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Preliminaries

Millions of mathematical formulas are typeset an-
nually. Most of the numbers we see in print are
produced by computer. So are the indexes and
catalogs issued by database publishers. Charts and
diagrams and other products of computer graphics
have replaced manually drafted copy. But most
of the formulas in mathematics, engineering and
science publications are still derived and coded by
hand.

The TeXForm function in Release 2 of Math-
ematica [1], and some more extensive resources in
Release 3 [2], provide a bridge between symbolic
computation and computer composition. The au-
thor’s mathscape system was designed to strengthen
the bridge. Written in Release 2 of Mathematica, it
is in ongoing use by the author, and it has produced
several hundred typeset pages of heavily mathemat-
ical material already. It subsumes work reported
previously as bilo and forTeX [3]. It produces a
document from a control file containing:

• statements that Mathematica evaluates for in-
clusion in the output,

• formatting information and other statements to
be executed silently, flagged by the # symbol,

• text coded in LATEX, with each record flagged
with an *, or in a text environment between
# beginText and # endText markers.

Then, within a Mathematica session, the mathscape

package is loaded, and the mathscape statement
autorecord[controlFileName]:

• makes Mathematica read the control file and
convert its contents to the LATEX coded repre-
sentation of the document that is being created,

• invokes LATEX to convert this to a dvi file,

• invokes a preview program, and

• prints the typeset product if requested.

In this way, the document can be crafted interac-
tively. Graphics can be incorporated with ease.

The system was started to meet some major
needs of research publication. The production of
problem sets and worked examples for teaching has

been addressed extensively. So has the production
of tables of formulas for reference. A tutorial intro-
duction to mathscape and a systematic review are
available [4].

The production of the following boxed output
illustrates the control file conventions.

y2 − x2

is converted by Factor to:

(y − x)(y + x)

Here, formatting is needed to override the default
arrangement −x2 + y2 and (−x+ y)(x+ y) imposed
by Mathematica. mathscape converts the immediate
result v of a Mathematica evaluation to prep[v].
prep is initialized to Identity and reassigned dy-
namically, in the present case to a function that
reverses every Plus. The portion of the input that
produced the contents of the preceding box is:

# prep = toEach[Plus][reverse]

s = y^2 - x^2

* is converted by \verb|Factor| to:

s // Factor

mathscape supports a large open-ended class of func-
tions, typified by toEach[Plus], that “target” par-
ticular portions of an expression. This can be iden-
tified by head, e.g., toEach[Plus], toEach[log],
as a Mathematica pattern e.g., toThe[_Integer+_],
by part name, e.g., toTheLhs, toTheNumerator or,
as in to[Plus][containing[x], outermost], by
head and criterion, or by pattern and criterion.

Playing through to TEX

mathscape passes elementary algebraic expressions
to the Mathematica TeXForm function for conver-
sion to corresponding TEX code. Greek letters, the
names of all the special symbols in the TEX vocab-
ulary and some other unparameterized objects, e.g.,
strut, are denoted by the TEX control sequence
names without the \. The names of binary oper-
ators (e.g., oplus) are given appropriate mathemat-
ical properties, too. Function expressions are used
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for parameterized objects, e.g., hat[x], rule[rise]
[width, height], overbrace[tag][expr] that map
into TEX codes in just a few simple ways.

Other names can be used in the body of a
calculation and then changed to the TEX names by
replacement rules assigned to prep. The statement
newSymbol[v] makes mathscape append v to the
list of identifiers for unparameterized TEX codes.
Symbols can be appended to the lists of other control
sequence names by further functions that write the
definitions to the output.

The built-in Mathematica names and the low-
ercase names, e.g., Cos, cos, for the typographically
“cos-like” functions are converted to TEX sequences
that provide the conventional omission/inclusion of
parentheses and placement of exponent, as in:

cos[x], cos[x]^2, cos[x+y]
resp
⊲ > cosx , cos2 x , cos(x + y)

(We use the ⊲ > and
resp
⊲ > symbols between single

or multiple verbatimized input expressions and the
typeset products.) In the output, parentheses are
put around the arguments of functions that do not
have special typographic status. Thus:

f[x], g[u,v]
resp
⊲ > f(x), g(u, v)

Special bracketing is illustrated by:

enbr[x], f[enbr[x]]
resp
⊲ > [x], f [x]

enpr[enpr[x]], f[ompr[x]]
resp
⊲ > ((x)), fx

ensp["|", ">"][x, y] ⊲ > |x, y >

sapr[x/y] ⊲ >

(
x

y

)

Further en and sa functions provide other fixed-size
and self-adjusting bracketing symbols. Typically,
these are introduced after the body of a symbolic
computation by targetting expressions in prep.

The infix treatment of binary operators, rela-
tionship symbols and arrows in the output, is shown
by:

otimes[x, oplus[u,v,w]] ⊲ > x ⊗ (u ⊕ v ⊕ w)

ll[a,b,c] ⊲ > a ≪ b ≪ c

not[prec][u,v] ⊲ > u≺/v

rightarrow[a,b,c] ⊲ > a → b → c

arrowoo[u,v] ⊲ > u> >v

The conventions for single and multiple subscripts
and superscripts, on the right and/or left of a symbol
are illustrated by:

x@sub@1, x@sup@enpr[m@sub@1], P@subsup[n, m]
resp
⊲ > x1, x(m1), Pm

n

x@subscriptSequence[a,b]
resp
⊲ > xa,b

E@lsub@r, E@lsubsup[r, epsilon]
resp
⊲ > rE, ǫ

rE

The conventions for decorations, ties, rules and com-
posites are illustrated by:

hat@x, breve@Psi, widetilde@enpr[tilde@A]
resp
⊲ > x̂, Ψ̆, (̃Ã)

underline[x+underline[y]] ⊲ > x + y

f[u] + overbrace["time\ dependent"][

g[t,u] + g[t,w]]

⊲ > f(u) +

time dependent︷ ︸︸ ︷
g(t, u) + g(t, w)

rule[5pt][30pt, 1pt] ⊲ >

atop[a, b], above[1pt][a, b]
resp
⊲ >

a

b
,

a

b

stackrel[F, "="], ddrel[arrowcc, a, b]

resp
⊲ >

F
=,

a
⊲ ✄

b

overlay[vee, wedge] ⊲ > ∧∨
The effects of some simple catenation functions are
shown by:

sequence[a, b, c, d] ⊲ > a, b, c, d

catenation[X, scriptscriptstyle[path], Y]

⊲ > XpathY

markedCatenation[cdots][a, b, c]

⊲ > a · · · b · · · c
Fonts styles and sizes are specified by TEX names.
Also, sizedFont[1], . . . alias tiny, . . . . Thus,

rm[a b^2], bf[a b^2], sansSerif[a b^2]

resp
⊲ > ab2, ab2, ab2

boldmath[a b^2], boldmath[cal[ABCD]]

resp
⊲ > ab

2, ABCD

tiny[a b], sizedFont[3][a b]

resp
⊲ > a b, ab

mathscape uses TEX primitives in the basic
alignment process, too. Every display is built us-
ing hbox, vbox, hboxTo, vboxTo, hspace, vspace,
newlength, addtowidth, newbox, phantom, setbox,
copy, wd, ht, dp, and related constructs that trans-
late directly to TEX or to local macros.
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Varying the style

Alternative notations often exist for the same math-
ematical expression. mathscape lets the user change
these freely. Thus, logical expressions are set in &|¬
notation by default. The assignment logicStyle=2
changes this to the ∧ ∨ − notation. logicStyle=1

restores the default.
Square roots introduce a more general tactic.

Following the action of prep, sqrt[z] is converted
to style[sqrt, defaultSqrtStyle][z]. Initially,
the style parameter is 1, giving the radical notation√

z. Changing it to 2 and 3 give z1/2 and z
1

2 re-
spectively. In general, useStyle[n] converts f[z]
to style[f, n][z]. It is used to mix styles within a
single expression, as in the production of:

(1 −
√

δ)1/2

from

# prep = to[sqrt][1][useStyle[2]]

sqrt[1 - sqrt[delta]]

Fractions are built up, with the numerator and
denominator of just the outermost fractions in the
displaystylemode, when defaultFractionStyle

is 1. Style 2 puts all the numerators and denomina-
tors in displaystyle. Styles 3 and 4 give shilling
and reciprocal notations. Styles 1.1, 1.2, . . . , and
2.1, 2.2, . . . strengthen the fraction bar and lengthen
the shilling slash. For powers, style 2 gives radical
notation, e.g., 3

√
x, when the exponent is a fraction.

Representations

We represent derivatives, integrals, matrices, sums
and many other composite mathematical objects in
a way that facilitates mechanical operations and
allows flexible styling in the typeset output. The
handling of partial derivatives, shown next, is typi-
cal.

D$[x][y], D$[x, 2][y], D$[x,y,z][phi]

resp
⊲ >

∂y

∂x
,

∂2y

∂x2
,

∂3φ

∂x∂y∂z

mathscape contains extensive suites of procedures to
manipulate expressions represented by “compound
heads”, such as D$[x], Dt$[x] (for a total deriva-
tive), sum[i, j, k], integral[x, 0, infinity],
and matrix[m,n,M,N]. Style is controlled by the
setOptions[D$, placement -> subscript] state-
ment and its counterparts. These create intermedi-
ate style[. . . ][. . . ] expressions, that for the cur-
rent D$ example, leads to subscript placement of the
variables of differentiation, as in φx,y,z.

Environments

By default, mathscape centers the typeset Mathe-
matica statements in a field that is widthForMath

wide. The commands alignLeft, alignRight and
alignCenter are put in # statements to change the
alignment. leftIndent and rightIndent control
the indentions. The displayBoth command pro-
duces verbatimized input and conventionally styled
output. pairHorizontally makes the output run-
on, and pairVertically makes it start a new line.
The commands displayInput and displayOutput

display just the input and output, respectively. The
input can be modified before evaluation and/or be-
fore display, by actions that the user specifies.

Within an alignOnEvalSym environment, be-
gun and ended by appropriate begin. . . and end. . .
statements, all the displays, containing input and

output are aligned on the ⊲ > and
resp
⊲ > symbols.

The arrows are placed at the middle of the print
region, by default. This is overridden by assigning
a value to inputField.

Consecutive tags are created in the tagging en-
vironment. By default, these are parenthesized un-
divided Arabic numerals, i.e., (1), (2), . . . . In gen-
eral, the tag consists of the left marker, tagPrefix,
tagSeparator, tagNumber, and the right marker.
tagStyle, e.g., letter, roman, Letter, determines
the style of the sequence number. The markers are
combined in tagMarker. tagDown uses the present
prefix, separator and tag number to prefix the sub-
ordinate sequence numbers that start again at 1.
tagUp restores all the tagging parameters in force
before tagging down. tagSide defaults to right,
and can be reassigned to left.

The alignOnEqual environment aligns on the
first = symbol in the concomitant displays. These
may be separated by text. The left and right fields
have equal width by default. This is overridden by
assignment to leftWidth. The environment is an
alias for alignOnRelSym, which treats all the rela-
tionship symbols and Infix operators as equivalent.

The aligningItems environment is used in:

# beginAligningItems; itemWidth = 25pt;

leftIndent = sequenceGap = 0pt;

itemsPerLine = 6; itemAlignment = right;

bar = rule[10pt, 0.2pt]

* Fill in the blanks, in this list:

Table[Prime[Prime[n]], {n, 12}] //

ReplacePart[#, bar, {{1},{2},{6},{9}}]&

* and in this:

{14, 34, bar, 59, bar, 125}

# endAligningItems;
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This produced:

Fill in the blanks, in this list:
11 17 31

59 67 109 127 157

and in this:

14 34 59 125

The runOnGroup and tabbedRunOnGroup envi-
ronments can be used in a variety of ways. The
following simple example

∑

i

si

k∑

i=j

si

k∏

i=j

si

(
1 2
4 5

) (
1 2 3
4 5 6

)

is produced by

# beginRunOnGroup; runOnStyle = compressed;

continuationSymbol = "";

sum[i][s@sub@i]

sum[i,j,k][s@sub@i]

prod[i,j,k][s@sub@i]

# turnRunOnGroup

matrix[{1,2},{4,5}]

matrix[{1,2,3},{4,5,6}]

# endRunOnGroup;

In a runOnGroup, space between items on each line
may be compressed or expanded. In runOnGroup

and tabbedRunOnGroup, items may be tagged left or
right, or untagged. Each group may be tagged left
or right, or untagged, independent of item tagging.
continuationSymbol defaults to ”,”. We set it to
an arrow when successive items trace a reduction.

The next display shows another tracing tactic.
pipe generalizes composition, so as to allow rules.

# newBinaryOperator[lplus, "+"];

continuationSymbol = "rightArrow";

s = lplus[a, times[b, c]];

cm = toThe[times][Reverse];

ca = toThe[lplus][Reverse];

markWithAction;

prep = pipe[toEach[_String][

StringReplace[#,

{"(cm)" -> "{\\cal C}_m",

"(ca)" -> "{\\cal C}_a"}]&],

List -> catenation]

s // pipeList[cm,ca]

⊲ >

a + b × c
Cm−→ a + c × b

Ca−→ c × b + a

texTab[lcrString][{lineData}]plays through
to the tabular environment. hline and cline

symbols and multicolumn heads are wrapped into
the data, using prep, to form the lineData list.

The boxedPair environment creates TEX files
consisting of the codes for verbatimized input and
the fully processed output. By default, these are
input to frameboxes joined by an ⊲ >. An option
defers this to later input statements in the text.

The textExpansion and runOnMath environ-
ments embed evaluated results in the run-on text.

Interactive development

autorecord is recursive. A lengthy mathscape doc-
ument is developed, typically, by writing separate
control files for the successive parts, and invoking
these from an overall control file. Optional argu-
ments omit the xdvi step, convert to PostScript,
invoke ghostview or xpsview, and print. The recur-
sivity is used by boxedPair.

The bypass environment and autobreak func-
tion facilitate incremental testing. By conditional-
izing the beginBypass and endBypass statements,
different versions of a document, e.g., terse and
detailed, can be produced from the same file. The
silentExecution environment is used to set up
variables and operators which are taken for granted
in the printed exposition. The evaluation environ-
ment, in which work usually is conducted, is exited
to allow the output of statements without execution.

The Mathematica graphics shell script psfix

has been modified to omit boilerplate. New shell
scripts wrap ghostscript and dvips to compensate.

Restructuring

The rearrangement and abbreviation of mathemat-
ical expressions is extremely important. reverse,
used earlier, belongs to an extensible suite of proce-
dures for these purposes. Several are used to form
the next display from an equation that was saved
in ordinary Mathematica style from a previous run.
They all suspend Orderlessness of Plus and Times

and encase the final result in HoldForm.

∞∑

n=0

∞∑

l=0

∞∑

m=0

[4ǫmAl,m,n−1Ll(u)Lm−2(v)−

4ǫm2Al,m,n−1Ll(u)Lm−2(v)+

<< 361terms >> −
4(n + 1)ǫm2Al,m,n+1Ll(u)Lm+2(v)

]
×

Ln(w) = 0
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This is produced by

# alignLeft; turnIndent = 1pc;

prep =

toTheLhs[

to[Plus][outermost][

showTerms[{1, 2, -1}]],

toEach[_Integer + _][

sortByAbsence[_Integer]],

allowFurtherSorting,

to[Times][outermost][

splitBeforeFactor[2, times]],

allowFurtherSorting,

to[Plus][outermost][

toTerms[containing[v]][

sortByAbsence[v]],

splitBeforeTerm[4,, "\\left."],

splitBeforeTerm[3],

splitBeforeTerm[2, "\\right."], sabr],

disallowFurtherSorting,

A[l_, m_, n_] ->

A@subscriptSequence[l, m, n],

L[n_, x_] -> L[sub[n]][x], e -> epsilon]

eqn[4.13]

The functions and rules in the arguments list of
toTheLhs are executed consecutively, just like those
of pipe. All the targetting functions act this way.

The two procedures sortByAbsence[v1, v2, . . .]
and sortByPresence[v1, v2, . . .] meet many needs.
These wrap sortByCriteriawhich works by select-
ing subsequences that satisfy the successive criteria
instead of repeated swapping.

splitBeforeTerm[n][s] and the correspond-
ing After, Factor, Element and Equal expressions
can specify continuity symbols, e.g., ×, and codes
to balance stretchable brackets.

The procedure showTerms[{indices][s] and
the similar Factors, Elements, Arguments proce-
dures are used for Plus, sum, Times and prod ex-
pressions, and lists, matrices and arbitrary func-
tions. Optional arguments control the depiction of
of omitted items.

allowFurtherSorting removes Orderlessness
and any HoldForms. disallowFurtherSorting im-
poses HoldForm and restores Orderlessness.

Numerous situations arise that can be handled
by adapting the general principles used in the pro-
cedures of this section, e.g., forcing the expressions
that Mathematica ordinarily returns as −u − v and
z1−m into −(u + v) and 1/zm−1.

Because ease of understanding is our objective,
mathscape contains substantial suites of procedures
for convenient cross referencing between statements,
and for fine-tuned factoring, distribution and collec-
tion. Graphics provides a powerful supplement in

many ways. The abstract shows a depiction of a
class of sparse matrices, that occur in an electronic
energy calculation. Zero and non-zero elements are
displayed as spaces and dots, respectively. Sym-
bolic computation, graphics and typesetting come
together in the production of diagrams and the
synthesis of text throughout scholarly publication.

Past, present, future

The production of readable copy from the numer-
ically represented results of symbolic computation
motivated some of the earliest work on electronic
typesetting. Formulas, produced by simple array
manipulation were converted mechanically to the
code of a paper tape driven photo-mechanical type-
setter, for work in theoretical chemistry and plane-
tary theory [5].

mathscape, started about six years ago, has
gone through a few name changes, but has not
undergone any structural change in the last three
years. Its application to a variety of material has
highlighted the need for the resources it provides.
By enabling the mechanical production of readable
discourse, this kind of work gives a fresh incentive
to the formal study of mathematical derivation.
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Appendix

The main account [5] of mathscape contains numer-
ous examples produced in the boxedPair environ-
ment. The TEX files for a selection of these were
reset separately, converted to PostScript, and input

to construct this Appendix.
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The helium calculation

This page shows a summary of an automated check
and extension of Pekeris’ classical calculation of
the electronic structure of helium like atoms. An
autorun session produced a detailed narrative of
both the conventional mathematical activity and its
mechanization. Intermediate results were written
out for subsequent computational use. The sum-
mary was produced from these.

The calculation involved partial differential
equations, changes of variable, infinite series ex-
pansion, special functions of mathematical physics,
determinants, and multiple integrals. Part of the
calculation carried expressions that run to hundreds
of terms. At several points, lengthy equations were
broken into sets of smaller equations of specified
form, for display and manipulation, using further
mathscape procedures.

Graphics was used to plot numerical results con-
ventionally, and to display the structure of a matrix
as mentioned earlier. Also, the published version of
a very lengthy formula was scanned, the image dis-
sected, and the pieces imported as pictures between
the corresponding pieces of the newly calculated re-
sult, for visual comparison. Some are shown in [3, 4].

We begin with the Schr�odinger equation for a 2-electron atom with nuclear charge Z.

@2 

@r21
+

2

r1

@ 

@r1
+
@2 

@r22
+

2

r2

@ 

@r2
+ 2

@2 

@r212
+

4

r12

@ 

@r12
+
r21 � r22 + r212

r1r12

@2 

@r1@r12
+

r22 � r21 + r212
r2r12

@2 

@r2@r12
+ 2(E +

Z

r1
+
Z

r2
� 1

r12
) = 0 (1)

This is in standard texts. It is converted to the perimetric coordinates (2) where � =
p�E.

u = �(r2 � r1 + r12); v = �(r1 � r2 + r12); w = 2�(r1 + r2 � r12) (2)

We use the equation for @(u; v; w)=@(r1; r2; r12) and the consequent equations for the @2=@r21; : : :
in terms of the @2=@u2. Hence:

4�2
�
u(2uv + 2v2 + 2uw + 2vw + w2) uu + << 6 terms >>+ 2(2u2 + 2v2 � w2) w

	
+

fE(u+ v)(2u+ w)(2v + w)� 2�(2u+ w)(2v + w) + 8�Z(u+ v)(u+ v + w)g = 0 (3)

The wave function  is written as:

 = e�(u+v+w)=2F (u; v; w) (4)

Substitution in (3) gives an equation for F that is, in abbreviated form:

f4Z(u+ v)(u+ v + w)� (2u+ w)(2v + w)gF+
2�
�
u(2uv + 2v2 + 2uw + 2vw + w2)Fuu + << 6 terms >>+

(4u2 + 4v2 � 2u2w � 2v2w � 2w2 � uw2 � vw2)Fw � 2F (u+ v)(u+ v + w)
	
= 0 (5)

F is expanded as a triple series in Laguerre functions of u; v; w.

F =
X

fl;m;ng�0

Al;m;nLl(u)Lm(v)Ln(w) (6)

Hence (8). The coe�cient of each A contains Laguerre functions and their �rst two derivatives.
X

fl;m;ng�0

[�4�(u+ v)(u+ v + w)Ll(u)Lm(v)Ln(w) + << 8 terms >>+

4�w(2u2 + 2v2 + uw + vw)Ll(u)Lm(v)L
00
n(w)

�
Al;m;n = 0 (7)

Occurrences of Ll(u) and its derivatives times u and u2 are converted to terms in Ll+�(u); j�j � 2,
using simple recurrence formulas. Terms containing v and w are treated correspondingly, giving
a summand that contains (u; v; w) only as arguments of undi�erentiated Laguerre functions.

X

fl;m;ng�0

[nLl(u)Lm(v)Ln�2(w) + << 234 terms >>� 4Ln(w)Ll+1(u)Lm+1(v)+

<< 127 terms >>� n2Ll(u)Lm(v)Ln+2(w)
�
Al;m;n = 0 (8)

Occurrences of Ll(u) and its derivatives times u and u2 are converted to terms in Ll+�(u); j�j �
2, using simple recurrence formulas. Terms containing v and w are treated correspondingly, giving
a summand that contains (u; v; w) only as arguments of undi�erentiated Laguerre functions.

X

fl;m;ng�0

[nLl(u)Lm(v)Ln�2(w) + << 234 terms >>� 4Ln(w)Ll+1(u)Lm+1(v)+

<< 127 terms >>� n2Ll(u)Lm(v)Ln+2(w)
�
Al;m;n = 0 (9)

The coe�cients of Ln+�(w) are collected for each v = �2; : : : ; 2. The summation is split into 5
parts corresponding to the di�erent �. These are re-indexed and combined, to give:

1X

n=0

1X

l=0

1X

m=0

�
4�mAl;m;n�1Ll(u)Lm�2(v)� 4�m2Al;m;n�1Ll(u)Lm�2(v)+

<< 361 terms >>� 4�m2(n+ 1)Al;m;n+1Ll(u)Lm+2(v)
�
Ln(w) = 0 (10)

The dependences on v and u are treated similarly, to give:

1X

n=0

1X

m=0

1X

l=0

�
4�lAl�2;m;n + << 362 terms >>+ 4l2ZAl+2;m;n

�
Ll(u)Lm(v)Ln(w) = 0 (11)

Orthogonality of the Laguerre functions gives a 33-term recurrence formula for the Al;m;n.

4(l + 1)(l + 2) f�Z + �(1 +m+ n)gAl+2;m;n + << 31 terms >>+

2mn f1� 2Z + �(2l+ n+ 1)gAl;m�1;n�1 = 0 (12)

Let (lj ;mj ; nj) be the j'th triple in the sequencing (12), where wj = lj +mj + nj and j < k.

wj � wk; nj � nk if wj = wk ; lj < lk if wj = wk and nj = nk (13)

In symmetric states, Al;m;n = Am;l;n, so we write Bk = Alk ;mk;nk , where flk;mk; nkg is the kth
triple in the sequence that also satis�es lk � mk. The restriction l +m+ n <= q gives the q'th
approximation to wave function and energy. q = 1 takes the �rst 10 A's in the sequence (12).
These map into B1; : : : ; B7. The equations formed from (11) for these by setting the Bk = 0; k > 7
require the following determinant in � = Z � � to be zero.

5�16� �4+4� �6+28� 1 2�4� �8� 2�4�

�4+4� 15�48�+24Z 2+8��12Z �12+16��8Z �10+60��24Z �8�+8Z 0

�6+28� 2+8��12Z 26�144�+32Z �4�+4Z �12+16� �12+104��16Z �14+72��28Z

1 �12+16��8Z �4�+4Z 31�96�+64Z 4+20��28Z 0 0

2�4� �10+60��24Z �12+16� 4+20��28Z 54�336�+192Z 4+32��40Z 2+4��8Z

�8� �8�+8Z �12+104��16Z 0 4+32��40Z 34�320�+96Z 8�24�+8Z

2�4� 0 �14+72��28Z 0 2+4��8Z 8�24�+8Z 25�208�+104Z

(14)

In terms of the normalizing factor N , the �rst approximation to the wave function is:

 1 =
e�(u+v+w)=2

N1
[B1L0(u)L0(v)L0(w) +B2L0(u)L0(v)L1(w)+

B3 fL1(u)L0(v)L0(w) + L0(u)L1(v)L0(w)g + << 3 terms >>+B7L1(u)L1(v)L0(w)] (15)

Expansion of the determinant followed by some simple rearrangement leads to:

� = 0:3125 +
1

Z
(0:808039� 7:07288� + 14:0571�2) + << 4 terms >>+

1

Z6
(0:000735782+ << 6 terms >>� 100:288�7) (16)

For helium, Z = 2, and numerical solution gives � = 0:2961 for the lowest root, whence �. Given
�, the Bj are determined relative to an arbitrary scaling factor. B1 is set to 1, and the equations
that led to 13 are solved numerically. Hence:

B1 = 1; B2 = 0:03859; B3 = �0:04876; B4 = 0:002969; : : : (17)

We replace the Laguerre functions in (14) by explicit polynomials in (u; v; w), and replace these
coordinates by (r1; r2; r12, by reference to (1). Hence the wave function in the form:

 1 =
e�(�r1�r2)

N1

�
d1 + d2(r1 + r2) + d3(r

2
1 + r22) + d4r1r2 + r12 fd5 + d6(r1 + r2)g+ d7r

2
12

�
(18)

where the di are linear combinations of the Bs.

d1 = B1 +B2 + 2B3 +B4 + 2B5 + 2B6 +B7; d2 = �2�(B2 + 2B4 + 2B5); : : : (19)

The normalizing factor is found from the volume integral
R
 2d� = 1, using:

Z
f d� =

�2

32�6

Z
1

u=0

Z
1

v=0

Z
1

w=0

(u+ v)(2u+ w)(2v + w)f du dv dw (20)

whence

N1 =
�

2�3
(4B2

1 � 5B1B2 + << 22 terms >>+ 52B6B7 + 55B2
7)

1

2 (21)

The radial density distribution is found from:

�(r1) = 8�2
�Z r1

r2=0

Z r1+r2

r12=r1�r2

 2r1r2r12 dr2 dr12 +

Z
1

r2=r1

Z r1+r2

r12=r2�r1

 2r1r2r12 dr2 dr12

�
(22)

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 153

Some formulas for reference

Table 1: Sq =

nX

k=1

kq

q Sq q Sq

1
�
n2 + n

�
/2 2

�
2n3 + 3n2 + n

�
/6

3
�
n4 + 2n3 + n2

�
/4 4

�
6n5 + 15n4 + 10n3 � n

�
/30

5
�
2n6 + 6n5 + 5n4 � n2

�
/12 6

�
6n7 + 21n6 + 21n5 � 7n3 + n

�
/42

7
�
3n8 + 12n7 + 14n6 � 7n4 + 2n2

�
/24 8

�
10n9 + 45n8 + 60n7 � 42n5 + 20n3 � 3n

�
/90

9
�
2n10 + 10n9 + 15n8 � 14n6 + 10n4 � 3n2

�
/20

10
�
6n11 + 33n10 + 55n9 � 66n7 + 66n5 � 33n3 + 5n

�
/66

Problem sets and worked solutions

Fold this worksheet, factor the expressions and check your answers

1: 54n2 + 3fn� 77f2 (11f + 9n)(6n� 7f)

2: 70m2� 83mu+18u2 (10m� 9u)(7m� 2u)

3: 30i2 + 59ip� 56p2 (10i� 7p)(3i+ 8p)

4: 35p2 + 34kp� 33k2 (11k + 7p)(5p� 3k)

...
...

...

Consider the thermal decomposition of a sample of H2O2. The temperature is 22� C. The
pressure is 773 torr. The volume of gaseous product is 6.01 liter. Calculate the mass of the
sample.

Answer : moles of gas =
pressure� volume

gas constant� temperature Kelvin
=

=
(773 torr)� (6:01 liter)

(62:36 liter torr= deg mol)� (295 deg)
= 0:253 mol;

Hence : mass of sample =
molecular mass� number of moles of gas

mole factor
=

=
(34 gm)� (0:253)

(0:5)
= 17:2 gm:

0.103 mol of CaCO3 undergoes thermal decomposition. The pressure is 795 torr. The
temperature is 24� C. Compute the volume of gaseous product.

Answer : moles of gas = mole factor�moles in sample =

= (1)� (0:103 mol) = 0:103 mol;

Hence : volume =
gas constant�moles of gas� temperature Kelvin

pressure
=

=
(62:36 liter torr= deg mol)� (0:103 mol)� (297 deg)

(795 torr)
= 2:4 liter:

This ruled table was pro-
duced in an experimental
reconstruction of portions
of the reference work com-
monly known by the names
of the authors Gradshteyn
and Ryzhik. The entire
first section of indefinite al-
gebraic integrals has been
derived anew — many of the
citations in the monograph
are unhelpful or inaccessi-
ble. The process of mech-
anization provided several
useful prototype derivations
and new insights of wider
application.

The factoring example, like
many others in [5] was pro-
duced by working back from
the solutions. These were
formed by random choice
of the letters used to name
the variables. The coef-
ficients also were random,
within a limited range, and
rejected if the expanded ex-
pression would contain co-
efficients outside a particu-
lar range.

The gas law example is
part of a much larger set.
The procedure accepted a
sequence of n-tuples that
specified the property to be
found (e.g. pressure, num-
ber of moles), the com-
pound undergoing decom-
position, the units, the val-
ues of the given variables,
within acceptable ranges,
the sentence order, and cer-
tain words and phrases.
This work is in direct line
with an earlier project of
the author sponsored by the
NSF under their CAUSE

initiative some years ago.
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The envelope examples

� Example 1: Plot the family of lines y = m4 + 2mx and its envelope. The canonical and
derivative equations are, respectively,

y �m4
� 2mx = 0 (1.1) 2(2m3 + x) = 0 (1.2)

The parametric form of the discriminant is

x = �2m3 (1.3) y = �3m4 (1.4)

-2 2

-3

-2

-1

1

-2 2

-3

-2

-1

1

Figure 1a Figure 1b

The existence of an envelope is shown by inspection of

Fx = �2m; Fy = 1; Fmx = �2; Fmy = 0 (1.5)

Fmm = �12m2;

���� Fx Fy
Fkx Fky

���� = ���� �2m 1
�2 0

���� = 2 (1.6)

� Example 4: Plot the family of parabolas y2 = a(x � a) and its envelope. The canonical and
derivative equations are, respectively,

a(a� x) + y2 = 0 (4.1) �2a+ x = 0 (4.2)

The direct form of the discriminant has the two solutions

y = �

x

2
(4.3a) y =

x

2
(4.3b)

-4 -2 2 4

-2

2

-4 -2 2 4

-2

2

Figure 4a Figure 4b

The existence of an envelope is shown by inspection of

Fx = �a; Fy = 2y; Fax = �1; Fay = 0 (4.4)

Faa = 2;

���� Fx Fy
Fkx Fky

���� = ���� �a 2y
�1 0

���� = 2y (4.5)

Envelopes have long been
of interest in popular
mathematics and educa-
tion. mathscape was used
to produce graphically il-
lustrated worked solutions
to the exercises on this
topic in a problem book
that was widely used in
the former Soviet Union.
Each example begins with
the generic equation for
a family of curves. The
problem is to determine
whether the family has an
envelope and, if it does,
to find the equation and
to plot it. The first
step finds the “discrimi-
nant equation.” Some-
times, this is best found
in direct form, in other in-
stances parametrically. It
may have one or more so-
lutions. Direct, implicit or
parametric plotting may
be optimal for the enve-
lope.

The process was
encapsulated in a single,
heavily conditionalized
control file. The data for
each example consisted of
the noun that identified
the members of the family
(e.g., “line”, “curve”), the
generic equation, and the
choices needed to navigate
the alternative paths.

The work was done
by Artur v. Solecki, as
an undergraduate project
in a computer graphics
course that the author
taught.
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1.

0
B@

1 2

3 4

1
CA :

0
B@

5 6

7 8

1
CA =

0
B@

1� 5 + 2� 7 1� 6 + 2� 8

3� 5 + 4� 7 3� 6 + 4� 8

1
CA=

0
B@

19 22

43 50

1
CA

2.

0
B@

3 4

1 2

1
CA :

0
B@

5 6

7 8

1
CA =

0
B@

3� 5 + 4� 7 3� 6 + 4� 8

1� 5 + 2� 7 1� 6 + 2� 8

1
CA=

0
B@

43 50

19 22

1
CA

3.

0
B@

1 2

3 4

1
CA :

0
B@

6 5

8 7

1
CA =

0
B@

1� 6 + 2� 8 1� 5 + 2� 7

3� 6 + 4� 8 3� 5 + 4� 7

1
CA=

0
B@

22 19

50 43

1
CA

4.

0
B@

5 7

6 8

1
CA :

0
B@

1 3

2 4

1
CA =

0
B@

5� 1 + 7� 2 5� 3 + 7� 4

6� 1 + 8� 2 6� 3 + 8� 4

1
CA=

0
B@

19 43

22 50

1
CA

Compare the starting matrices and the results in examples 1 and 2.

Make the corresponding comparisons for examples 1 and 3, and for examples 1 and 4.

XO

Y

P

X´

O

Y´

θ
XO

Y

X´

O

Y´

θ

X´´

O

Y´´

P

φ

XO

Y

P
X´´

O

Y´´
θ+φ

Rationalize the denominator in:
p
x� y �

p
x+ y

p
x� y +

p
x+ y

(1)

Multiply the numerator and the denominator by the numerator,
and expand.

(
p
x� y)2 � 2

p
x� y

p
x+ y + (

p
x+ y)2

(
p
x� y)2 � (

p
x+ y)2

(2)

Use (
p
a)2 = a and

p
a
p
b =

p
ab.

�
2x� 2

p
(x� y)(x+ y)

2y
(3)

Simplify:
p
x2 � y2 � x

y
(4)

Consider the geometric series:

S(n) =

nX

i=0

x
i (1)

Multiply throughout by x and restructure the right hand side.

xS(n) =

nX

i=0

x
i+1 =

n+1X

i=1

x
i =

nX

i=0

x
i + x

n+1 � 1 (2)

Subtract (2) from (1).

S(n)� xS(n) = 1� x
n+1 (3)

Solve for S(n).

S(n) =
1� x

n+1

1� x
(4)

This depiction of a matrix mul-
tiplication illustrates the use of
fonts to show “where things come
from” in a derivation. The en-
tire set of four traced multipli-
cations is parameterized on the
eight starting matrix elements,
enabling the rapid production
of further examples of numerical
and symbolic matrix operations.
In teaching a course on mathe-
matics for humanists some years
ago, the author found it helpful to
use worked examples of two-step
linear transformations, expressed
in terms of verbal matrix ele-
ments, e.g., the number of loco-
motives (coaches) per starter (ad-
vanced) train set, and the num-
ber of nuts (bolts) per locomotive
(coach), and the corresponding
product elements.

The axis diagrams are part of
an explanation of rotation matrix
multiplication, that uses symbolic
calculation to generate the asso-
ciated equations. Diagrams and
associated matrix equations are
used, too, in the connectivity
matrix treatment of n-step path
counts in a directed graph.

The next few examples illus-
trate different styles of discourse.
The displays may be expressions
or statements (in mathematical,
not Mathematica, terminology).
They may be joined by text or
relationship symbols, such as =
or >, or by arrows.

In the rationalization exam-
ple, the identities embedded in
the explanatory sentence are ap-
plied mechanically, as an example
of the avoidance of possibly in-
consistent results and narrative.

In the geometric series ex-
ample, the referencing between
equations also is performed me-
chanically by mention of the tag.
This uses the implied rule forma-
tion feature of mathscape.
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(1) De�nition : A � B i� x 2 A implies x 2 B:

(2) Suppose A � B and B � C:

(3) Then x 2 A implies x 2 B and x 2 B implies x 2 C:

(4) Hence x 2 A implies x 2 C:

(5) Consequently A � C:

f1g (1) A) B _ C P

f2g (2) B ) �A P

f3g (3) D ) �C P

f4g (4) A P

f1; 4g (5) B _ C law of detachment(4; 1)

f2; 4g (6) �B modus tollendo tollens extended(4; 2)

f1; 2; 4g (7) C modus tollendo ponens(6; 5)

f1; 2; 3; 4g (8) �D modus tollendo tollens extended(7; 3)

f1; 2; 3; 4g (9) A) �D c:p:(4; 8)

Alignment and tags: some more examples

Items can be labelled collectively and individually. The Legendre functions of degrees
0{3 of the �rst and second kinds follow.

5.7.1. (a) 1 (b) x

(c)
3x2 � 1

2
(d)

5x3 � 3x

2

5.7.2. (a)
1

2
log

1 + x

1� x

(b) �1 + x

2
log

1 + x

1� x

(c) �3x

2
+
3x2 � 1

4
log

1 + x

1� x

(d)
�15x2 + 4

6
+
5x3 � 3x

4
log

1 + x

1� x

The outer horizontal lines are itemWidth long and the central line is runOnGap long.

1 + x (1) 1 + 2x+ x
2 (2)

1 + 3x+ 3x2 + x
3 (3) 1 + 4x+ 6x2 + 4x3 + x

4 (4)

The centering allows for the tags and the runOnGap.

Items can be labelled collectively:

(5.7.1)

Z
e
x

x
2
dx ! e

x

x
2
� 2

Z
e
x

x dx !

e
x(�2x+ x

2) + 2

Z
e
x

dx ! e
x(2� 2x+ x

2)

(5.7.2)

Z
cos2 x dx !

2x+ sin 2x

4

The successive examples of simple algebraic opera-
tions in the display below this paragraph were formed
by a single assignment to prep followed by the pairs
{Expand, (1+x)^2}, . . . .

1. Expand : (1 + x)2: Answer : 1 + 2x+ x2:

2. Factor : x2 � y2: Answer : (x � y)(x+ y):

3. Cancel :
x2 + 2xy + y2

x2 � y2
: Answer :

x+ y

x� y
:

The production of the proof of tran-
sitivity of the ⊆ operator (above left)
involved the conversion of functional ex-
pressions to sentence form. Both this ex-
ample and the logic proof (left) can serve
as prototypes for quite large classes of
application.

The examples on the left show
grouped items tagged individu-
ally and/or collectively, and vari-
ations in the tag style. The exam-
ples below show multi-expression
bracing, and alignment on single
and multiple relationship sym-
bols.

(1 + x)2 = 1 + 2x+ x
2

(1� x)2 = 1� 2x+ x
2

(1� x)(1 + x) = 1� x
2

9>>>>>>=
>>>>>>;

(1)

(1 + x)2 = 1 + 2x+ x
2 (1)

2x4 � x
4 (2)

1 < 2 (3)

a+ b ,! c+ d (4)

For x > 1,

ex
2

> ex > x > logx

For 0 <= � <= �=2,

0 � sin2 � � sin �
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