 P g 8 W
Within a handful of moves the game has changed its
complexion. Now it is White who must fight for a
draw!

28. c2-c3!
Black's extra piece means less with each pawn that's
exchanged.

28. . . . a6-a5
On 28.. . . bxc3; 29. @c8+, g d 8 ; 30. @xc3=.

29. wb7-c8+
On the wrong track. Right is 29. cxb4!, g x b 4
(if 29 axb4; 30. a3!, bxa3; 31. bxa3, B x a 3
draws); 30. @f3+, &g7; 31. We2 draws, since Black
can't possibly build up a winning K-side attack and
his own king is too exposed.

29. . . . &f8-g7
30. Bc8-c4 Ae7-d8
31. c3 x b4 a5 x b4

On 31.. . . g x b 4 ; 32. B e 2 White should draw
best play.

with

(See diagram 3.)
26. @e6 x d7

Not 26. gfl+, 27. pf7+, &h8; and if 28
g x d 7 , Ed8 : 29. wg4. &e5 wins.

26. . . . gb8-d6

TUGboat, Volume 13 (1992), Yo. 1

Tower of Hanoi, revisited

Kees van der Laan

Abstract

Another version of programming 'The Tower of
Hanoi' in T&X is provided.1 No nodding knowledge
of Lisp is required; just plain m. There is no
restriction on the number of disks, apart from the
installed limits of w. Generalized disks can be
moved as well.

Introduction

At the Dedham TUG91 conference, I attended
David Salomon's advanced 'l)$ course. Instead
of redoing his clear and ample exercises I decided
to rework Leban (1985), the more so because
elaborating a classic example might bring you to
fundamental issues. In courses on programmming,
the Tower of Hanoi problem is used to illustrate
paradigms. I was pleased to encounter some
paradigms of T&X programming while revisiting the
tower.

The Tower of Hanoi problem

A pyramid of disks-meaning a tower with implicit
ordering of the disks-has to be moved under the
restrictions that only one disk at a time can be
moved and that each intermediate state consists of
pyramids, obeying the original implicit ordering. In
total three places for (intermediate) pyramids are
allowed. For a pyramid of n disks, the solution
needs 2, - 1 moves. For an introduction to the
problem see the first paragraphs in Graham et al.
(1989).

Example

\input hanoi. tex \hanoi2 \bye
will yield the process of replacements for 2 disks
from tower I to tower I1

For an earlier article on the issue, see Leban
(1985).

The file hanoi. tex

This file contains all the macros: the top \hanoi, the
version with more parameters \Hanoi, the macro
for the moves \movedisk, along with the auxiliary
macro to prefix a string, \lopof f x . . . \lopof f x
and the auxiliaries for printing, \showtowers and
\pt .

As data structure a simplified version of
Knuth's list, see W b o o k Appendix D.2, is used. A
tower has the replacement text \\(iteml) \\(itemz)
. . . \\(item,), where in this case each item is a
control sequence. The separators, \\, ". . . are enor-
mously useful, because we can define \ \ to be
any desired one-argument macro and then we can
execute the list!"

%hanoi.tex version 19 dec 91
\newcount\n %The number of disks
\newcount\brd %Breadth of towers
\newcount\hgt %Height of maximum tower
\newcount\dskhgt %Height of each disk
\let\ea=\expandafter %Shorthand
\let\ag=\aftergroup %Shorthand
\def\preloop(%To create loopcnt, a

%local loopcounter
%(see also loopy . TeX) .

\bgroup \advance\countlO by I
\countdef\loopcnt=\countlO

%Symbolic name
\loopcnt=l %(default)

)%end \preloop
\def\postloop<\loopcnt=O %Restore

\egroup)%end \postloop
%
%Hanoi macros, top level
\def \hanoi#l{%Argument can be digit (s)

%or a counter (numeric)
\n=#l %Assign argument value to \n
\def\II{)\def \III<)%Empty towers
%Next is inspired by the TeXbook,
%p374, 378
%The initial tower for \I is created
% \def\I{\\\i\\\ii\\\iii...\\\'nJl
%next to the defs for \i,\ii, . . . \'n'.
\preloop\ag\def \ag\I\ag(%

\loop
\ea\xdef\csname\romannumeral\loopcnt

\endcsname(\the\loopcnt)
\ag\\%separator
\ea\ag\csname

\romannumeral\loopcnt\endcsname
\ifnum\loopcnt<\n
\advance\loopcnt by I

\repeat \ag3

TUGboat, Volume 13 (1992), No. 1

\post loop
%For printing, values are needed for
\brd=\n %Breadth of largest disk
\advance\brd by 3 %Little room extra
\dskhgt=l %Height of disks
\hgt=\n\mult iply\hgt by2 %\hgt is height

\advance\hgt by1 %of towers
\showtowers %Print initial state
\Hanoi\I\II\III\n
)%end \hanoi

%
\def\Hanoi#1#2#3#4{%Moves from #1 to #2,

%with aid of tower #3.
%The number of disks is #4, in a counter.
\ifnum#4=1 %For Tower of 1 disk,

%just move the disk
\movedisk\f rom#l\to#2%
\showtowers%Print towers after move

\else%Problem of #4 disks is solved by
%- problem of (#4-I) disks,
%- a move, and
%- a problem of (#4-1) disks.

{\advance#4 by-I \Hanoi#1#3#2#4)%
\movedisk\from#l\to#2%
\showtowers%Print towers after move
{\advance#4 by-I \Hanoi#3#2#1#4)%

\f i)%end \Hanoi
%
%Moving of the disks, TeXbook, App. D.2
%Slightly adapted versions of \lop (
%called \movedisk with function that
%first element of #I is prefixed to #2)
%and \lopof f modification
\def\movedisk\from#l\to#2i%Move disk from

%tower #I to tower #2
\ea\lopoffx#l\lopoffx#1#2)

\def\lopoffx\\#l#2\1opoffx#3#4~\ea\gdef%
\ea#4\ea{\ea\\\ea#1#43
\gdef#3{#2)%restore stub)%end\lopoffx

)%end \movedisk
%
%Printing tower status
\def\showtowers{%Display pyramids

\par\quad\hboxi\pt\I\ \pt\II\ \pt\III
)\par

)%end \showtowers
%
%Auxiliaries
\def\gobble#l()%To eat character
%
\def\\#l{\hbox to\brd ex{\hss

\vrule width#lex height\dskhgt ex
\hss)%

)%end \\

%
\def\pt#l(%Print Tower.
%#I is \I, \II, or \I11
\vbox to\hgt ex{\baselineskip=.2ex\vss

#1%
%Format pointer underneath
\hbox to\brd ex{\hss

\ea\gobble\string#l\hss)%
)%end vbox

)%end \pt

Disks not restricted to one digit

One could invoke \hanoi{10)~ at the expense of
ample time and use of paper. In order to illustrate
the possibility of the macros to cope properly with
disks denoted by more than one digit, the pyramid

can be handled via

\n=2 %Number of disks
\def\ix{9)\def\x{lO)%Disks
\def \II\\\ix\\\x)\def \IIC)\def \ I110
\brd=lO %Breadth of largest disk
\hgt= 6 %Height of tower
\dskhgt=l %Height of disks
\def\\#lC\hbox to\brd exC\hss

\vrule width#lex height\dskhgt ex
\hss))%

\showtowers%Initial state
\Hanoi\I\II\III\n

with result - -
I I1 I11

Or an invocation with an even larger argument.
I allowed my modestly equipped MS-DOS PC to
loop for \n = 1 , 2 , 3 , . . . in order to experience
w ' s limits with respect to the practical upper
bound for the size of the tower. A tower of 10
disks did take ~ 1 . 5 minutes to m, with empty
\showtowers. I had the patience to await the
w i n g up to the tower of size 16, and concluded
that there are no limits for reasonable usage. (Note
that every increase of the size by 1 will double the
time needed.) So, I don't know when my PC will
crash or, to paraphrase the monks, 'when the world
will end.' I also modified the macros into versions
with \I, \II, and \I11 defined as token variables.
I was surprised to see that version run 4 times
slower. Whatever the value, the hanoi macros can
be used as a program to compare the efficiency of
9&X implementations.

TUGboat, Volume 13 (1992), No. 1

Generalized disks

What about for example (xyz) as disk? Let
us assume for printing that the contents of the
pyramids-the strings-will do, in the implicit
provided order. This can be obtained via a modified
\\ definition.

Conclusion

Is this just for fun? It was appropriate for 'Fun with
m , ' NTG1s 91 fall meeting at Eindhoven. Fur-
thermore, I experienced the following fundamental
(m) programming issues

recursion in solving the problem
the use of the list data structure and separators
to execute the list; see the m b o o k Appendix
D.2
creating and using a local loop counter4
creation of a dynamic number of command

The tower can be moved, with the states printed names and a string of dynamic length
via the following. generalizing the problem (not only numbers

\n=2\def \iC\spadesuit)\def \xyzC (xyz)) can denote disks; note that no comparison of
\def \IC\\\ i \ \ \xyz)\def \IIC)\def \I110 disks is done, the ordering of the subtowers is
\brd=6 \hgt=7
\def \\#lC\hbox t o \brd ex{\hss

#l\hss>3%
\showtowers%Init ial s t a t e
\Hanoi \ I \ I I \ I I I \n

with results

Interactivity

Downes (1991) inspired me to think about direct
communication with the user. What about the
modification of \showtowers into an appropriate
\immediate\writel6{. . , > command, such that
the moves will appear on the screen? No previewing
or printing!3

%Direct screen \showtowers
\def\showtowers(
\immediate\writelG{

Alas, no control over the format on the screen
either.

-
maintained implicitly)
direct communication on screen.

Tf?Jnically \ a f t ergroup, \countdef , \csname.
\expandaf t e r , \ifnum, \ i f x ,
\immediate\writel6 . . . , \loop, \romannumeral,
and \ s t r i n g are exercised.

The hardest thing was to get the towers aligned
when formatting commands were split over several
lines, due to the two-column format. Several %
symbols were needed to annihilate the effect of
spurious spaces, especially those created by some
(cr) 's.

It did take some time to realize the benefits
of Knuth's list macros, not to say that I wandered
around quite a bit.

References

[I] Downes, M.J. (1991): Dialogue with m . Pro-
ceedings TUG91.

[2] Graham, R.L, D.E. Knuth, 0. Pastashnik
(1989): Concrete Mathematics. Addison-Wesley.

[3] Knuth, D.E. (1984): The QXbook. Addison-
Wesley.

[4] Leban, B. (1985): A solution to the Tower of
Hanoi problem using m. TUGboat 6, no. 3,
151 - 154.

This was mentioned before by Pittman (1988).
It is a matter of taste and programming style
whether one prefers this next best to the hidden
counter idea, above the use of a global counter, for
counting the number of times a loop is traversed.
The difference in efficiency is negligible.

94 TUGboat, Volume 13 (1992), No. 1

(Review. Leban requires as input the number
of disks and the first tower as a sequence of
one-digit numbers. This means that creation
of the initial tower is not part of the paper.
Furthermore, Leban develops a set of Lisp-
like functions for TEX. Apparently Knuth's
list macros, W b o o k Appendix D.2, have been
overlooked. Leban's small list processing system
is an example of reinventing the wheel, with
the concept of an active list separator absent.
As a consequence the printing of the towers is
done by recursion which is not necessary when
using Knuth's list separator appropriately to
'execute' the list.)

[5] Pittman. J.E. (1988): Loopy.TeX. TUGboat 9.
no. 3, 289291.

[6] Salomon, D. (priv. comm.)

o Kees van der Laan
Hunzeweg 57, 9893PB
Garnwerd (Gr), The Netherlands
cglQrug.nl

The WTEX Column

Jackie Damrau

Earlier Column Revisited

Claudio Beccari from the Institute of Technology of
Turin, Italy, sent some interesting addenda and an
answer to a question that appeared in the I4W
column in TUGboat 11, no. 4. Without further ado,
here are Claudio Beccari's comments.

1. The minipage footnote counter is named
mpfootnote, not footnote. If you want mini-
page footnotes numbered with lower case roman
numerals, you can change the appearance of the
minipage footnote counter with the following
command:

In any case, the footnote marks are typeset
as exponents in math mode so that the math
italic font is used by default. If you want the
regular roman font, or any other font, you have
to request it explicitly:

2. The double spacing scheme suggested by J. Col-
menares does not work if the commands-
\single and \doublepare issued while in
\normalsize. In fact, \baselinestretch op-
erates only when the size is changed, but
\normalsize does not actually change size
if the size is already normal. In order to
have these commands work, you need to type:
\small\single or \small\double .

By doing this, the \normalsize com-
mand embedded in \single and in \double
acts as it should with the new value of
\baselinestretch becoming active.

A better command, that does not require
changes to size in advance and operates also
when in \normalsize, unfortunately requires
the category recoding of 9. The macro appears
below:

\newcommand{\single)%
{\leadingstretch(l.O)}

\newcommand(\double}%
(\leadingstretch(l ,511

\makeatletter
\newcommand(\leadingstretch)~11%

{\let\@tempa\@currsize
\let\@currsize\empty
\def \baselinestretch{#l>\@tempa}

\makeat other

Footnotes: Problems and Solutions

Sometimes you need to attach footnotes to entries
in tables. If you enclose a tabular environment
within a minipage environment within a table envi-
ronment, your footnotes float around together with
your table.

But if you have to tag two or more table en-
tries with the same footnote number (or letter)
while you have one footnote text, you cannot use
\f ootnot emark [(number)] several times in the ta-
ble and \footnotetext [(number)] {text) after the
\end{tabular} and before the \end{minipage}
commands.

In fact if you do so, you will notice that the
footnote text will be tagged with a number while
the table entries are tagged with letters (default).

TUGboat, Volume 13 (1992), No. 1

There is no simple means to go around this
problem (at least I did not find a simple way out)
while preserving the feature devised by L. Lamport
of separating the footnote marks from the footnote
texts, as he explains on pages 99 and 156 of the
I P W book.
1st solution

Explicitly place multiple footnote marks as
math exponents in the table entries. After-
wards typeset the footnote texts using only
\f ootnotetext [(number)] (text) with its op-
tional argument that agrees with the exponents
that were set.

2nd solution
Redefine a new boolean variable, say
tablenote:
% \tablenote is false by default
\newif \iftablenote
Redefine \table so that it sets
\tablenotetrue.
Redefine the \footnotemark and
\Qxf ootnot emark commands so they op-
erate on the mpf ootnote counter, instead
of footnote, if tablenote is true.
Tag all your table entries that required
tagging with the same mark (except
the first one, which is marked with
the full \footnote command) with the
\f ootnotemark [(number)] that makes
use of its optional argument.

3rd solution
Define a new environment. Locally redefine
\cOfootnote and \thef ootnote to be equiv-
alent to \cQmpf ootnote and \thempf ootnote
respectively, using \let.
I used the first two solutions. The second one

is definitely better, but it requires that you know
where you put your hands within the internal I P W
macros. The third solution seems very simple.

Maybe someone has an even better solution?
Claudio BECCARI
Department of Electronics
Institute of Technology of Turin, Italy
Corso Duca degli Abruzzi 24
I10129 - TORINO, Italy
E-MAIL: beccari@itopoli.bitnet

o Jackie Damrau
SSC Laboratory
Mail Stop 1011
2550 Beckleymeade Avenue
Dallas, TX
email: damrau@sscvxl . ssc . gov

Errata: "See also" indexing with Makeindex

Harold Thimbleby

In TUGboat 12, no. 2 (page 290) I gave the
definitions to enable an author to obtain 'see

also' entries in their index. I am grateful to Profes-
sor John C. Slattery of Texas A&M University for
pointing out that they did not work.

The following correction works for me (using
Textures and U Q X 2.09), but not for Slattery who
is using a NeXT, though the same version of I P W :

The

\def\subsee#l#2{{\em see also\/) #I)
% the #2 consumes a comma
\def\nosee#l()
% consume the page number
\def\seealso#l#2(\index

C#l!zzzzzQ\string\subseeC#23lnosee~~

intention is, given the definitions as shown
above, and supposing index entries for "Scheme"
(\index(Scheme)) occur on pages 147 and 401, this
is how \seealso{Scheme)(LISP} would end up in
the index:

Scheme, 147, 401
see also LISP

If you have the problems reported by Slattery,
\seealso must written out in full with you man-
ually replacing the parameters #I and #2 with what
you want.

I made two errors in the original note: First, I
published a fragment of IPm without testing it ex-
actly as it appeared in print. The second error was
conceptual. I naively forgot that a TEX definition
is referentially opaque: I had assumed that given
\def \seealso(x}, then \seealso can be written
for x (with the exception of various cases where x
contains things like \f uturelet). In my case I had
checked x but not the form \seealso that I used
in the article. I had been fooled by the innocent
appearance of \index(argument) - and I had not
appreciated the I4W manual's remark that \index
should not appear inside another command's argu-
ment, as it does here with \def.

I apologize for inconvenience caused, and I will
look forward to any suggestions for a general so-
lution. Is there any way for macros like IPQX's
\index to detect when they are being used improp-
erly?

o Harold Thimbleby
Stirling University
Stirling
Scotland, FK9 4LA

TUGboat, Volume 13 (1992), No. 1

Frank Mittelbach and Chris Rowley

Abstract

This is a brief sketch of the I4W3 Project: its his-
tory, its present state and its future, as at the end
of 1991. It is based on a talk given by Frank Mit-
telbach, technical director of the U W 3 Project,
in November 1991 to a meeting of the Nordic W
Users Group; the handout from this talk was re-
cently published in w l i n e [Mit92].

1 The Project

The MT~i33 Project was initiated at the Stanford
annual meeting in August 1989 but the first, some-
what vague, plans had already been formulated in
1988 when Rainer Schopf and Frank, after sending
several pages of bug fixes for UTEX 2.09 to Leslie
Lamport, received a positive answer.

1.1 History

Whenever the future is somewhat unpredictable it
seems wise to take a look into history - to find out
what has already been achieved and what remains
to be tackled.

From the now quite long history of the I43333
Project we can observe a growing bulk of syntax
descriptions and (partial) implementations that are
the results of three years work.

Looking at the original goals for a reimplemen-
tation, described in the Stanford paper [MS89], it
would appear that nearly everything has now been
achieved.

The NFSS, which is now in widespread use, pro-
vides a very general font selection method. The
extended syntax, on which we are now working,
also provides for scaled fonts.
With amst ex. sty the mathematical capabili-
ties of I4w have reached (at least) the stan-
dard of AMW.
With the new implementation by Denys
Duchier (this supersedes array. s ty) , together
with valuable suggestions by several others,
tabular processing will have reached a very high
standard.
A new error recovery and help system is being
developed. This should provide a safe and easy-
to-learn environment for novice users.
A more flexible input language is being devel-
oped, in which environments and commands
can have attributes specified. This will also al-

Milestones:
Syntax and implementation

1988 - Some bug fixes sent to Leslie Lamport
- Four page sketch of NFSS

1989 - First implementation of NFSS
- Implementation of amstex. s t y

1990 - New tabular implementation by
Denys Duchier

- First attribute prototype
- First kernel prototype
- First recovery/help prototype

1991 - Second kernel prototype
- Sketches for style designer inter-

face
- Second description of the attribute

concept
- Extended description of the help

facility
- Syntax for extended NFSS
- Third kernel prototype
- Release of I4m 2.09 international

with NFSS support

low easy conversion from SGML to IP73X3, for
suitable DTDs.

How did all this happen?
All the work has been carried out in the free

time of several individuals and involves, as you can
imagine, a lot of enthusiasm to keep the project
alive. So far, more than thirty people have con-
tributed in one way or another to the effort.

One of the major, and growing, problems is how
to bring people from all over the world together to
discuss the open questions and find new solutions.
It is important that these meetings involve people
from outside the project since we very much need
the views and experience of typesetters, designers,
publishers, etc. to help eliminate the flaws in the
system and find new and better solutions.

In this regard both the London and the Ded-
ham workshops were hugely successful, but further
workshops of this kind are essential if we are to pro-
vide Bm3 with a suitable designer interface.

1.2 Current state

So why are we now saying that this project is still
only at its start? Because we have learnt that our

TUGboat, Volume 13 (1992), No. 1

Milestones:
Meetings, Workshops and Correspondence

1988 - Non-flame answer from Leslie Lamport
1989 - Talk in Stanford

- Meetings with Leslie in Stanford
- Talks in Karlsruhe

1990 - Mega-bytes of e-mail correspondence
- Working week in Mainz with Leslie
- Talk in Cork

1991 - More mega-bytes of e-mail corre-
spondence

- Workshop in London
- Meeting with Leslie in London
- Workshop in Dedham
- Working week in Providence with

Michael Downes
- Working week in Mainz

original goals did not touch many of the real prob-
lems as we see them today - there has thus been a
major change of focus.

Working on the project has led us to the con-
clusion that one gains very little by just providing
more and more specialized style files to solve this
or that special problem. Instead, we think that, in
order to provide a fully flexible and extensible sys-
tem, the major effort in the future must go into the
design of the right style interface - one that allows
easy implementation of various layouts. (Easy, of
course, is relative: easy compared to the complexity
of the task.)

The project plan which emerged from this
change of focus can be summarized as follows.

The development of a new internal language
that is more suited to the expression of visual
components of the layout process.
The development of high-level generic functions
that allow the straightforward expression of
most commonly used layout components.

0 The development of a model for specifying and
modifying all of the parameters that influence
the layout.

Since the syntax for this internal language is
still changing on a daily basis, and the generic func-
tions depend on it, in this article we shall concen-
trate on the model for parameter setting rather than
its detailed syntax.

1. document context
2. section context
3. heading context
4. title context
5. number context

2 The model for parameter setting

The new system will implement a model of docu-
ment formatting based on the fact that the format-
ting required for any particular part of the document
depends on its context. Therefore the setting of lay-
out parameters must be context-sensitive.

2.1 The concept of a context

What do we mean by a 'context'?
The nesting of the entities in a document is

clearly important for the specification of its layout.
For example, in LPw2.09 a second-level list (i.e. a
list nested within another list) will be treated, by the
standard styles, in a different way from a first-level
list.

The order (or sequencing) of entities is also im-
portant. For example, the space after a section head
will probably depend on what comes next: ordinary
text or another, lower-level, head.

However, the context of an entity in a document
is not given simply by the nesting and sequencing of
its surrounding entities. Take, for example, what
happens when some footnote or float that appears
in a list itself contains a list. Because of the incor-
rect handling of contexts in the current I4m the
inner list is typeset as a second-level list. In other
words, an entity must be able to (partially) forget
about its context or, more generally, must be able
to manipulate its context.

Moreover, the context of an entity also has a
'visual' component - this is its relationship to the
rest of the document after it is formatted. This
'visual context' usually depends on the formatting
of many other entities in the document.

For example, the optional argument to
\marginpar enables the author to specify that the

98 TUGboat, Volume 13 (1992), No. 1

text of a marginal should depend on its visual con-
text, i.e. on whether it finally appears on a recto or
a verso. Thus its formatting depends, at least, on
the formatting of all the entities which appear on
nearby pages.

To summarize, at every point in the document
we are in a logical context given by the nesting and
sequencing of all the entities in the document; and
we are also in a visual context determined by deci-
sions made about the formatting of all the entities
in the document.

2.2 Contexts in P T J ~ ~ X ~

Therefore the new system will, as far as possible,
allow the settings of all the parameters (needed to
specify the formatting of an entity) to vary accord-
ing to the current context, both logical and visual.
Here the idea of 'parameter' is used in a very general
way - e.g., the particular generic function used to
format some entity is considered to be a parameter
so that, via this concept, different generic functions
can be used in different contexts.

For example, it will be possible to change the
layout of certain entities within floats by specifying
the values of their layout-parameters in the context
of "floats" differently from those applied in the main
text.

In this article, lists within floats are indented
at both the left and the right margin (we had
to do this the hard way for IPm2.09) .

0 A table entity in a float can be set in a smaller
typesize than one in the main text.

Another case where the nesting of entities may
affect the formatting is a list within a tabular p-

1.e. a entry: such a list may well be typeset 'in-line', '
new item does not start a new line.

It will also be possible to specify formatting
parameters dependent on the sequencing of enti-
ties. This is needed for design specifications such
as: "The vertical space after a theorem is 3pt if it
is immediately followed by a proof, otherwise it is
6pt." Another example is the specification of no in-
dentation when a paragraph immediately follows a
certain entity, e.g. an article title.

Visual-context-dependent specifications which
will be implementable in I 4 m 3 include cases where
the formatting depends on page-breaks or column-
breaks; where it depends on the type of page; and
where it depends on the types of objects appearing
on a page. For example: "A section head should
be preceded by a text-width rule and have 5 lines
of text after it before a page-break. If it appears at
the top of a page then the rule is omitted."

2.3 Some problems

Implementing such a model within the Q$ frame-
work poses some interesting challenges.

1. The user input is not (in SGML jargon) a 'nor-
malized document' - i.e. it may contain entities
which are hidden inside user-defined shorthands
so that they cannot be easily prescanned.

2. The specification of contexts in terms of the se-
quencing of entities is important but its efficient
implementation is restricted somewhat by the
underlying TEX engine.

3. Taking the visual component of contexts into
account requires the use of a multi-pass system,
and even then it is, in practice, restricted by the
formatter's capabilities.

Let us look at the first of these problems in
more detail. The problem here is that the docu-
ment (.tex) file is not a normalized form of the
document (one in which every entity is explicitly
tagged) thus we cannot, before we start typesetting
an entity. scan forward using m ' s native scanner
to see what 'begin' or 'end' tags are coming up. This
means that certain formatting decisions have to be
taken without knowing what follows. Possible solu-
tions to this problem are

0 forbid the use of user-defined shorthands
0 do the scanning 'by hand' using m ' s macro

language
use a two-pass system that normalizes the doc-
ument in the first pass

0 use a multi-pass system in which each pass uses
information on sequencing gathered during the
previous pass.

The first of these would be unacceptable as it would
remove one of the strengths of I P W , its flexibility.
The second would vastly increase processing time
since W ' s native scanner is highly optimized. The
latter two do not seem to be feasible for a system
that uses m as the input language, but this should
be explored further.

With respect to the second problem, TEX has
no built-in mechanism to detect whether simple
character material is about to be contributed to
some horizontal list immediately after a given tag.
Only after the material has been contributed to the
horizontal list can one deduce this fact by 'dirty
tricks' involving special kerns. Thus this can be
used only for interrupting a context sequence -the
already contributed material cannot be manipulated
further.

The last problem is of a more theoretical nature.
All of the currently available automated-typesetting

TUGboat, Volume 13 (1992), No. I

systems format each document entity in a prede-
termined visual context, i.e. they assume that the
visual context can be determined completely by the
logical nesting and sequencing of entities. To a cer-
tain extent TEX is an exception as it applies dynamic
programming to the process of paragraph format-
ting, and this involves the recomputation of contexts
for ligatures etc.; the use of this kind of process needs
to be extended much further in order to produce au-
tomated typesetting of high quality.

For example, in 'I)$ there is very little inter-
action between the paragraph-building mechanism
and the page-building mechanism. Thus the way in
which 'I)$ avoids a hyphen at the end of a page
(a good example of the visual context affecting the
formatting of a word) is by moving the whole line
instead of by rejustifying the paragraph to avoid a
hyphen at that point. These matters are discussed
further by the authors in [MR92a].

This type of consideration draws the bound-
ary between the ideal model and the real world. It
also reveals that certain optimizations in the 7&X
language necessarily restrict the flexibility of high-
level front-ends built on it. (Since TEX is a Turing
machine, it is possible to move this boundary but
not without an unacceptable increase in processing
time.)

So let us now turn to an overview of the major
components of the U7&X3 system.

3 The structure of the system

The I P W 3 system contains many interwoven struc-
tures each of which could be the subject of a sep-
arate article. The kernel of the system provides
the basic data structures such as lists, stacks, etc.,
used to program higher-level modules. It will also
contain arithmetic functions for integers and dimen-
sions, e.g., it will be possible to express relationships
between individual parameters by specifying assign-
ments that contain expressions.

On top of it are built the generic formatting
functions and manipulation functions for the param-
eter database allowing context-sensitive parameter
specification. Together these will form the basis for
the style designer language.

One other important component of the system
will be an interactive help system allowing exten-
sive help texts as well as the possibility of defining
system reactions dependent on user actions. Help
messages and such additional error-correcting code
will be held in external files that are read in when an
error is detected by the system. In this way an elabo-
rate, interactive help and error-handling mechanism

The Structure of the I4T~ijX3 System
Modules

designer-
functions language

Parameter- FI 1

will be possible whilst keeping the I 4 3 3 3 kernel
compact.

It is important to distinguish between docu-
ment styles - these are written in the style designer
language (and contain no, or nearly no; T@ code
in the traditional sense) -and additional modules,
some of which will provide additional functionality
for use in a range of document styles (e.g., facili-
ties for version control and change bars, enhanced
graphical features, etc.) whilst others will define ex-
tra entities for typesetting specialized classes of doc-
uments (e.g., functions for critical text editions, for
specialized math constructions, chemical formulas).

The new kernel will provide a programmer in-
terface that makes the development of further such
modules a reasonable task.

4 The new generation of I4m users?

Over the last six years, the way in which and
its front-ends are commonly used has changed dra-
matically. Here is a quotation from some unknown
novice of U ' .

"Dear Sir,
I have successfully installed from
the distribution- the file sample was just
printed. However, somewhere in the
README files a similar program called W
is mentioned. Could you please explain to me
how to install this program? . . . "

From a phone call.

TUGboat, Volume 13 (1992), No. 1

This might sound funny at first, but this ex-
treme is not far from the reality for many users (and
even support personnel) nowadays.

0 Today the overwhelming majority of users use
I 4 m only.

0 Today there are very few users who have more
than a minor understanding of the underlying
systern, and they usually have no knowledge of
the =book-even of its existence.

0 Today most users can be nicely classified as
"has heard of 'macros', but has never seen one".

This does not mean that today's users are less in-
telligent than past users, but simply that they are
using a plug-and-play TfjX system.

Nowadays m, and IPm as its major front-
end, have to compete with the so-called Desktop
Publishing Systems. To keep them alive we have to
bridge the gap between the 'implementor/wizard7
type of user of the '80s and the new type who uses
the system just as one tool out of many, with no
understanding of its internals.

With the I 4 W 3 Project we hope to achieve
this goal.

5 Establishing contact with the project

There is now a public list for discussion of the de-
sign of I 4 W 3 . This list is not for questions about,
or discussion of, how to solve problems within the
current I 4 m - so please refrain from asking ques-
tions such as "How do I avoid getting double-spaced
tabulars whilst using doublespace. sty?" But, of
course, it is OK to point out problems with the cur-
rent IPm which should be addressed by the new
version. We must stress this request not to misuse
the list, otherwise there will be no new before
2001!

We are now at the stage where we can iden-
tify sub-projects: these will vary in type and size,
and will not all require advanced m n i c a l exper-
tise. Anyone seriously interested in finding out more
about such (voluntary) work should contact one of
the project managers.

The TUG office is administering a fund to help
with the expenses of the project: further details of
this can be found in [MR91], or [MR92b].

References

Further information about the project can be found
in the articles listed below. This bibliography also
contains entries concerning BIBT~~X, which will be
reimplemented and enhanced by Oren Patashnik for
use with I 4 W 3 .

Contacts

As at February 29th 1992, the e-mail addresses of the
I P ' 3 Project group managers are:

Frank Mittelbach
MittelbachQmzdmza.zdv.Uni-Mainz.de

Chris Rowley
C.A.RowleyQvax.acs.open.ac.uk

Rainer Schopf
SchoepfQsc.ZIB-Berlin.de

To subscribe to the I4'3 design list, send the follow-
ing in an e-mail message to
LISTSERVQdhdurzl.bitnet:

SUB LATEX-L Firstname Secondname

[Guegl] Mary Guenther, editor. 7&X 90 Confer-
ence Proceedings, March 1991. Published
as TUGboat 12(1).

[MitgO] Frank Mittelbach. I4m 2.10. In Lin-
coln K. Durst, editor, 1990 Conference
Proceedings, page 444, September 1990.
Published as TUGboat l l (3) .
Frank Mittelbach. I4T)jX2.09-+I4~3.
TjJUine, (14):15- 18, February 1992.
Frank Mittelbach and Chris Rowley. The
I 4 m 3 project fund. Die Wnische
Komodie, 3(4):l3 - 15, December 1991.
Frank Mittelbach and Chris Rowley. The
pursuit of quality - How can automated
typesetting achieve the highest standards
of craft typography? In C. Vanoirbeek
and G. Coray, editors, Electronic Pub-
lishing '92, Cambridge University Press,
April 1992.
Frank Mittelbach and Chris Rowley. The
I43jX3 project fund. l&Y and TUG News,
l (l) :5 -6, February 1992.
Frank Mittelbach and Rainer Schopf.
With into the nineties. In Christina
Thiele, editor, 1989 Conference Proceed-
ings, pages 681 - 690, December 1989.
Published as TUGboat lO(4).
Frank Mittelbach and Rainer Schopf.
U r n dans les ann6es 90. Cahiers
GUTenberg, (6):2- 14, July 1990.
Frank Mittelbach and Rainer Schopf.
I4TfjX limitations and how to get around
them. In Briiggemann-Klein, editor. 1989
E u r o w Conference Proceedings. TO ap-
pear.

TUGboat, Volume 13 (1992), No. 1 101

Frank Mittelbach and Rainer Schopf.
Reprint (with corrections): The new font
family selection-user interface to stan-
dard U r n . TUGboat ll(2):297- 305,
June 1990.
Frank Mittelbach and Rainer Schopf. To-
wards I 4 W 3.0. rn Gebruikers Group,
(2):49 - 54, September 1990. Reprint of
[MS91].
Frank Mittelbach and Rainer Schopf. To-
wards MT@ 3.0. In Guenther [Guegl],
pages 74- 79. Published as TUG-
boat 12(1).
David Rhead. Could IPT@ do more for
chemists? TkXline. 112):2 - 4. December

3 \

1990. suggestions for I4&3.'
[RhegOb] David Rhead. Towards BIBT@ style-

files that implement principal standards.
W l i n e , (10):2 - 8, May 1990.

[Rhegl] David Rhead. How might WQX3
deal with citations and reference lists?
!&Xline, (l3):13- 20, September 1991.
Suggestions for I 4 W 3 .

[WM91] Reinhard Wonneberger and Frank Mittel-
bach. BIBQX reconsidered. In Guen-
ther [Guegl], pages 111 - 124. Published
as TUGboat 12(1).

o Frank Mittelbach
EDS, Electronic Data Systems

(Deutschland) GmbH
Eisenstrafie 56 (N15)
D-6090 Riisselsheim
Federal Republic of Germany
Internet:

mittelbach@
mzdmza.zdv.uni-mainz.de

o Chris Rowley
Open University
Walton Hall
Milton Keynes MK7 6AA
United Kingdom
Internet:

c.a.rowley@vax.acs.open.ac.uk

Les Cahiers G UTenberg
Contents of Recent Issues

Numkro 9 - July 1991

J. ANDRE, ~d i to r ia l : un nouveau style pour les
Cahiers GUTenberg; pp. 1-2

The editor of the Cahiers introduces its new,
smaller format. Formerly set in two columns for
printing on A4 paper, beginning with this issue the
Cahiers will be set book-style in a single, shorter
column.

[Editor's note: The final size is 18cmx24.5cm.]

Alain COUSQUER and h i c PICHERAL, Polices,
TEX et Cie; pp. 3-31

The purpose of this paper is to introduce the
principles of handling fonts in TEX together with
their usage, and the font model, which is more
straightforward than in Postscript. The authors
also explain complex selection mechanisms which
do not appear in everyday usage, and finish with
a presentation of virtual fonts as well as various
files used with W . [This article was originally the
topic of a presentation at GUTenberg's "Font day"
in December 1990.1

Philippe LOUARN, Lucida, une fonte complbte
pour WQX, et son installation; pp. 32-40

This paper presents an experiment in using
the font Lucida, and its math extension, in I4T@
documents. The author explains his choice, and
shows benefits, and also disadvantages, of this
choice. The last part of the paper is a brief
summary of the installation procedure.

Olivier NICOLE, The Economist polit ses polices;
pp. 41-48

In its issue dated May 25th 1991, The Economist
devotes a full spread to the reasons behind its
change of type-face. The British economic weekly
magazine's effort at giving full information on a
"face lift" that may go unnoticed by most readers
illustrates a trend which is about to revolutionize
the publishing trade.

Vincent QUINT, I r h e VATTON, Jacques ANDRE
and H61bne RICHY, Grif et l'edition de documents
structur6s : nouveaux dheloppements; pp. 49-65

Grif is an interactive system for producing and
referencing structured documents. It allows ma-
nipulation of documents containing math formulas,
tables, diagrams, etc., placing the emphasis on the
logical document organization. This article presents
the principal characteristics of the system as it now
exists and discusses future developments.

102 TUGboat, Volume 13 (1992), No. 1

Henry THOMAS, Typographie du jeu d16checs;
pp. 66-73

This article presents different existing solutions
for typesetting chess, either in I P w , Postscript or
with a Macintosh.

Announcement of the First European Summer
School in Digital Typography, EPFL, Lausanne,
September 23-29, 1991; p. 74

Andr6 HECK, S t a r - W ; pp. 75-78
W and I 4 w have been used from the begin-

ning and are still extensively used by astronomers
and space scientists around the world for their mail,
for writing papers, for putting together newsletters,
proceedings, reports, books, and so on. Some pub-
lishers have also set up their own sets of macros
for journals and/or book series. It seems however
that the tendency is presently to pull out of 7&X
and go towards more user-friendly and performant
systems. A meeting on Desktop Publishing in
Astronomy and Space Sciences will take place at
Strasbourg Astronomical Observatory (France) in
October 1991.

Yannis HARALAMBOUS, Quand W rencontre
Mozart. . . ; pp. 79-81

This is a report on the loth annual meeting of
DANTE, the association of German-speaking m
users, which took place in Vienna, 20-22 February,
in this Mozart anniversary year.

Announcement for Premiers pas de U w , a
French adaptation by Eric Cornelis of a manual by
Michael URBAN; p. 82

Bernard GAULLE, L'association . . . fait la force;
pp. 83-85

The recent events in the (I P) W world, like
the work on fonts with 256 characters or the
f is t book published by GUTenberg or lastly the
preparation of the 6th European TEX Conference,
readily demonstrate the usefulness and benefit of
the association of people working as a team. This
article ends with a call for new volunteers.

~ r i c PICHERAL, Distribution M 1 m v.3.1.4 pour
Sun; pp. 86-87

An announcement and description of the distri-
bution, adapted for French use on Sun 3 and Sun 4,
of M l w , related software, and fonts.

Announcement of EP92 : Electronic Publishing 92,
EPFL, Lausanne, 7-10 April 1992; p. 87

66me conf6rence TJ$ europ6enne/GUTenberg191;
pp. 88-90

An announcement of these two meetings to be
held in Paris, 23-26 September 1991.

Num6ro 10-11 - September 1991
Proceedings of the 6th European TEX
Conference and GUTenberg991

The 6th European 7&X Conference took place in
Paris on 23-25 September 1991, followed by GUTen-
berg'91 on 26 September. Papers in these Proceed-
ings were presented at the W conference unless
otherwise noted. In the case of multiple authors,
the presenter of a paper is indicated by an asterisk.

Basil MALYSHEV, Alexander SAMARIN*, and
Dimitri VULIS, Russian m; pp. 1-6

This article presents the TEX extension for
processing russian texts. Russian T)$ is based
on version 3.0 and virtual fonts. Different coding
schemes for russian characters are allowed.

Theo JURRIENS, Wn iques in Siberia; pp. 7-13
This article summarizes the problems of giving

a I 4 W course in Siberia. It concludes with an
overview concerning the future of 7&X inside the
USSR.

Announcement for Premiers pas de D m , a
French adaptation by Eric Cornelis of a manual by
Michael URBAN; p. 14

Jorg KNAPPEN, T)jX and Africa; pp. 15-24
At the present time, T@ is not usable for

typesetting many african languages. They use
special letters which don't occur in the standard
fonts (and aren't included in the ec-scheme). The
letters used in the major languages of Africa can
be put into one font. A font encoding scheme (fc)
and some METAFONT code have been prepared.
There is work in progress on hausa T)jX (by Gos
Ekhaguere, Ibadan).

Oussama BOUGHABA*, Seifeddine BOUTALBI et
Michel FANTON*, Vers une version arabis6e de
w; pp. 25-44

This paper presents the state of development
of an arabicized version of W for DOS.

Basil MALYSHEV and Alexander SAMARIN*, l) jX
Integrated Shell for IBM PC; pp. 45-55

This article presents the T)$ Integrated Shell
(TIS)-a special environment for on the
IBM PC to conceal some problems from an or-
dinary user. TIS contains the screen interface for
different actions during w i n g . It can be config-
ured to satisfy a user's requirements and hardware
& software conditions. It downloads only the files
to be used, in particular, pixel font files which are
required for a given . dv i file.

TUGboat, Volume 13 (1992), No. 1 103

Infothkque -la librairie de l'informatique
(advertisement); p. 56

Jili ZLATUSKA, Automatic generation of virtual
fonts with accented letters for w; pp. 57-68

This paper presents an approach towards de-
riving fonts with accented letters for European
languages using virtual fonts as an alternative to
the development of genuine new fonts with META-
FONT. The ACCENTS processor is presented as a
tool for mechanization of the process by enabling
automatic generation of accented font layout and
the virtual font definition from the TFM file of the
source font in the TEX text encoding, and from
an auxiliary input containing corrections of accent
placement for specific characters.

Yannis HARALAMBOUS, Scho la rw ; pp. 69-70
(abstract only)

Scho la rm is a software package consisting of
fonts, TEX macros, execut ables (for the Macintosh),
and a detailed manual with examples and exercises.
S c h o l a r w allows easy and efficient use of w for
typesetting in many languages.

[Editor's note: For technical reasons, the text of
this article could not be published in the Pro-
ceedings, and will appear in a later issue of the
Cahiers.]

Johannes BRAAMS, Babel, a multilingual
style-option system; pp. 71-72 (abstract only)

The babel system of style-option files adapts
I P m (and plain m) to a multi-lingual environ-
ment. This paper presents a summary of the ways
in which 'hardwired' use of the english language has
been 'repaired'. Language-dependent typographical
conventions are examined using examples from the
publications of the European Community. Some of
the problems arising in processing documents using
more than one language (for example, more than
one set of hyphenation patterns) are discussed.

[Editor's note: Only an extended abstract appears
in the Proceedings; for further information, readers
should refer to "Babel, a multilingual style-option
system for use with W w ' s standard document
styles" in Nederlandstalige 7&X Gebruikersgroep,
Verlag 6e bijeenkomst, 91.1 (1991), pp. 75-83.]

Michel FANTON, w : les limites du
multilinguisme; pp. 73-79

This paper describes the specific features of
arabic typesetting and gives an account of the price
to pay in developing an arabicized version of TEX.

IBM RISC System/6000 (advertisement); p. 80

Joachim SCHROD, An International Version of
MakeIndex; pp. 81-90

MakeIndex is a powerful, portable index pro-
cessor which may be used with several formatters.
But it is only usable for English texts; non-English
texts - especially with non-Latin alphabets, like
Russian, Arabic, or Chinese-may not easily be
worked on. The tagging of index entries is often
tedious and error prone: If a markup is used within
the index key, an explicit sort key must be given.
A new version of MakeIndex is presented which al-
lows the automatic creation of sort keys from index
keys by user-specified mappings. This new version
does support documents in non-Latin alphabets.
Furthermore it needs less main memory than the
former one, and may now be used for large indexes
even on small computers.

Paul BACSICH, Ethel HEYES, Paul LAFRERE and
Geoff YARWOOD, Conversion of Microsoft Word
into I 4 w ; p. 91 (abstract only)

We describe a program which converts Mi-
crosoft Rich Text Format files (as produced by
several word processing packages) into standard
I 4 W . This program converts character glyphs,
character attributes, style information, fonts, lists
and tables to their "equivalents" (if any) in U r n .

Conversion of character, font and attribute
information is hardwired in, to a set of tables in the
program, which can be changed (by a programmer).

Conversion of style information is controlled by
a Conversion Control File which can be amended
by the user. This file assigns I 4 w constructs to
Word style tags.

The latest version of the program converts
mathematical mark-up in Word Formula Mode to
the U r n equivalents. There are many difficulties
with this approach and the paper will cover the main
ones including the basic difficulty of recognizing in
a word processor file what is mathematics and what
is not.

The program has been used to convert a
complete textbook, Introduction to Information
Technology, by Dr P. Zorkoczy (Pitman, 1990),
from Word into I 4 w for use in a hypermedia
system.

[Editor's note: The authors were unable to attend,
and this paper was not presented.]

104 TUGboat, Volume 13 (1992), No. 1

Trois v6ritks sur w (advertisement, Northlake user to accept the limitations of the system's user
Software); p. 92 interface.

Michel LAVAUD, A S W : an integrated and
customizable multiwindow environment for
scientific research; pp. 93-116

A S W is a program that runs on a PC under
the control of Framework 3, and transforms it
into an integrated and customizable multiwindow
environment for scientific reasearch, as comfortable
to use as the one of a workstation. It has been
devised as a help to create scientific books and, more

This paper presents an approach chosen when
establishing a tailored m - b a s e d database publish-
ing system for the bibliography Nordic Archaeo-
logical Abstracts. The solution was implemented
by combining three different systems: an inter-
face management system, a database management
system, and m. The system is described and
compared to the previous editor-based production,
and future possibilities are briefly sketched.

generally, as a help for everyday scientific work. It Bernard LEGUY, Drawing tree structures with
includes a hypertext-like file manager which allows GWEZ; pp. 135-146
to classify and archive all the files related to GWEZ is a set of macros able to build tree
the current document by means of a hierarchy of structures and to draw them; these macros are writ-
explicit titles, and to retrieve any of them very ten with TEX; they use only plain = commands
easily, whetever its physical location. It allows also and fonts and can as well be used with I 4 w .
to display the structure of a U r n document of
any length, and to modify and restructure it in a
completely interactive manner. It offers an interface
with a local or distant Fortran compiler, which
allows to perform numerical compilations from a
I 4 m document. It has also an interface with
the computer algebra program Maple, to perform
formal computations interactively from a text, a
worksheet or a database, when the PC is connected
to a Unix station through a LAN or through a
modem.

A set of PCs equipped with A S w and con-
nected by a LAN to a workstation can provide a
low-cost alternative to a network of workstations,
for laboratories and educational institutions already
equipped with PCs, and that cannot afford or do
not want to equip each researcher or student with a
workstation.

Steen LARSEN* and Arne Flemming JENSEN,
Tailored database publishing with W;
pp. 117-134

is well suited to produce inventories such as
bibliographies or dictionaries. Such publications are
characterized by a large number of entries, a high
uniformity of structure, typographical variation,
and high demands to line and page breaking.
Furthermore, sorting of entries and compiling of
indexes will often be necessary. In the necessary
'l&X input files there will be a large percentage of
control sequences.

Producing inventories based on text editors
presents numerous difficulties as regards, for ex-
ample, TEX syntax control, data validation, and
sorting. Producing them via a standard database
system gives better data control, but forces the

Kees VAN DER LAAN, Math into BLUes: sing your
song; pp. 147-170

w i n g mathscripts is not simply typing. Math
has to be translated into TFJ commands. First the
motivation for this work is given. Next traditional
math page make-up is summarized along with the
macroscopic math commands. After answering
'Why w i n g mathscripts is difficult?' an anthology
of TEX falls and their antidotes is discussed. At
the end, suggestions are given in order to lessen the
difficulties.

[Editor's note: The first part of this paper was
published in TUGboat 12, no. 3, Proceedings of
the TUG 1991 annual meeting. With the author's
agreement, only the second part of the full pa-
per appears in the Proceedings of the European
TEX Conference. The first part, called Mourning,
can also be found in Nederlandstalige 7'&Z Ge-
bruilcersgroep, Verlag 6e bijeenkomst, 91.1 (1991),
pp. 57-74.]

Angelika BINDING, Organizing a large collection of
stylefiles; pp. 171-184

Springer Verlag has to maintain a large col-
lection of macro packages for different layouts, for
which there are versions both for plain m and
I4QX and for different sets of fonts. We therefore
designed a concept of modularising these pack-
ages and have implemented mechanisms to create
formatfiles loading our individual set of fonts with-
out changing the standard formatfiles plain and
lplain.

Andrew E. DOBROWOLSKI, Typesetting SGML
documents using w; pp. 185-196

Since its publication as an international stan-
dard in 1986, the Standard Generalized Markup

TUGboat, Volume 13 (1992), No. 1

Language (SGML) has become a preferred doc-
ument markup standard within many industries.
Many users have developed their own document
type definitions (DTDS) which define the elements
(tag sets) for their documents. However, if SGML is
to become a universally accepted standard of doc-
ument interchange, then a standard way to specify
formatted output and a means of producing that
output will be needed.

The U.S. government's Computer-aided Ac-
quisition and Logistic Support (CALS) initiative
selected SGML as the standard of text interchange.
The output specification section of the CALS stan-
dards proposed the Formatted Output Specification
Instance (FOSI) as the means of formatted output
specification interchange.

TEX can be used as the formatting engine to
implement FOSI-based formatting. But without
extending T$$ not every FOSI formatting request
can be fulfilled. Conversely, certain TEX capabilities
cannot be formulated in terms of FOSI characteris-
tics. However a FOSI/'IpJ based formatting system
would be a major advance towards fulfilling the doc-
ument interchange needs of a growing community
of SGML users.

[Editor's note: This paper was first published in
TUGboat 12, no. 3, Proceedings of the TUG 1991
annual meeting.]

Christophe CERIN, Vers la construction de macros
de mise en couleur pour TEX; pp. 197-206, plus
one color plate

This article presents a step-by-step approach
to putting colour in documents.

Bernd SCHMID, WYSIWYG-m-editors on the
basis of object-oriented system technology; p. 207
(abstract only)

After a short introduction into object-oriented
programming introducing the terms object, object
attributes and methods, and after showing the
motivation to realize a m - e d i t o r on the basis
of object-oriented technology, the objective of the
development of a WYSIWYG-editor and its range
concerning T$$ which is implemented is described.

The general strategy of realization will then
be explained. For this the scanner-/parser im-
plementation as well as the box concept and the
box attributes will be described. This tends to
demonstrate the easy, efficient interactive treat-
ment of documents using WYSIWYG-suitable edit-
ing of =-terms and the reduction of mistakes

of visualization. An outlook on further develop-
ments on the basis of this object-oriented concept
of realization will be given.

Finally, the application of a WYSIWYG-editor
is evaluated in the project "COMPINDAS-GUT" of
Fachinformationszentrum Karlsruhe. This will in-
clude a depiction of the demands of this application
and the extent of the project, a classification of the
users as well as the evaluation of first experiences
with the use of a WYSIWYG-editor concerning ef-
ficiency, user acceptance, and error reduction in
comparison to current rn editing tools.

Philippe LOUARN, Lucida, une fonte complkte
pour LAW, et son installation; p. 208 (abstract
only
[Editor's note: This article was published in Les
Cahiers GUTenberg, nurnkro 9, July 1991, pp. 32-40;
see above for abstract.]

Maurice LAUGIER, Composition des formules
chimiques en rn; pp. 209-221

Formatting chemical formulae with 7$J needs
some special macros to describe links and ramifi-
cations. The authors describe their macros and
present some illustrations.

[Editor's note: This paper was presented at GUTen-
berg'91.1

by syntax-/semantics-checks using graphic methods

106 TUGboat, Volume 13 (1992), No. 1

Calendar

1992 Jun 18 GUTenberg journCe, Geneva,
Switzerland. Details TBA.

Apr 7 TUGboat Volume 13, Jun/ Jul u k r n u g : "Design Issues" : A
2nd regular issue: visit to the Dept. of Typography,
Deadline for receipt of news items, University of Reading.
reports. For information, contact Peter Abbott

Apr 7- 10 EP'92 (pabbottQnsfnet-relay.ac.uk).
Swiss Federal Institute
of Technology, Lausanne,
Switzerland. For information,
contact ep92Qeldi . epf 1. ch.

May 18 - 22 Intensive W W , Lexington,
Massachusetts.

May 22 Polska Grupa Uzytkownik6w
Systemu (GUST), first
general meeting, Warsaw,
Poland. For information,
contact Hanna Kolodziejska
(gustQal fa . camk. edu.pl).

May 23 CyrTUG: First Annual Meeting,
Institute of High Energy Physics,
Protvino (suburb of Moscow),
Russia. For information,
contact Irina Makhovaya

- (i r i n a m i r .msk . su).

Jun 4 NTG Spring Meeting, "Scientific
Publishing and W " , CWI,
Amsterdam, The Netherlands.
For information, contact
Gerard van Nes (vannesQECN . NL) .

Jun 15 JournCe I P W Version 3, Paris,
France. For information, write to
GUTenberg, journCe I 4 W 3 , BP 21,
78354 Jouy-en-Josas, France.

Jun 15 - 19 NTG Advanced rn course,
"Insights & Hindsights", Groningen,
The Netherlands. For information,
contact Gerard van Nes
(vannesQECN . NL).

Jun 16 - 18 [TeCH'92, a GUTenberg conference,
has been canceled.]

Jun 17- 22 Society for Scholarly Publishing,
1 4 ~ ~ Annual Meeting, "Information
Encounters of the Scholarly Kind",
Hyatt Regency, Chicago, Illinois.
For information, contact SSP
(301-422-3914).

TUG'92 Conference, Portland, Oregon
Jul 20 - 24 Intensive BeginningIIntermed. rn
Jul 26 rn for Publishers

Jul 27-30 TUG Annual Meeting: ''W in
Context", Portland, Oregon.
For information, contact the TUG
office. (See page opposite inside back
cover.)

Jul 31 - Practical SGML and
Aug 1 Introduction to Typography

VMS-W
Aug 3 - 7 Advanced l&X and Macro Writing

Intensive I 4 W

Aug 18 TUGboat Volume 13,
3rd regular issue:
Deadline for receipt of technical
manuscripts.

Sep 14 - 16 E u r o w 92, Prague, Czechoslovakia.
For information, contact Jifi Veseljr
(jveselyQcspguk11 .b i tne t) .
(See page 107.)

Sep 15 TUGboat Volume 13,
3 1 ~ regular issue:
Deadline for receipt of news items,
reports.

Oct 19 - 23 BeginningIIntermediate
Chicago, Illinois.

Oct 26 - 30 Intensive U r n , San Diego,
California.

Nov 19 NTG Fall Meeting, [topic
to be announced], Meppel,
The Netherlands. For information.
contact Gerard van Nes
(vannesQECN . NL).

Nov 2 - 6: BeginningIIntermediate 'I&&
San Diego, California.

Status as of 6 April 1992

TUGboat, Volume 13 (1992), No. 1 107

Nov 9 - 13 Intensive U r n , Providence,
Rhode Island.

Nov 17 TUGboat Volume 14,
lSt regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Dec 15 TUGboat Volume 14,
lSt regular issue:
Deadline for receipt of news items,
reports (tentative).

Feb 16 TUGboat Volume 14,
2nd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Mar 16 TUGboat Volume 14,
2nd regular issue:
Deadline for receipt of news items,
reports (tentative).

Aug 17 TUGboat Volume 14,
4th regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Sep 14 TUGboat Volume 14,
4th regular issue:
Deadline for receipt of news items,
reports (tentative).

For additional information on the events listed
above, contact the TUG office (401-751-7760, email:
tugQmath. a m . corn) unless otherwise noted.

E u r o w 92 in Prague
14-18 September 1992

E u r o m 9 2 is being organized by CSTUG, the
organization for Czech- and Slovak-speaking l&X
users, in collaboration with Charles University and
Czech Technical University under the auspices of
both Rectors. I t will take place in Prague on
14-18 September 1992. (Please make a note in your
diary.)

Accommodations and activities

Accommodations will be offered in the student hos-
tel Kajetanka, a relatively modern facilty. Plans are
being made to transfer participants each morning
by bus from the hostel to Czech Technical Univer-
sity where the program will be held. (This would
be a 25-minute walk from Katejanka.) Lunch and
dinner will be served at the conference site.

There are plans for an opening party on Mon-
day evening, a concert in a historical hall typical
of Prague on Wednesday, and some other events.
For those arriving Monday morning, a sightseeing
tour may be offered on Monday afternoon. To
keep things within everybody's budget, the main
program is being offered as a package: the com-
plete program from Monday to Friday morning
(accommodation in double rooms, full pension from
Tuesday to Thursday, opening party on Monday
evening, concert, breakfast on Friday, conference
fee and proceedings) for about 300 DM. Those who
prefer a single room would pay an extra 60DM.
(Payment details, account numbers, etc., will be
sent to registrants later.) For persons accompany-
ing participants, a special program will be organized
including visits to galleries and other places of in-
terest. For an additional 50DM a day, a limited
number of participants may stay on till Sunday (one
or two days more) either for tutorials or just to
enjoy meeting friends and good beer in some of the
pubs Good Soldier Svejk would visit.

Why come to E u r o m 92?

In addition to invited talks by leading specialists
you will have a chance to listen to lectures on
different applications and meet TEX friends
from many countries. The meeting is the first
to offer really extensive contacts with people from
former East European countries ("from behind the
iron curtain" -can you still remember that?). I t
takes place in the Golden Heart of Europe -Prague,
one of the nicest capitals in Europe. You can visit
it for a surprisingly low price: since we would like
to make E u r o m 9 2 in Prague accessible to the
majority of l&X fans from all over Europe, we are
arranging it on a modest but good level.

The date for submitting papers will be past by
the time you read this. However, these are a few of
the topics that have been proposed:

- Quo vadis, l&X?
- National versions and standardization
- Non-standard applications

108 TUGboat, Volume 13 (1992), No. 1

- The use of TFJ for small/newly emerging
enterprises

Committee
Peter Abbott Erich Neuwirth
Jacques Andrt5 Petr Novak
Jana Chlebikova Stefan Porubsky
Bernard Gaulle Philip Taylor
Karel Horak Jifi Veselji
Joachim Lammarsch Jifi ZlatuSka

How to register

Those who are interested in taking part are kindly
asked to fill in the following form and send it via
e-mail to the address

eurotex a t cspgukll . b i t ne t

I intend to take part in E u r o w 92,
Prague (14.-18.9.1992)
name:
userid:
node:
Please send more detailed information on E u r o w
to the following e-mail address (please fill in):

Or copy the following form, fill in using block
letters, and send to the address:

CS - E U R O W 92
Mathematical Institute
Sokolovska 83
186 00 PRAHA 8 - Karlin
Czechoslovakia

Name:
Institution:
Position:
Address (business or home - circle one) :

I intend to visit E u r o m 9 2 in Prague
(September 14. - 18.(20.), 1992)

(Signature)

On behalf of the organizers:

Karel Horak
Jifi Vesel$
Jifi ZlatuSka

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was re-
ceived by mail and on diskette. Most articles
were fully tagged for TUGboat, using either the
plain-based or U w conventions described in the
Authors' Guide (see TUGboat 10, no. 3, pages
378-385). Several authors requested copies of
the macros (which we were happy to provide);
however, the macros have also been installed at
labrea . st anf ord . edu and other good archives,
and an author retrieving them from an archive will
most likely get faster service. Of course, the TUG
office will provide copies of the macros on diskette
to authors who have no electronic access.

The number of articles in this issue was heavily
weighted toward U w . Of the major articles, only
seven were not in IPW; and of those, one was
submitted as a dvi file. Pages were more evenly
divided, with about 60% in U r n . In organizing
the issue, attention was given to grouping bunches
of p la in or U w articles, to yield the smallest
number of separate typesetter runs, and the least
amount of handwork pasting together partial pages.
This also affected the articles written or tagged
by the staff, as the conventions of tugboat. s t y
or l tugboat . s t y would be chosen depending on
what conventions were used in the preceding and
following articles: no article was changed from one
to the other, however, regardless of convenience.

We ran into only a few problems arising from
one author's macro definitions affecting later ar-
ticles, and these were relatively easily eliminated,
once they were recognized. We did uncover another
lapse in the I F w routines for combining articles-
failure to reset the figure counter resulted in the
number of the first figure in one article to have a
value considerably greater than 1.

Continuing with tradition, several articles re-
quired font work; these included the articles by
Mylonas and Whitney (p. 39) and Tutelaers (p. 85).

TUGboat, Volume 13 (1992), No. 1

The latter also required the use of Postscript output
devices, and occasioned my first direct use of the
Math Society's Compugraphic 9600 Imagesetter.

The article by Graham Asher (p. 13) was
prepared using Type & Set, and delivered via the
network as a uuencoded dvi file.

The following articles were prepared using the
plain-based tugboat. sty:

- Toby Thain, Packing METRFONTs into
Postscript, page 36.

- C. Mylonas and R. Whitney, Modern Greek
with adjunct fonts, page 39.

- Alan Hoenig, Just plain Q&A, page 60.
- L. Siebenmann, Elementary text processing

and parsing, page 62.
- Jonathan Fine, Some basic control macros,

page 75.
- Kees van der Laan, Tower of Hanoi, page 91.
- abstracts of the Cahiers GUTenberg,

page 101.
- the TUG calendar, page 106.
- announcement of E u r o w 92 in Prague,

page 107.
- these Production notes
- "Coming next issue"

O u t p u t

The bulk of this issue was prepared at the American
Mathematical Society from files installed on a
VAX 6320 (VMS) and w ' e d on a server running
under Unix on a Solbourne workstation. The
Mylonas/Whitney article was prepared by Ron
Whitney on an IBM PC-compatible 386 using
PC T 'X . The article by Asher was prepared on
an IBM PC-compatible using E M W and the
suite of pre- and post-processors described in the
article. Most output was typeset on an APS-p5 at
the AMS using resident CM fonts and additional
downloadable fonts for special purposes. The two
exceptions were the articles by Rahtz (p. 34) and
Tutelaers, which contained Postscript inclusions
and were set on the Compugraphic 9600 Imagesetter
at AMS.

One photograph, photographically screened in
the traditional manner, appears in the article about
Sam Whidden (p. 11).

The output devices used to prepare the ad-
vertisements were not usually identified; anyone
interested in determining how a particular ad was
prepared should inquire of the advertiser.

Arrows for technical diagrams

David Salomon, requiring arrows of more varieties
than are available in unextended (IP)TEX, has
created a font of arrowheads. Since does not
have diagonal rules, only horizontal and vertical
arrowheads were developed. However, the methods
used can easily be extended for diagonal arrowheads.
(Originally intended for the present issue, this item
was delayed by technical problems in generating
new fonts.)

Approaching S G M L f rom w ;
S G M L Questions a n d Answers

Two articles. The first, by Reinhard Wonneberger,
present arguments for taking a standardized ap-
proach to document preparation using structural
markup, as embodied in SGML, and for implement-
ing the formatting with m.

The second, by Wonneberger and Frank Mit-
telbach, provides explanations of the terminology
and concepts of SGML in a question and answer
format.

Z z w : A macro package for books

Paul Anagnostopoulos describes the design decisions
behind a macro package intended to produce books
to varying specifications with a minimum of macro
modification. A book is considered as a structure
of blocks, each of which may contain independent
design specifications as well as specs governing the
interaction of adjacent or nested blocks. All the
usual features of scientific ans scholarly books are
supported, including cross-referencing and indexing.

X B i b w a n d F'riends

Support facilities to make BIB^ input more
straightforward and reliable are described by Chris
Bischof.

Book reviews

New books about 7&X and related subjects are
appearing from every direction imaginable. Reviews
of L A W for Everyone, by Jane Hahn, and Practical
SGML, by Eric van Herwijnen, are on hand, and at
least one more is expected.

T U G b o a t , Volume 13 (1992), No. 1

Digital Equipment Corporation,
Nashua, New Hampshire

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico Institutional

Members E. S. Ingenieres Industriales,
Sevilla, Spain Louisiana State University.

Baton Rouge, Louisiana
Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Macrosoft, Warsaw, Poland The Aerospace Corporation,
E l Segundo, California Marquette University,

Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wiscon

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Air Force Institute of Technology,
Wright-Patterson AFB, Ohzo

European Southern Observatory,
Garching bei Munchen,
Federal Republic of Germany

American Mathematical Society,
Providence, Rhode Island Masaryk University,

Brno, Czechoslovakia
ArborText, Inc.,
Ann Arbor, Michigan Fermi National Accelerator

Laboratory, Batavia, Illinois
Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan ASCII Corporation,

Tokyo, Japan Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany

Beckman Instruments,
Diagnostic Systems Group,
Brea, California Fordham University,

Bronx, New York McGill University,
Montre'al, Que'bec, Canada Belgrade University,

Faculty of Mathematics,
Belgrade, Yugoslavia

General Motors
Research Laboratories.
Warren, Michigan

Michigan State University,
Mathematics Department,
East Lansing, Michigan Brookhaven National Laboratory,

Upton, New York Grinnell College,
Computer Services,
Grinnell, Iowa

NASA Goddard
Space Flight Center,
Greenbelt, Maryland

CERN. Geneva, Switzerland

Brown University,
Providence, Rhode Island

Grumman Aerospace,
Melbourne Systems Division,
Melbourne, Australia

National Institutes of Health,
Bethesda, Maryland California Institute of Technology,

Pasadena, California National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

G T E Laboratories,
Waltham, Massachusetts Calvin College,

Grand Rapids, Michigan Hughes Aircraft Company,
Space Communications Division,
Los Angeles, California

Naval Postgraduate School,
Monterey, California

Carleton University,
Ottawa, Ontario, Canada

New York University,
Academic Computing Facility,
New York, New York

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

Centre Inter-RBgional de
Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

IBM Corporation,
Scientific Center,
Palo Alto, California

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Institute for Advanced Study,
Princeton, New Jersey

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Northrop Corporation,
Palos Verdes, California

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

The Open University,
Academic Computing Services.
Milton Keynes, England

Construcciones Aeronauticas, S.A.,
CAE-Division de Proyectos,
Madrid, Spain

Intevep S. A,, Caracas, Venezuela
Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Iowa State University,
Ames, Iowa DECUS, Electronic Publishing

Special Interest Group,
Marlboro, Massachusetts The Library of Congress,

Washington D. C.
Personal 7QX, Incorporated,
Mill Valley, California Department of National Defence,

Ottawa, Ontario, Canada

T U G b o a t , Volume 13 (l992), No.

University of Maryland,
Department of Computer Science,
College Park, Maryland

Princeton University,
Princeton, New Jersey

University of British Columbia,
Computing Centre;
Vancouver, British Columbia,
Canada Purdue University,

West Lafayette, Indiana University of Maryland
a t College Park,
Computer Science Center,
College Park, Maryland

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

Queens College,
Flushing, New York

Rice University,
Department of Computer Science,
Houston, Texas

University of Massachusetts,
Amherst, Massachusetts University of Calgary,

Calgary, Alberta, Canada University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Roanoke College,
Salem, VA

university of California, Berkeley,
Space Astrophysics Group,
Berkeley, California Rogaland University,

Stavanger, Norway
University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of California, Irvine,
Information & Computer Science,
Irvine, California

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republic of
Germany

University of Salford,
Salford, England University of California,

Los Angeles, Computer
Science Department Archives,
Los Angeles, Calzfornia

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban, Washington,
D. C.

University of Canterbury,
Christchurch, New Zealand

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden Universidade de Coimbra,

Coimbra, Portugal Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

University of Texas a t Austin.
Austin, Texas University College,

Cork, Ireland University of Washington,
Department of Computer Science,
Seattle, Washington

Software Research Associates,
Tokyo, Japan

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece Space Telescope Science Institute,

Baltimore, Maryland
University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

University of Delaware,
Newark, Delaware Springer-Verlag,

Heidelberg, Federal Republic of
Germany

Uppsala University,
Uppsala, Sweden

University of Exeter,
Computer Unit,
Exeter, Devon, England Springer-Verlag New York, Inc.,

New York, New York
Villanova University,
Villanova, Pennsylvania University of Glasgow,

Department of Computing Science,
Glasgow, Scotland

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Vrije Universiteit,
Amsterdam, The Netherlands

University of Groningen,
Groningen, The Netherlands

Washington State University,
Pullman, Washington Stanford University,

Computer Science Department,
Stanford, California

University of Heidelberg,
Computing Center Heidelberg,
Germany

Widener University,
Computing Services,
Chester, Pennsyhania Talaris Systems, Inc.,

San Diego, California University of Illinois a t Chicago,
Computer Center,
Chicago, Illinois

Worcester Polytechnic Institute,
Worcester, Massachusetts Texas A & M University,

Department of Computer Science,
College Station, Texas Yale University,

Department of Computer Science,
New Haven, Connecticut

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

UNI-C, Aarhus, Denmark

United States Military Academy,
West Point, New York Universitat Koblenz-Landau,

Koblenz, Federal Republic of
Germany University of Alabama,

Tuscaloosa, Alabama

USERS
GROUP

Complete and return this form with
payment to:

l&X Users Group
Membership Department
l? 0. Box 594
Providence, RI 02901 USA

Telephone: (401) 751-7760
FAX: (401) 751-1071
Email: tug0Math. AMS . corn

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the '&X Users Group
and the TUG newsletter, TEX and
TliG News. Members who join after
January 1 will receive all issues
published that calendar year.

- -

For m o r e informat ion . . .
Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

Institutional membership
information

Course and meeting information

Advertising rates

Products/publications catalogue

Public domain software
catalogue

More information on TEX

ership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specify network as well)

I am also a member of the following other l&X organizations:

Specific applications or reasons for interest in TEX:

Hardware on which TEX is used:

Computer and operating system Output devicelprinter

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $50.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Regular @ $60 Full-time student @ $50

I Amount enclosed for 1992 membership: $

1 (Prepayment in US dollars drawn on a US bank is required)

Checkimoney order payable to l&X Users Group enclosed

0 Charge to MasterCardWSA

1 Card# Exp. date -
I Signature

. - .
a . It's a

It will have you typing mathematics in
minutes. It's so easy, you can com ose

being forced to think in TEX.
f? and edit directly on the screen wit out

And it gets even better! With Windows
3.0, you simply use the mouse to click
on symbols and objects such as
fractions, brackets, etc., and they appear
in your document. Or, ou can enter the
same symbols with key \ oard shortcuts.

M A R E RESEARCH, INC.

nically. . -

breeze.

Scfenmc Word is a front end to T D . It
includes a Windows version of LPTa
and a Windows previewer. It stores files
in ASCII LpTD format and imports most
existing LXI'B documents.

So chill out! Let ScienMc Word make
your life a breeze. All ou need is a PC
with- Windows 3.0 or Tl igher, running in
standard or enhanced mode.. .and
WenWk Word.

to order your copy today. Ask about our
30 day money-back guarantee and our
educational discount.. . ..It's that easy.

1190 Foster Road Las Cruces, NM 88001
TEL: (505) 522-4600 FAX: (505) 522-01 16

TELEX: 317629

Scientific Word IS a registered lrademark ot TCI Software Research l n t TtX i i a trademark of the Amencan Mathematlcai Soc~ety Wmdows i s a trademark of M~crosoft

AP-TEX Fonts
w-compa t i b l e Bit-Mapped Fonts

Identical to
Adobe Postscript Typefaces

If you are hungry for new fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-TE)(fonts
serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-TEX fonts consist of PK and TFM files which are ex-
act w -compa t i b l e equivalents (including "hinted" pix-
els) to the popular PostScript name-brand fonts shown
at the right. Since they are directly compatible with any
standard implementation (including kerning and liga-
tures), you don't have to be a 'T)$ expert to install or use
them.

When ordering, specify resolution of 300 dpi (for laser
printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 I<B 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5 , 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica , and Palatino, all
in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

The Kinch Conzputer Conlpany
PUBLISHERS OF TUFBO-X

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484

Helvetica, Palatino, Times, and New Century Schoolbook are t.rademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Syst,ems Incorpo-
rated. T h e owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-TE)[fonts. Kinch Computer Com-
pany is the sole author of the AP-TEX fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the A P - w font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.
LaserJet and DeskJet are trademarks of Hewlett-Packard Corporation.
is a trademark of the American Math Society. T u r h o w and AP-T)$ are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Avant Garde

Avant Garde Demibid

Avant Garde %$:id

C o u r i e r

Cour ie r Oblique

Helvetica
Helvetica Oblique

Helvetica
Helvetica E&ue
Helvetica Narrow
Helvetica Narrow Oblique

Helvetica Narrow Bold

Helvefjca Narrow Eque
Schoolbook !:"maCnentury
Schoolbook F P n t u "
Schoolbook ~2ce"'uv
Schoolbook New Century

Bdd Italic

Palatino Roman

Palatino Italic

Palatino BOM

Times Roman

Times I~,I~,

Times
Times :%

Medium Zatffchnceru Italic

Svmbol A@TI~AII@
4

Zapf Dingbats %wD

N
ow YOU CAN run the TEX
typesetting system in the
powerful and convenie-
nient graphical environ-

ment of Microsoft Windows, with the
new Windows-compatible TurboT~X
Release 3.1.

TurboT~X brings you the latest
TEX 3.1 and M E T R FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, BTEX, AMS-TEX and An/lS-
L?TEX, M ETR FONT, preview for
EGA/VGA displays, Computer
Modern and LATEX fonts, and printer
drivers for HP Laserjet and DeskJet,
Postscript, and Epson LQ and FX
dot-matrix printers. This wealth of
software runs on your IBM PC (MS-
DOS, Windows, or OS/2), UNIX, or
VAX/VMS system.

Best-selling Value: TurboT~X sets
the standard for power and value
among TEX implementations: one
price buys a complete, commercially-
hardened typesetting system. C o m -
puter magazine recommended it
as "the version of TEX to have,"
l E E E Software called it "industrial
strength," and thousands of satisfied
users worldwide agree.

TurboTEX gets you started quickly,
installing itself automatically under
MS-DOS or Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-
cludes genero&sexamples and a full
index, and leads you step-by-step
through installing and using TEX and
METRFONT.

Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX command-

line options and T ~ X b o o k interaction
work the same, you also can control
TEX using friendly icons, menus, and
dialog boxes. Windows protected
mode frees you from MS-DOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

MS-DOS Power, Too: Tur-
boT~x still includes the plain MS-
DOS programs. Even without ex-
panded memory hardware, our vir-
tual memory simulation provides the
same sized TEX that runs on multi-
megabyte mainframes, with capac-
ity for large documents, complicated
formats, and demanding macro pack-
ages.

Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETA FONT,
previewer, and printer driver source
code, including: our WEB system in
C; PASCHAL, our proprietary Pascal-
to-C translator; Windows menus
and text-mode interface library; and
preloading, virtual memory, and
graphics code, all meeting C porta-
bility standards like ANSI and K&R.

Availability & Requirements:
TurboT~X executables for IBM PC's
include the User's Guide and re-
quire 640K, hard disk, and MS-DOS
3.0 or later. Windows extensions re-
quire Microsoft Windows 3.0. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C 5.0 or later (and Windows SDK
for Windows extensions), Watcom
C 8.0, or Borland C++ 2.0; other op-

erating systems need a 32-bit C com-
piler supporting UNIX standard I/O.
Media is 360K 5-1 /4" or 720K 3-1 /2"
PC floppy disks (please specify).

Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-
ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-
~ ~ T E X for 10 days. If you are not sat-
isfied, return it for a 100°h refund or
credit. (Offer applies to PC executa-
b l e ~ only.)

Free Buyer's Guide: Ask for the
free, 70-page Buyer's Gulde for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics
editors, publlc domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company
PUBLISHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222
FAX (607) 273-0484

VECTOR
TEX

TEX FOR THE 90's

Are you still
struggling with

Move on to scalable
fonts:
Save megabytes of storage-entire VTEX fits on
one floppy.
Instantly generate any font in any size and in any
variation from 5 to 100 points. (386: unlimited)
Standard font effects include compression, slant.
smallcaps, outline, shading, shadow, and reverse
print.
Discover the universe of MicroPress Font Library
professional typefaces: not available from any
other TEX vendor.

VTEX: $299 VTEX 386: $399
VTEX Pro: $549 VTEX 386 Pro: $649

Includes the VTEX typesetter (superset of TEX), 10 scalable
typefaces (professional versions include 150 typefaces),
WIEW (arbitrary magnification on EGA, CGA, VGA, Hercules,
AT&T), VLASER (HP LaserJet), VPOST (PostScript), VDOT (Epson.
Panasonic, NEC, Toshiba. Proprinter, Star, DeskJetj and manuals.
S/H add $5. COD add S j .
Wordperfect Interfxe add $100. Site licenses available. Dealers'
inquiries welcome. Professional typefaces available for older
implementations of TEX.

MICRO -
MicroPress Inc.
68-30 Harrow Street, Forest Hills, NY 11375

P R E S S Tel: (718) 575-1816 Fax: (718) 575-8038

TEX Users.. . .
New Services and Prices from

Computer Composition Corporation

We are pleased to announce the installation of several
new output services now available to TEX users:

1. High Resolution Laser Imaging (1200 dpi) from Postscript diskette
files created on either Mac- or PC-based systems.

2. High Resolution Laser Imaging (960 dpi) from DVImagnetic tape or
diskette files using a variety of typefaces in addition to the Computer
Modern typeface family.

3. High quality laser page proofs at 480 dpi.

4. NEW PRICING for high resolution laser imaging:

a. From Postscript text files in volumes over 400 pages $2.00 per page
b. From Postscript text files in volumes

between 100 & 400 pages . $2.25 per page
c. From Postscript text files in volumes below 100 pages . . $2.40 per page
d. From DVI files in volumes over 400 pages $2.15 per page
e. From DVI files in volumes between 100 & 400 pages $2.30 per page
f . From DVI files in volumes below 100 pages $2.45 per page

NOTE: DEDUCT $1.00 FROM THE ABOVE PRICES FOR HIGH QUALITY
LASER PAGE PROOFS.

5. All jobs shipped within 48 hours.

Call or write for page samples or send us your file and
we will image it on the output unit of your choice.

COMPUTER COMPOSITION CORPORATION - - - -
= I : - - = : : - - 140 1 West Girard Avenue Madison Heights, MI 4807 1 - = = - . = - - - - _ ZS '== --= = (3 13) 545-4330 FAX (3 13) 544- 16 1 1 -=
--- -- -- -- - - -. - -. - Since 1970 -

TEX Publis ing Services
From the Basic:
The American Mathematical Society offers you two basic, low cost TEX publishing services.

YOU provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5
phototypesetter. $5 per page for the first 100 pages; $2.50 per page for additional pages.
You provide a PostScript output file and we will provide typeset pages using an Agfa/
Compugraphic 9600 imagesetter. $7 per page for the first 100 pages; $3.50 per page for
additional pages.

There is a $30 minimum charge for either service. Quick turnaround is also provided ... a manuscript
up to 500 pages can be back in your hands in one week or less.

To the Complex:
As a full-service TEX publisher, you can look to the American Mathematical Society as a single source
for any or all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathematical
Society, P. 0. Box 6248, Providence, RI 02940, or call 401-455-4060.

' TEX Problem Solving 1 Non-CM Fonts Keyboarding
-1

FOR YOUR TEX TOOLBOX FOR YOUR BOOKSHELF
CAPTURE TEX BY EXAMPLE NEW!
Capture graphics generated by application programs. Input and output are shown side-by-side. Quickly
Make LaserJet images compatible with TEX. Create see how t o obtain desired output. $19.95
pk files from pc l or pcx files. $135.00 TEX BY TOPIC NEW!
texpic Learn to program complicated macros. . . . $29.25
Use texpic graphics package to integrate simple TEX FOR THE IMPATIENT
graphics-boxes, circles, ellipses, lines, arrows-into Includes a complete description of 'I33Y7s control se-

. your w documents. $79.00 quences. $29.25
Voyager FOR THE BEGINNER NEW!

. . T)$Y macros to produce viewgraphs-including bar A carefully paced tutorial introduction. $29.25
charts-quickly and easily. They provide format, in- BEGINNER'S BOOK OF

. . . . dentation, font, and spacing control. $25.00 A friendly introduction for beginners and aspiring
. "wizards." $29.95

Art and Pasteup

Micro Programs Inc. 251 Jackson bye . Syosset, NY 11791 (516) 921-1351

Camera Work 1 Printing and Binding
I

Distribution

without Bit maps
it be nice to be able to preview DVI files at any magnification, not just those for

which bitmap fonts have been pre-built? Or to produce truly resolution-independent output
that will run on any Postscript device, whether image setter

Perhaps you are looking for an alternative to Computer Modern? Well, there now exist
complete outline font sets which include math fonts that are direct replacements for those
in CM. Even if you do want to remain faithful to CM, there are distinct adva
to the outline version of the fonts. We supply the tools to do all of this:

0 - preview DVI files calling for outline fonts

* Preview at arbitrary magnification

* Preview in windowsTM - a simple, standarbzed user interface

* Print to any printer with a Windows printer driver

how EPSF files with preview on screen - and insert TIFF images.

SONE - partial font downloading for speed and efficien

* Avoid running out of memory on the printer

* Produce truly resolution-independent output

* Designed from the bottom up for use with outline fonts on the P

Fonts - available from W in Adobe Type 1 TM form (ATM compati

SR Computer Modern fonts - with accented characters built in

I&T$ + S L Q X fonts in outline form

* Euler font set - the most popular faces from the AMS font set.

* Lucida@Bright + LucidaBrightMath - a complete alternative to CM

Resolution-independent Postscript files using outline fonts can be printed by any se
reau, not just those with Tgpertise - and that translates into considerable savings
Perhaps it is time to get rid of those huge, complex directories full of bitmap font

Indian Hill, Carlisle, MA 01 741 (800) 742-4059 (508) 371-3286 Fax: (508) 371 -2004

Lucida is a registered trademark of Bigelow & Holmes lnc. Type 1 ,s a trademark of Adobe Systems Inc. Tg IS a trademark of the American Mathematical Society

Electronic Technical Publishing Services Company
2906 N.E. Glisan Street
Portland, Oregon 97232

503-234-5522 FAX: 503-234-5604
mimi@etp.com

ing Companions translates

WordPerfect

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using T@ or bT with little or no P TEX knowledge. Your WordPerfect files are translated into T@ or bT$ fi es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES,
and much more!

Retail Price
Academic Discount Price

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(6 14)294-3535
FAX (6 l4)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

TTING: JUST

PER PAGE!
Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM, and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCT@@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 415138843873.

TYPE

Everything You Nee At One Low Price ...
Announcing the New PCT@ Systems!

You can now receive a new PCTEX System, which includes PcT~Xl386 plus a full set of printer drivers, complete
with everything you need to create the highest quality typeset documents possible using a PC, all at one low
price. We offer a 20% Discount to TUG Members. Here are your choices:

The PC Tt?(System for Laser
Printers Includes:

PC TEX
PcT~X/386
PTI View

a PTI LaserIHP
PTI LaserIPS
PTI Jet
CM 300dpi Fonts

Retail: $599
TUG Members: $479

The Big PCT@ System for
Laser Printers Includes:

PC TEX
Big PC T~X1386
PTI View
PTI LaserIHP
PTI LaserIPS
PTI Jet
CM 300dpi Fonts

Retail: $699
TUG Members: $559

The PCT@ System for Dot
Matrix Printers Includes:

PC TEX
e PcT~X/386

PTI View
PTI Dot'FX
PTI Dot'LQ

e CM 240dpi & 180dpi Fonts
Retail: $499
TUG Members: $399

Upgrade your Current Products
and Get a Full Set of Printer Drivers,

plus PCTW386, for only $1 95
For those of you who already own PC TEX, PTI View, and at least one PTI Printer Driver, special System Upgrades*
are available to you as follows:

I PCT@ Laser System Upgrade - $195
Big PCTP Laser System Upgrade - $245
PCT@ Dot Matrix System Upgrade - $1 75

One Stop Shopping from Personal Ti, Inc.
PERSONAL

We offer you a full range of TEX products to meet your every need ...
including graphics programs, fonts, spell-checkers, text editors, and TEX
macros. Look for our new LATF book, fiT$ for Everyone, coming
soon. For our free 1991 Product Catalog, demo diskette, or for further T# Tn T-

information, call us today at (41 5) 388-8853. D l L

12 Madrona Avenue Mill Valley, CA 94941 Phone: (41 5) 388-8853 Fax: (41 5) 388-8865

In Europe: (31) 703237241 (49) 24167001 (49) 8024801 1 (49) 731 26932 (44) 742351489 (39) 290091 773
(33) 169073688 In Asia: (886) 353351 79 In Australia: (61) 34599671

* You must provide proof of rior purchase of PCTEX, PTI View, and a PTI Printer Drwer. Upgrades do not include CM Fonts.
PCTEX is a registered TM oPPersona TEX, Inc TEX is an American Mathematical Society TM. Site licenses available to qualified
organizations. Inquire about PTI distributorships. This ad was typeset using PC TEX and Bitstream Fonts.

A complete TEX solution that implements all the
TEX 3.14 capabilities, including virtual fonts and
the Extended Font standard adopted at the TUG

'90 meeting

ArborText put it all together. You don't have to!

ArborText's T@ 3.14 provides everything you need in a complete,
ready-to-use package:

Utilize the Extended T# Font Encoding capability with pre-built virtual fonts
for Computer Modern and Postscript

Use the conversion utilities we supply to make your own extended fonts
from existing TEX 2.0 style fonts

Easily accent characters from your foreign language keyboard

Create multi-language documents

oose from included hyphenation patterns for English, French, German, Dutch,
Spanish, Portuguese, or add your own

Use the extended version of Plain TEX and UTj$

ARBORTEXT INC. 1000 Victors Way Ann Arbor, MI 48108@ FAX (313) 996-3573 k Phone (313) 996-3566

Design
with TEX, without compromise

PRONK~LASSOCIATES INC. is a full-service design and production studio.

For ten years we have been providing design and production to

publishers such as Addison-Wesley; Houghton Mifflin; Holt, Rinehart

and Winston; McGraw-Hill Ryerson; Prentice-Hall and many others.

Utilizing TEX as our main production tool, our company is dedicated

to excellence in all aspects of book production.

Design
Our first commitment is to bring creative
excellence to each project. For the past six years
we have designed books for production with
TEX and PostScript and have learned to make
full use of the power this combination makes
possible. One, two and four-color books are
created, in TEX, without compromising design.

Graphics
Custom designed logos, charts, graphs and
diagrams are produced in-house. Our studio is
equipped to handle large volumes, working from
either hard copy or directly from your data files.
We also produce complex four-color graphics,
conventional illustration and photography.

Typesetting
Electronic files created in TEX or any other
word processing program are accepted and
converted to a final TEX document for
Postscript output in one, two or four colors.
The power of the T~X/PostScript partnership
allows logos, rules, graphics, screened tints to
be called for in TEX macros and then written
to a final PostScript file in full color.

Proofing
Page proofs are supplied with pale grid lines
to indicate columns, gutters, and placement
of common page elements. This type of proof
allows for instant recognition of short pages
and non-aligned elements. Final page proofs
for two and four-color books can be run very
economically in color.

Output
Fiwal files can be output on any PostScript
device. We will supply final plate-ready negative
film to your printer's specifications or we will
supply electronic files to your specifications.
Files can be prepared in color-separated four-
page imposed signatures for output on a large
format imagesetter.

PronktkAssociates Inc.
BOOK DESIGN AND PRODUCTION

1129 LESLIE STREET,

DON MILLS, ONTARIO

M J c 2 ~ 5 CANADA

PHONE (416) 441-3760

FAX (416) 441-9991

TEX Software for VMS

Convergent Ti#

Northlake Software
812 SW Washington Su~te 1100 I
Portland, Oregon 97205-3215

800-845-91 11 503-228-3383
I

Fax 503-228-5662 1

ArborText Inc.
1000 V~ctors Way I

Ann Arbor MI 48108
USA
31 3-996-3566 Fax 31 3-996-3573

Beckman's Diagnostics Systems Group is a
world leader in laboratory and hospital
instrument systems. Our products play a vital
role in improving the quality of life worldwide.
You can become a part of our exciting efforts.

We are currently seeking a TeXSPERT to
design and develop advanced TeX macro and
style files for Beckman's technical information
and documentation systems. Experience with
LaTex language development required.
Knowledge of postscript helpful.

We offer excellent compensation and benefits
packages. Please send your resume to:
Beckman Instruments, Inc., Professional
Staffing-VO-Tugboat, 250 S. Kraemer Blvd.,
Brea, CA 92621. An affirmative action
employer.

118
124
126

Cover 3
117
120
121

114,115
116
118
126
123
125
113

opposite
cover 3

122
119

Index of Advertisers
American Mathematical Society
ArborText
Beckman Instruments
Blue Sky Research
Computer Composition
ETP (Electronic Technical Publishing)
K-Talk Communications
Kinch Computer Company
Micropress, Inc.
Micro Programs, Inc.
Nort hlake Software
Personal TEX Inc.
Pronk&Associates
TCI Software

Users Group

Type 2000
Y&Y

TE)(Consulting and Production Services

North America

ABRAHAMS, Paul
214 River Road, Deerfield, MA 01342; (413) 774-5500
Development of w macros and macro packages. Short
courses in m. Editing assistance for authors of technical
articles, particularly those for whom English is not their
native language. My background includes programming,
computer science, mathematics, and authorship of ' ' w
for the Impatient".

AMERICAN MATHEMATICAL SOCIETY
P. 0. Box 6248, Providence, RI 02940; (401) 455-4060
Typesetting from DVI files on an Autologic APS Micro-5
or an Agfa Compugraphic 9600 (Postscript).
Times Roman and Computer Modern fonts.
Composition services for mathematical and technical books
and journal production.

ANAGNOSTOPOULOS, Paul C.
433 Rutland Street, Carlisle, MA 01741; (508) 371-2316
Composition and typesetting of high-quality books and
technical documents. Production using Computer Modern
or any available Postscript fonts. Assistance with book
design. I am a computer consultant with a Computer
Science education.

ARBORTEXT, Inc.
535 W. William, Suite 300, Ann Arbor, MI 48103;

(313) 996-3566
Typesetting from DVI files on an Autologic APS-5.
Computer Modern and standard Autologic fonts.
w installation and applications support.
w - r e l a t e d software products.

ARCHETYPE PUBLISHING, Inc.,
Lori McWilliam Pickert

P. 0 . Box 6567, Champaign, IL 61821; (217) 359-8178
Experienced in producing and editing technical journals
with TkX; complete book production from manuscript to
camera-ready copy; 'QX macro writing including complete
macro packages; consulting.

THE BARTLETT PRESS, Inc.,
Frederick H. Bartlett

Harrison Towers, 6F, 575 Easton Avenue,
Somerset, NJ 08873; (201) 745-9412

Vast experience: 100+ macro packages, over 30,000 pages
published with our macros; over a decade's experience in all
facets of publishing, both w and n o n - w ; all services
from copyediting and design to final mechanicals.

COWAN, Dr. Ray F.
141 Del Medio Ave. #134, Mountain View, CA 94040;

(415) 949-4911
Ten Years of l'3# and Related Software Consulting
Books, Documentation, Journals, and Newsletters
w & I P w macropackages, graphics; Postscript language
applications; device drivers; fonts; systems.

DOWNES, Michael
49 Weeks Street, North Smithfield, RI 02895;

(401) 762-3715
Instruction in A M S - ~ , A M S - I P w , plain w, and
advanced macro writing. Custom documentstyles.
Consulting: rn advanced mathematical typesetting topics;
rn tuning mathematics fonts; rn getting the most out of w
in a production environment. Troubleshooting.

ELECTRONIC TECHNICAL PUBLISHING
SERVICES CO.

2906 Northeast Glisan Street, Portland, Oregon 97232-3295:
(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial, design, illustration,
project management, composition and prepress. Our years
of experience with w and other electronic tools have
brought us the expertise to work effectively with publishers,
editors, and authors. ETP supports the efforts of the m
Users Group and the world-wide w community in the
advancement of superior technical communications.

HOENIG, Alan
17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
w typesetting services including complete book production;
macro writing; individual and group 'J&X instruction.

KUMAR, Romesh
1549 Ceals Court, Naperville, IL 60565; (708) 972-4342
Beginners and intermediate group/individual instruction
in w . Development of w macros for specific purposes.
Using with FORTRAN for custom-tailored software.
Flexible hours, including evenings and weekends.

MAGUS, Kevin W. Thompson
P. 0. Box 390965, Mountain View CA 94039-0965;

(800) 848-8037; (415) 940-1109; magus@cup . por ta l . corn
I P w consulting from start to finish. Layout design
and implementation, macro writing, training, phone
support, and publishing. Can take I P w files and return
camera ready copy. Knowledgeable about long document
preparation and mathematical formatting.

OGAWA, Arthur
920 Addison, Palo Alto, CA 94301; (415) 323-9624
Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

QUIXOTE, Don Hosek
440F Grinnell, Claremont, CA 91711; (714) 625-0147
Complete line of w , I P W , and METAFONT services
including custom I4w style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
w environments; phone consulting service; database
applications and more. Call for a free estimate.

RICHERT, Norman
1614 Loch Lake Drive, El Lago, TX 77586;

(713) 326-2583
TkX macro consulting.

W N O L O G Y , Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;

(617) 738-8029
w macro writing (author of M a c r o w) ; custom macros
to meet publisher's or designer's specifications; instruction

Outside North America

T Y P O W LTD.
Electronical Publishing, Battyiiny u. 14. Budapest, Hungary

H-1015: (036) 11152 337
Editing and typesetting technical journals and books with
w from manuscript to camera ready copy. Macro writing,
font designing, consulting and teaching.

July 27 to 30, 1992

13th Annual TEX Users Group

A Mark your calendars and join
us in Portland, the home of 20-
pound salmon and 20-story build-
ings. Ride light rail trains over cob-
blestone streets, ski Mt. Hood and
attend the symphony in the same
day-even in July. A friendly city,
Portland charms its visitors with a
variety of attractions including:

Windsurfing

A trip up the Columbia River on a
sternwheeler

Tours of the wine region- - - - ppp-pppppp-

The Metro Washington Park Zoo

Portland Center for the Performing
Arts

Oaks Amusement Park

Oregon Art Institute

Scenic Washington County

Oregon Museum of Science and
Industry

World Forestry Center

Mt. Hood

Portland Saturday Market for arts
and crafts

Of special interest to TUG Meeting
attendees may be the 1 l t h Annual
Mt. Hood Festival of Jazz to be held
August 1st and 2nd in Gresham,
Oregon, a suburb of Portland.

For a complete visitors' guide, The
Portland Book, call the Portland Visi-
tors' Center at (800) 345-32 14.

TEX in Context
Resources, Support Tools,
and Comparative Studies

A During four information-packed
days, we'll delve into front-ends for
TEX, inclusion of graphics within TEX
documents as well as exportation of
TEX output to other graphics pro-
grams, comparisons of implemen-
tations of TEX on microcomputers,
network access and resources, edu-
cational issues, and translation be-
twiGG TEX and wZd-processo6.

Presentations

Workshops

Networking Luncheons

Exhibits

Panel discussions

Classes

A We'll meet and stay at the Ben-
son Hotel, Portland's premier hotel
recently restored to its grand stature
of the early 1900s. A registered his-
toric landmark, the Benson was built
by Oregon lumberman, Simon Ben-
son using elaborate craftsmanship
and imported wood interiors. Special
TUG rates: $89/night (available until
June 26 only.)

A Program coordinator:

Mimi Lafrenz

ETP Services Co. - - -

Program committee:

Helen Gibson

Wellcome Institute

Doug Henderson

Blue Sky Research

Ron Whitney

TEX Users Group

A Watch your mail and future issues
of TUGboat and TEX & TUG News for
more details. In the meantime, if you
have questions, contact:

TEX Users Group
Phone: (401) 751 -7760

Fax: (401) 751 -1 071
e-mail: tugQmath. a m . corn
F! 0. Box 9506

Providence, RI 02940

Forty faces of Computer Modern
designed by Donald Knuth

published in Adobe Type 1 format
compatible with

Adobe Type Manager
and all Postscript printers

$345.00 Educational $195.00
Macintosh or MS-DOS

Blue Sky Research
534 Southwest Third Avenue

Portland, Oregon 97204 USA
(800) 622-8398, (503) 222-9571

FAX (503) 222-1643

Volume 13, Number 1 / April 1992

Addresses

General Delivery

Software

Philology

Fonts

Output Devices

Resources

Questions

Tutorials

Macros

Abstracts

News &
Announcements

Late-Breaking News

TUG Business

Forms

Advertisements

Prez says 1 Malcolm Clark
President's introduction / Nelson H. F. Beebe
Editorial comments / Barbara Beeton
Samuel B. Whidden, 1930-1991

Inside Type & Set / Graham Asher

Computer Aided Hyphenation for Italian and Modern Latin / Claudio Beccari

Invisibility using virtual fonts / Sebastian Rahtz
Packing METRFONTs into Postscript 1 Toby Thain
Modern Greek with adjunct fonts / C. Mylonas and R. Whitney
Comments on "Filenames for Fonts" (TUGboat 11#4) / Frank Mittelbach

DVI driver standard, level 0 / TUG DVI Driver Standards Committee

New books on rn / Victor Eijkhout
New books on I P W / Nico Poppelier

Jus t p la in &&A: Of partitioned matrices and doublespacing / Alan Hoenig

Elementary text processing and parsing in rn - the appreciation of tokens - 1
L. Siebenmann

The bag of tricks 1 Victor Eijkhout
Erratum: Oral m, TUGboat 12, no. 2, pp. 272-276 / Victor Eijkhout
Some basic control macros for rn / Jonathan Fine
Self-replicating macros / Victor Eijkhout and Ron Sornmeling
A font and a style for typesetting chess using I P r n or / Piet Tutelaers

Tower of Hanoi, revisited / Kees van der Laan

The I P W column / Jackie Damrau
Erratum: "See also" indexing with Makeindex, TUGboat 12, no. 2, p. 290 1

Harold Thimbleby
I4m 2.09 -+ I P ' 3 1 f iank Mittelbach and Chris Rowley

Cahiers GUTenberg #9 and #lo-11

Calendar
EuroTE;rC 92, Prague, 14-18 September 1992

Production notes 1 Barbara Beeton
Coming next issue

Institutional members

TUG membership application

Index of advertisers
T)-i$ consulting and production services

