
TUGboat, Volume 14 (1993), No. 2

Tutorials

Essential NFSS2, version 2

Sebastian Rahtz

Abstract

This article offers a user's view of the New Font Se-

lection Scheme, version 2. It describes the reasons

for using the NFSS; the differences a user will en-

counter between NFSS and old IP'; what it will

be like installing and using NFSS2; some special sit-
uations in mathematics; and an overview of the ad-

vanced NFSS2 commands for describing new fonts.

1 Introduction

TEX has a very general model of using different type-

faces; all it needs is to have a set of metric informa-

tion for each font, and it leaves the actual setting

up to the dvi driver. Within the input file,
the user associates a name with a given font at a

particular size, and uses that name when she wishes

to set in the font. In Knuth's descriptive 'plain'

macros, this is easy to work with; in I P W , how-

ever, the user works at a higher level of commands
like \bf or \huge, and the system is supposed to

work out which particular font is meant. In the early

1980s when I P ' was being developed, there was

not much choice in typefaces (everyone used Com-

puter Modern) or sizes, so Lamport simply 'hard-

wired' all the allowed combinations of size and style,

and assigned them to specific external fonts.
Unfortunately, IPlQX's font selection is not as

general as it sometimes seems. The commands do

not add together to produce an intuitive effect; thus

the commands \it and \bf , which separately pro-

duce italic and bold, do not produce bold italic when
used together, but have the effect of whichever com-

mand comes last. Similarly, a size change always

reverts to a normal weight font, so that \bf \Large

does not produce large bold, whereas \Large\bf

does. What is much worse is that if one wishes

to use a different typeface throughout a document

wherever (say) sans-serif is used, it requires major
surgery to the innards of I P ' ; the font assign-

ments are made in the file If onts . tex which is read

only when one is building the format file for I 4 W ,

something which most users never do.

The average user who simply uses the fonts
which come with a typical TQX installation is not

usually aware of the underlying lack of flexibility;
however, now that many more fonts are available

for use (a greater choice of METAFONT sources, and

the ubiquitous Postscript fonts), this area has been

a bottleneck in the use of I 4 w in general typeset-

ting. The user who wanted Times Roman as the

default typeface in a document had three choices:

1. To load many new fonts with the newf ont com-

mand, and use them explicitly;

2. To heavily edit the file If onts. tex and build a

new version of I4'; or

3. To take large chunks out of 1fonts.tex and

replicate their effect in a style file.

Other style files were written to specifically imple-

ment features like bold sans-serif; but an altogether
more general solution was needed, and this was met

in 1989 with the New Font Selection Scheme, which

was subsequently also used in AM-IP'. The

NFSS is a complete replacement for If onts . tex; it
contains a generic concept for varying font attributes
individually and integrating new font families easily

into I 4 W .

Since the first NFSS, considerable progress has
been made towards a completely new version of

I4' itself, and a new version of NFSS is one of

the first useable results; this is what is described

here.

2 Overview of NFSS2

The NFSS concept is based on five attnbutes of a

font; the user changes any of the attributes, and it is

the job of I 4 m to identify the appropriate external
font which fits the new situation. The attributes are

Encoding The way the font is laid out; when only
CM fonts are used, this does not vary, because

all of Knuth's fonts have more or less the same

layout. But users of Postscript fonts, or the re-

cent 256-character 'DC' fonts (described in de-
tail in 2), will meet different layouts. This is

discussed in more detail in Appendix 1.

Family The basic design of the typeface, e.g. Times

Roman, Computer Modern, or Stone Informal.

Shape The main divisions of the typeface; most

have at least two variants, 'normal' and italic,

and possibly something specialized like small

caps.

Series Many typefaces come in a range of 'weights'

(light, normal, bold, etc.) , determined by the

thickness of the strokes of letters; they also vary

in width, as we see in Computer Modern, which
has a normal bold and an 'extended' bold. The

two attributes of width and weight are com-

bined in the NFSS, and called 'series'.

Size The base height of the letter shapes (lopt,
14pt, etc.). These different sizes may be

TUGboat, Volume 14 (1993), No. 2 133

achieved in two ways-by having a separate

font design for each size, or by scaling of a sin-

gle (usually) lOpt design. Typical Computer

Modern and Postscript setups use a combina-

tion of methods, but we do need to worry about

this for the NFSS.

At the start of a I4' job, each of the five attributes

has a default value, typically as follows:

encodzng OT1 Normal encoding

family cmr Computer Modern Roman

shape n Normal (upright roman)
sertes m Medium weight

size IOpt

Inside I 4 m , this combination is looked up in a ta-

ble to see which external font this situation corre-

sponds to, and the result will be the familiar cmrl0.

Suppose we now wish to move into italics; we simply

change the 'shape' attribute to 'italic', and I P W re-

consults its table to find this means it should load

and use the font cmtil0. A subsequent request to
change the 'series' to 'bold' will not change the italic

shape, but search the table for a new combination

of 'bold series' and 'italic shape', coming up with

cmbxtil0. Similarly, a request to change the font
size at this point to 24pt will leave all other char-

acteristics unchanged, and simply load cmbxt i 10 at

a larger size (since that particular font is available

only in a lOpt design).

In practice, all this selection is hidden from the

user behind familiar commands like \em and \Large,
but it is important to realize that the scheme is com-

pletely general. If, for instance, we had available
the full Univers family, which has a great range of

weights, we could select any of them by changing

the 'series' characteristic, and leaving I 4 W to find

the right font metric file.

How does I P ' know how to match a combi-

nation of OTl+cmr+m+n+lOpt to cmrlo? By means
of special fd (font description) files (with a sufFix

of . fd in most operating systems). There is one
of these for every combination of font encoding and

family, which defines the possibilities of the other

three attributes. Thus OTlcmr . f d classifies all the
normal Computer Modern fonts by means of the font

attributes, and says which external font they corre-

spond to. When I 4 W starts, it does not have any

fonts loaded1, but waits until some font selection is

needed, and then loads the appropriate fd file; as

new combinations of font attributes occur, f d files

are loaded. We will see later what the format of
these font files is like.

Not quite true; it needs some fallback defaults
if all else fails.

Perhaps the most dramatic effect of attribute

changing is when a different family is selected, and

with a single command the whole document changes

from, eg . , Computer Modern to Lucida Bright.

3 Normal usage

The vast majority of your existing I 4 m documents

will run through the new system with no further

change. The commonest area for incompatibilities

is in math (see below, section 4), but you may also
be 'tripped' by the new orthogonality in shape and

weight selection. If your document contains:

See (\bf bold and then \tt typewriter)

under the old the \tt completely overrides
the effect of \bf, but in the new system, they are

different attributes, so the command \tt changes

the family to (perhaps) cmtt, but the bold series

attribute is unchanged, so the system will try to

load a bold typewriter font (which you may or may

not have). A rather more worrying situation oc-

curs when you have defined a new command without
thinking through the ramifications. Thus if in a style

file or document preamble, we have said

\newcommandC\P~)CC\sc Postscript))

so that \PS produces POSTSCRIPT, and then later
we write

\sectionIHow \PS\ changed my life)

we may have a problem, if the \sect ion command is

defined to set its argument in a bold sans-serif type-

face. The definition of \PS says that the word is in

small caps. This is a change in shape, so the fam-

ily (a sans-serif font) stays unchanged, as does the

series (bold). So the system tries to load a small
caps bold sans-serif font, which you may not have

(you don't in Computer Modern, for instance). Here
a very important feature of NFSS2 comes int,o ac-

tion: font substitution. This follows a set of rules

(which the user can change) to find the closest pos-

sible match. This may not be at all what the user

intended, and it will probably produce a different

effect from the old I P ' . However, NFSS2 always

puts out clear warnings on the terminal and log file

when it is substituting, and the problem is usually

obvious when you see your printout. Some more
careful discipline is required when writing new doc-

uments, and emending old ones. Bear in mind that

the strange effects are not mistakes by I P W , but
simply a stricter interpretation of the input than the

old I P W .

How do we persuade I 4 W to choose the at-

tributes we want? The same commands which we

already have work as expected, with two new ones
available; these are listed in Table 1.

TUGboat, Volume 14 (1993); No. 2

Command Meaning Effect

\rm normal family usually a serif font

\sf sans family a sans font

\tt typewriter family a monospaced typewriter font

\bf bold series bold typeface

\it italic shape italic typeface
\sl slanted shape slanted typeface

\sc small-caps shape SMALL-CAPS TYPEFACE

\normalshape normal shape back to normal .

\mediumseries normal series normal weight

Table 1: User commands to change attributes

C o m m a n d Example Effect

Changing family

\textrm \textrm{Whales) Whales

\text sf \textsf {Whales) Whales

\texttt \texttt{Whales) Whales

Changing series

\textbf \textbf{Whales) Whales

\textmedium \textmedium{Whales) Whales

Changing shape

\textit \textit{Whales) Whales

\texts1 \textsl{Whales) Whales

\textsc \textsc{Whales) WHALES
\textnormal \textnormal{Whales) Whales
\text em \textem{Whales) Whales

Table 2: New font commands with arguments

The size changing commands have an impor-

tant difference compared to old I 4 W : they change
only the font size attribute (in the old I4m they

changed the series and shape back to 'normal ro-

man').

The font changing commands in I 4 w decla-
rations have always been rather anomalous, in that

they affect the text within the { and 3 group where
they are used, instead of having an argument like

most other commands. I4w beginners often mis-

takenly type \em{hello) when trying to typeset

hello. It is therefore a very good idea to start using

a different set of commands, which are provided by

the style option f ontcmds, listed in Table 2.

If you want to change the default action associ-
ated with any of the above commands, you can do
so with the \renewcommand macro; each of the dec-

larations above has a corresponding command with

a su f i of default. Thus you could change the ef-
fect produced by \tt by saying (in the document
preamble or a style file):

\renewcommand{\ttdefault)Ccourier)

if you had a font family called 'courier'. There may

be problems with the encoding, if this is a Postscript

font, but we will discuss that in Appendix 1.

'How,' the suspicious reader will ask, 'do I know

what values are allowed for the font attributes? How
do I know that boldness is indicated by a series of

"bx"?' In fact, more or less a n y value for the at-

tributes is permitted, but if you want your docu-

ment to be useable by others, it would be as well to

stick to a conventional set. If you ask for a shape

of 'grotesque', you will get the right font i f the fd
contains an entry for that combination of attributes.

Conventional values are as follows (for the Computer

Modern family):

Family cmr, cmss, cmtt

Shape n, it, sl, sc

Series m, b, bx (differentiating between normal

bold and extended bold)

Most users will not worry about this, but simply

use the high-level commands and get the effect they

intended. Different font families will commonly

be loaded via a style file which changes the de-

fault families looked for by \rm, \sf and \tt. A
palatino. sty, for instance, will set things up so

that the roman font is Palatino-Roman. the sans

font is Helvetica and the typewriter font is Courier.
A set of suitable fd files and style files for common

Postscript fonts is distributed with NFSS2. The only

problem here is agreeing on family names for fonts,

and having suitable f d files, but this is done for a

great many typefaces in the standard NFSS2 distri-

bution, with the family names listed in Table 3.

4 Mathematical work

Mathematical typesetting with NFSS2 works in a

very different way to text, as the fonts do n o t vary

according to the current font attributes in the main
body of the document. There are some incompati-

bilities with old I4w, and some new facilities. The

principal difference is that font declarations like \bf

no longer work, but we must rely on two different
concepts, m a t h vers ions and m a t h alphabets. The

TUGboat, Volume 14 (1993), No. 2

/ \ccmi Concrete math italic 1 \ccr Concrete Roman

Computer Modern

\cmr Computer Modern Roman

\cmtt Computer Modern Typewriter
\cmex Computer Modern math extension
\cmdh Computer Modern Dunhill
\cmf r Computer Modern Funny

\cmss Computer Modern Sans
\cmm Computer Modern math italic

\cmsy Computer Modern math symbols
\cmf i b Computer Modern Fibonacci

Euler

mathversion changes the appearance of the whole

formula (all the fonts change), while the alphabet is

used to set a particular set of of characters in a cho-

sen font. The normal text commands like \ r m , \sf

or \bf are now completely illegal in math. and a

new set of commands is provided:

Jw9
\ lasy LCIQX symbols

A MS

\msa AMS symbol font 1 / \msb AMS symbol font 2

Concrete

\euex Euler math extension
\em Euler Roman

J

PostScrzpt

Example EfSect

\mathcal calligraphic style

\euf Euler Fraktur

\eus Euler Script

\pag Avant Garde
\pcr Courier
\ppl Palatino
\ptm Times
\pzd Zapf Dingbats

\mathrm upright text
\mathbf bold text

\mathsf sans-serif

\mathit italic text

\pbk Bookman
\phv Helvetica
\psy Symbol
\pzc Zapf Chancery

These are commands with an argument, not dec-

larations. So to get a calligraphic ABC, we say

$\mathcal{ABC)$, and not $\mathcal ABC$. The
effect of the latter will be to set just the A in calli-

graphic, since just the first token after \mathcal is

taken as the argument.

You can define new math alphabets for yourself

easily, with the \DeclareMathAlphabet command,

which associates a particular font family, encoding,

shape, and series with the command you want to
use. So if we want to declare a typewriter math

alphabet, we could say (in the document preamble):

\DeclareMathAlphabet

~\mathtt}{OTl}{cmtt}{m}{n>

(OT1 is the name of the original 7&X font layout).

What about new math symbol fonts? To illus-

trate some of the commands available here, let us

look at how a style file looks which sets up the AMS

Table 3: Common font family names

symbol fonts. Assuming that the relevant fd files

exist on our system for the fonts (named msa and

msb in Table 3 above), we can declare the existence

of them as symbol fonts:

\DeclareSymbolFont{AMSa}{U}{msa}{m}{n>

\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}

where we define the names (AMSa and AMSb) by
which we are going refer to them in future, the en-

coding (U is for 'undefined', where there is no stan-

dard layout), family (msa and msb), series (m) and

shape (n). We can use the new fonts in two ways:

1. By declaring named math symbols, e.g.:

\DeclareMathSymbol\lozenge

{\mathord}{AMSa}{"O6}

which looks more fearsome than it really is. We

are defining a new math macro \lozenge, and

saying it comes from the AMSa font we have de-
fined earlier, at position "06 (this hexadecimal

numbering notation is described in 4, p. 116).

The tricky bit is \mathord, which says what
type of symbol it is. The possibilities are listed

in Table 4, but the serious user is advised to

consult 3, p. 158 .~

2. By saying that we want to use a symbol font

also as a math alphabet:

\DeclareSymbolFontAlphabet

{\bbold}{AMSb}

Note that \mathalpha is an NFSS2 addition to

the list of possible types.

TUGboat, Volume 14 (1993), No. 2 136

bol

This defines a new math alphabet command

\bbold, which picks up characters from the
AMSb fonts (where the AMS has placed 'black-

board bold' letters).

The use of the three math alphabet and sym-

commands here is used to construct most of

the standard math interface; the supplied style file

eu l e r . s ty , which redefines math to use the Euler

fonts, is a good example of its use.

I have not dealt much here with math versions;

suffice it to say that each of the commands described

above has a corresponding command which allows
the user to select a specific symbol or alphabet font

for each different math version.

5 Going further, and towards UTji53

This article has not described all the features of

NFSS2, or the style files which are distributed with
it. For a detailed description of the whole system

(and a great many other useful topics in W w) ,

the reader is referred to 1.

I advise all I4W users to switch to the new

NFSS2 standard for I 4 W as soon as possible; the
work done in NFSS2 is central to the development

of the next version of W W , written by the offi-

cial maintainers of W w , and if you get used to the

NFSS way of thinking now, you will be in a good po-

sition to take advantage of W W 3 when it appears.
The few remaining common style files which rely on

the old behaviour of I 4 w are rapidly being con-

verted, and many new font-related styles are being

written now that it is so much easier to do so.

References

[I] Goossens, M., Mittelbach, F., and Samarin, A.

(1993). The BT&Y Companion. Addison-Wesley,
Reading, Massachusetts.

[2] Haralambous, Y. (1992). TJ$ conventions con-

cerning languages. l'&Y and TUG News, 1(4):3-
10.

[3] Knuth, D. E. (1984). The rnbook. Addison-

Wesley, Reading, Massachusetts.

[4] Lamport, L. (1986). Bl'&Y Users Guide and Ref-

erence Manual. Addison-Wesley, Reading, Mass-
achuset t s.

Appendix 1: Encoding, and Postscript fonts

It is an unfortunate fact of life that we do not have

a completely accepted standard for layout of fonts;
everyone agrees on a certain number of characters,

and where they are to be found (the ASCII character

set), but this is not adequate for any serious type-

setting. Whenever we type character 234 or a l&X
macro like \c(c), we want the effect to be q, and

w has to know where to find this in a font. We

are likely to meet at least three situations, or five if

we use PostScript fonts:

1. The layout of Knuth's original Computer Mod-
ern fonts (3, Appendix F).

2. The 'Cork' layout, discussed by 2.

3. An extended ASCII layout, as used (for in-

stance) in many DOS or Macintosh applications

(not necessarily the same!).

4. 'Raw' PostScript layout, the default defined by

Adobe.

5 . A re-coded PostScript layout; an example is

in the font metric files supplied with Tom Ro-

kicki's dvzps, which is basically the same as

Knuth's layout, but has some small differences.

This means that the definition of the \c macro is

going to vary according to the font we are using;

hence the font attribute of encoding.3 NFSS2 pro-

vides hooks, so that we can supply w code which

will be activated when the encoding changes. Alter-
natively, if we know we are going to use a different

encoding throughout a document, we can just make

changes in a style file.

The normal user will have to make one (im-

portant) choice: is she going to use the current

Computer Modern Roman layout, or the new Cork

layout? If she chooses the latter (and this means

the 'dc' fonts must be available), then the style

file dclf ont . s t y is supplied to set up all the nec-

essary macro^.^ If use of PostScript fonts is pro-

posed, slight complications ensue. In the first

case (original TEX layout), then the PostScript

fonts must be in exactly the right layout; users of
Rokicki's metric files and dvips will need to use

the style file psnf ss. s ty , and use the command

\RokickiExtras in the document preamble to fix

some macros. In the case of using Cork encoding, it

will be necessary to get metrics for the PostScript
fonts which remap the layout correctly, and to en-

sure that the PostScript interpreter in the printer

knows about it too. This is discussed in detail in

the PSNFSS2 sub-package supplied with NFSS2.

Assuming the encoding question has been

sorted out, the important thing is to change all the

family defaults. Setting up a document to use (say)

PostScript Times Roman throughout is trivial; we
simply write:

This is an addition to the NFSS since version 1.
This will become the default in WQX3.

TUGboat, Volume 14 (1993), No. 2

\mathclose closing

Table 4: Math symbol types

in a style file or in the document preamble, and we

will have changed the standard for normal, sans-serif

and typewriter setting.
Some users will not be working with anything

like the ASCII layout at all, but will be typeset-

ting in something like Cyrillic, Devanagari or Elvish.

The encoding attribute for fonts makes it easy to

swap between different systems in the same docu-

ment, and call up whatever macros are needed for a
particular situation. New encodings can be defined,

and old ones redefined. The detailed commands for

declaring new encodings, and for declaring new font

families, are described in the NFSS2 documentation.

Appendix 2: Installation

Thzs sectzon zs relevant to the reader only zf NFSS2

has not already been znstalled on her computer.

One of the characteristics of the new work be-

ing undertaken on I 4 m is that Knuth's principles

of literate programming are being applied, which

means that a single documented source is supplied

from which the user can either generate printed doc-

umentation, or produce a useable file for input.

The NFSS2 distribution cannot therefore be used un-

til it has been unpacked and installed; t h s is all done
using 'I)jX itself, and the only additional package

needed by the first time user is the docstrip macros,

which should always be supplied with NFSS2. The
installation is in two parts:

1. We must first get a set of f d (and some
. s ty) files ready for use; this is done by running

plain T).jX or I 4 m on the file main. i n s which

generates all the files we need. It will probably
ask some questions as it runs about what fonts

you have, but it won't matter much if you get

the answers wrong (it may create f d files for

strange fonts you don't have, but if you never

try to use them, that does not matter).

2. Now we need to create a new U r n format file

(usually with a s u f i of . fmt); this can seem

a slightly forbidding procedure, but should be

explained in the documentation with your m :

what happens is that a special version of is
run, called i n i m , which reads the basic U m

macros, and hyphenation patterns, and dumps

a fast loading version which you place where

normal m can find it. On some systems there

is actually an i n i t e x command, but on others

it is an option to normal m . Thus, if you use

the e m m package, you type t e x -i to use the
right portion of the program. You must use this

special m, or you cannot use the hyphenation

system.

Creating the NFSS2 format is straightfor-
ward-just run i n i m on the file nf ss2 l tx ,

and type \dump in response to the * prompt

when it finishes loading files5

If you want to test your new U'I)jX format now,

work in the directory where you placed the NFSS2
files; otherwise move nf s s2 l tx . fmt to the directory

where your m looks for format files, and copy all

the f d files to a directory which m searches for
inputs (along with any . s t y files created in stage 1

above). Depending on how your m system works,

you may have to do some more work to access the

format file; thus we might edit the 1a tex .ba t file6

under DOS, or make a new symbolic link to v i r t ex

if we run the web2c Unix m .

If you wish to find out more about NFSS2,
and maybe print the documentation of its internal

workings (not for the faint of heart!), read the file

readme. mz8 for details of how to proceed.

o Sebastian Rahtz
ArchaeoInformatica
12 Cygnet Street
York YO1 2JR
UK
spqrhinster.york.ac.uk

Unless you are a rather advanced guru, and

commonly add extra features to your format files.
It is strongly advised that you do not make

your new IPw an option, by making a new com-

mand, but that you use it for all your work from

now on.

