
Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

Simon Pepping
Elsevier, Amsterdam, Netherlands
s.pepping@elsevier.com, spepping@leverkruid.nl

http://www.leverkruid.nl/

Abstract

Docbook In ConTEXt is a ConTEXt module that allows one to produce a typeset version of a Docbook
XML file, in dvi or pdf format. It takes a Docbook XML file as input for TEX. ConTEXt’s built-in
XML parser parses the file and maps opening and closing tags to the ConTEXt commands specified
in the Docbook In ConTEXt module.

The first part of this article describes how one can run ConTEXt on a Docbook XML file
using the Docbook In ConTEXt module. The second part deals with some aspects of programming
this module. It presents the general framework, discusses some of the problems encountered, and
highlights the programming of some noteworthy elements.

Résumé

Docbook In ConTEXt est un module ConTEXt qui permet la production d’une version composée d’un
fichier XML Docbook, aux formats DVI ou PDF. Il prend un fichier XML Docbook en entrée de
TEX. Le parseur XML interne de ConTEXt analyse le fichier et associe les balises ouvrantes et
fermantes aux commandes ConTEXt spécifiées dans le module Docbook In ConTEXt.

La première partie de cet article décrit comment on peut lancer ConTEXt sur un fichier XML

Docbook en utilisant le module Docbook In ConTEXt. La deuxième partie traite de certains aspects
de programmation de ce module. Nous y présentons le cadre de travail général, nous discutons
certains problèmes que nous avons rencontrés, et nous soulignons la programmation de certains élé-
ments dignes de considération.

What is Docbook In ConTEXt?

Docbook In ConTEXt combines two technologies that are
widely used by authors of technical literature: the Doc-
book DTD and the ConTEXt macro package for TEX.

It is a ConTEXt module that allows one to produce
a typeset version of a Docbook XML file, in dvi or pdf
format.

It takes a Docbook XML file as input for TEX. Con-
TEXt’s built-in XML parser parses the file and applies
ConTEXt commands when it reads opening and closing
tags. Which ConTEXt commands are applied, and there-
fore how the output is formatted, is determined by the
Docbook In ConTEXt module.

XML, Docbook and stylesheets Docbook documents are
XML articles. They contain XML tags, such as <title>
and the corresponding end tag </title>. These two
tags mark the enclosed text as the title of the document.
This is rather similar to ConTEXt’s \title command.
The difference is that XML more precisely prescribes
which information is tagged, and which names are used
for the tagging. This is defined in the DTD. For each
document anXML author is free to select a suitableDTD,
write a new DTD, or go the way of free structuring and
do without a DTD.

Docbook is a large DTD for technical literature,
books and articles. It defines the possible structure for
such documents. When an author chooses to structure his
document according to the Docbook DTD, it can be pro-
cessed with Docbook utilities. Examples are such utili-
ties as stylesheets like Docbook In ConTEXt, or applica-
tions which extract information from the document, like
the title and the author names.

The example document in fig. 1 shows the structure
of a small Docbook article. Everything is between the
article start and end tags, which indicates that it is an
article and not a book or even a set of books. The first
part is the articleinfo, with the metadata: title and
authors. One could add much more information, such
as affiliations, revision history, abstract, copyright, etc.
Next comes the main text. It consists of sections with
titles, subsections and paragraphs. The text in the para-
graphs is less structured. It consists of unmarked text,
in which special parts are marked, e.g. literal texts, file
names, program listings. In XML jargon this is called
‘mixed content’. In Docbook one marks especially those
parts that are relevant in technical literature. In a history
book one would want to mark a different set of notions,
and one would therefore use a different DTD defining

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 389

Simon Pepping

<?xml version="1.0" ?>

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

"docbookx.dtd" []>

<article>

<articleinfo>

<title>DocBook In ConTeXt, ConTeXt XML mapping for DocBook

documents</title>

<authorgroup>

<author>

<firstname>Simon</firstname>

<surname>Pepping</surname>

</author>

<author>

<firstname>Michael</firstname>

<surname>Wiedmann</surname>

</author>

</authorgroup>

</articleinfo>

<section>

<title>Installation</title>

<para role="first">Change directory to the top directory of one of the

<literal>texmf</literal> trees of your TeX installation,

e.g. <filename>/usr/share/texmf</filename>, and

<command>untar</command> the distribution file

<filename>DocbookInContext.tar.gz</filename>. Then run the command

<command>mktexlsr</command> for that tree, e.g. <command>mktexlsr

/usr/share/texmf</command>.</para>

</section>

<section>

<title>Usage</title>

<programlisting>

\input xtag-docbook

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

% customizations

\setuphead[section][style=bia,number=no,align=right]

\setupepigraph[narrower={1*right},command=\bi]

\setupattribution[command=---]

\setupXMLDBlists[notoc]

\setupXMLDB[background=off]

\def\XMLDBarticleinfotitle#1%

{\startalignment[middle]\bib #1\stopalignment\blank[1*big]}

\defineXMLattributeaction[para][role][first]{\bf}

</programlisting>

</para>

</section>

</article>

F. 1: Example of a Docbook article.

390 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

Installation 1

DocBook In ConTeXt

Simon Pepping
Michael Wiedmann

Contents

1 Installation 1
2 Usage 1

1 Installation

There was things which he stretched, but mainly he told the truth.
— Mark Twain, Huckleberry Finn (1884)

Change directory to the top directory of one of the texmf trees of your TeX
installation, e.g. /usr/share/texmf, and untar the distribution file DocbookIn-

Context.tar.gz. Then run the command mktexlsr for that tree, e.g. mktexlsr

/usr/share/texmf. Test the result by issuing the command kpsewhich xtag-

docbook.tex. The reply should be the path of one of the files just installed, e.g.
/usr/share/texmf/tex/context/DocbookInContext/xtag-docbook.tex.

2 Usage

Run context on a Docbook XML file using xtag-docbook.tex as the map file. Con-
text offers several possibilities to do this, see the context XML manual example.pdf.

One option is to construct a TeX file that inputs the mapping file xtag-docbook.tex,
and in the text block inputs the XML file with the command \processXMLfile-

grouped. For example:

\input xtag-docbook

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

\setuppagenumbering[location=]

\setupitemize[each][packed][before=,after=,indentnext=no]

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

F. 2: The article of fig. 1 as formatted by ConTEXt with the Docbook In ConTEXt macros.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 391

Simon Pepping

suitable tags. In the text one may also insert index terms.
At the end of the document one could add appendices,
bibliographies, etc.

It is the task of a stylesheet like Docbook In Con-
TEXt to pick up the tags and render their content with
appropriate formatting. Program listings are rendered
in a monospaced font, and the line layout is preserved.
Index terms are saved and used to construct the index.
When one looks at the articleinfo, one sees that the
XML document does not always contain punctuation and
spacing. There is no punctuation between the authors.
There may be white space between the first name and
surname, but it may also be absent. The stylesheet should
add punctuation and white space to the rendering as re-
quired. Fig. 2 shows how the small document in fig. 1 is
rendered by Docbook In ConTEXt.

The Docbook1 DTD has been available since the
early 1990s. Over the years it has evolved into an
extensive DTD for all technical literature. Later in
the 1990s extensive, customizable stylesheets2 became
available, written in DSSSL. The Jade program, the
JadeTEX macro package (and the numerous underlying
other LATEX macro packages) and TEX made it possible
to format one’s Docbook document with the DSSSL style
sheets and obtain high-quality printed output. Armed
with these free tools one could author, format and print
Docbook documents at a time when SGML tools gen-
erally were scarce and expensive. With the advent of
XML and XSLT more free tools have become available.
The Docbook DTD is now available for XML, and the
stylesheets have been rewritten in XSLT.

These combined features have made the Docbook
DTD the DTD of choice for technical literature. The
Linux Documentation Project is one well-known project
that switched over from a private DTD to the Docbook
DTD. Due to this strong position, the toolset for work-
ing with Docbook documents is growing rapidly, see e.g.
http://www.miwie.org/docbookinfo.html.

How did it start and where is it now?

During EuroTEX 2001 in Kerkrade I had become in-
terested in using ConTEXt because of the beautiful pre-
sentation styles used by Hans Hagen and several other
speakers. While I was following the ConTEXt email list,
I also became interested in ConTEXt’s XML capabilities.
These seemed so wonderful to me, that I had to under-
stand how this could be done using TEX macro program-
ming. I started asking questions. Sometimes Hans an-
swers such questions with the suggestion that one take up
some or other project. So he suggested that I start an
XML mapping for Docbook.

1. http://www.oasis-open.org/docbook/
2. http://sourceforge.net/projects/docbook

I really had other plans, but I was so intrigued with
ConTEXt’s XML capabilities that I could not resist and
gave it a start. As an added benefit, I would becomemore
familiar with the Docbook DTD. When I started I cer-
tainly was aware that this would not be a small task. Doc-
book is such a large DTD, allowing its authors to use the
hundreds of elements in innumerable combinations. But
only while the project evolved did it become evident to
me how large it really is.

Michael Wiedmann, who is interested in all possi-
ble tools to render Docbook documents, heard about the
project soon after I started it. He made several contri-
butions. His support and interest helped me to continue
through the difficult phase when a project is no longer
new, but you do not yet have anything really usable and
you know all too well how much work still has to be done.

Now, a year later, I have some sort of an answer as to
how it is possible to program ConTEXt’sXML capabilities
in TEX macros: Theoretically TEX macro programming
is complete in the sense of having the expressive power
of a Turing machine. Hans Hagen is one of the few pro-
grammers who can turn this theory into practice.

I also have a working XML mapping for DocBook
documents in ConTEXt, which I call Docbook In Con-
TEXt (DIC). It contains good layout instructions for a
number of often-used elements in their more common
combinations.

Running Docbook In ConTEXt

Before one can typeset an XML file myfile.xml, one
should create a TEX driver file myfile.tex, which
should look something like this:

\input xtag-docbook

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

Then TEX is invoked as: texexec myfile.tex to
get a dvi file, or as texexec --pdf myfile.tex to get
a pdf file.

In the driver file xtag-docbook is the file name
of the module. The XML document is input with the
\processXMLfilegrouped command. The filename
\jobname.xml is always correct provided the driver file
and the XML file have the same base name.

Alternatively, one can always use the same driver
file, in which the name of the XML file is changed each
time.

The ConTEXt documentation indicates that one can
also run the XML file as

texexec --xmlfilter=docbook testxml.xml

This will not work because the name of the Docbook In
ConTEXt module does not conform to ConTEXt’s nam-

392 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

ing conventions. It works if the module is renamed as
xtag-doc.tex.

Customizing Docbook In ConTEXt

A Docbook XML document is a normal ConTEXt doc-
ument. The commands that make up a ConTEXt docu-
ment are also at work when a Docbook XML document
is processed. They are just one layer away from what the
user sees. Therefore the output can be customized with
ConTEXt’s setup commands as for any ConTEXt docu-
ment. The setup commands should be given after the
Docbook In ConTEXt module has been read, so that they
override the default setup commands in the module. If
you do not give additional setup commands, ConTEXt’s
defaults are applied. This is an example of a driver file
with ConTEXt setup commands:

\input xtag-docbook

\setupindenting[medium]

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,

style=slanted]

\setuppagenumbering[location=]

\setupitemize[each][packed]

[before=,after=,indentnext=no]

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

Docbook In ConTEXt also defines a number of setup
commands and other customizations of its own. We de-
scribe a few of them in the following subsections.

Section blocks ConTEXt always applies pagebreaks around
section blocks, and it treats the Table of Contents and the
Index as chapters. This behaviour can be changed with
the pagebreaks option of the \setupXMLDB command:

• \setupXMLDB[pagebreaks=all]:
Default ConTEXt behaviour.

• \setupXMLDB[pagebreaks=sectionblocks]:
ToC and Index do not start a new page, and they are
treated as sections. All other section blocks retain
their default ConTEXt behaviour.

• \setupXMLDB[pagebreaks=none]:
In addition to the sectionblocks option, body-
matter, appendices and backmatter do not start a
new page.

Titles Titles are formatted with a command of the
form \XMLDB element title, where element should be re-
placed with the name of the element to which the title
belongs, e.g. \XMLDBarticletitle. These commands
can be redefined. They take one argument, the title. For
example, the article title could be redefined as:

\def\XMLDBarticletitle#1%

{\startalignment[left]

\bfb #1

\stopalignment

\blank}

Note, however, that in Docbook documents the article
title is often placed in the articleinfo part. In that
case one should redefine \XMLDBarticleinfotitle.
Similarly for book and chapter titles. Section, subsec-
tion, etc., titles are mapped to ConTEXt’s \section,
\subsection, etc., commands. Therefore they can
be customized with ConTEXt’s usual \setuphead com-
mand.

blockquote, epigraph and attribution The Docbook ele-
ments epigraph and blockquote have their own setup
commands \setupepigraph and \setupblockquote,
which have the following options:

• narrower. Both epigraph and blockquote are
formatted using ConTEXt’s narrower environment.
The value of this option is a list of left, right and
middle that is passed on to the \startnarrower
command. See the ConTEXt documentation for
\startnarrower for the effect of these settings.

• quote. The value is on or off. When on, quota-
tion marks are applied as with ConTEXt’s quotation
environment.

• command. The value is a command or set of
commands, which are applied at the start of the
narrower environment.

The element attribution is customized with the
command \setupattribution, which has one option:
command. The value is applied at the start of the attri-
bution.

More customizations Customization has only recently ob-
tained the attention it deserves. By nowmore setup com-
mands like those for blockquote and epigraph have
been added, and others will follow. The distribution
contains a document Customization.xml which will
contain an up-to-date description of the customization
options.

Example of customization Fig. 3 demonstrates the effect
of customization. It shows again the article of fig. 1, but
this time the driver file contains some extra customiza-
tion commands.

\setuphead[section]

[style=bia,number=no,align=left]

\setupepigraph

[narrower={1*right},command=\bi]

\setupattribution[command=---]

\setupXMLDBlists[notoc]

\setupXMLDB[background=off]

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 393

Simon Pepping

Installation 1

DocBook In ConTeXt

Simon Pepping
Michael Wiedmann

Installation

There was things which he stretched, but mainly he told the truth.

—Mark Twain, Huckleberry Finn (1884)
Change directory to the top directory of one of the texmf trees of your

TeX installation, e.g. /usr/share/texmf, and untar the distribution file
DocbookInContext.tar.gz. Then run the command mktexlsr for that tree,
e.g. mktexlsr /usr/share/texmf. Test the result by issuing the command
kpsewhich xtag-docbook.tex. The reply should be the path of one of the
files just installed, e.g. /usr/share/texmf/tex/context/DocbookInContext/xtag-
docbook.tex.

Usage

Run context on a Docbook XML file using xtag-docbook.tex as the map
file. Context offers several possibilities to do this, see the context XML
manual example.pdf.

One option is to construct a TeX file that inputs the mapping file xtag-docbook.tex,
and in the text block inputs the XML file with the command \processXMLfile-

grouped. For example:

\input xtag-docbook

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

\setuppagenumbering[location=]

\setupitemize[each][packed][before=,after=,indentnext=no]

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

F. 3: The article of fig. 1 as formatted by ConTEXt with the Docbook In ConTEXt macros and the
customization commands discussed in the text on page 393.

\def\XMLDBarticleinfotitle#1%

{\startalignment[middle]%

\bib #1%

\stopalignment\blank[1*big]}

\defineXMLattributeaction

[para][role][first]{\bf}

The first command is a normal ConTEXt command,
changing the style of the section heads to bold italic, nor-

mal size, no number, and right-aligned.
The second command moves the right margin of the

epigraph inward by 1 unit (the size of a unit is deter-
mined by ConTEXt’s \setupnarrower command).

The third line does not set the font for the attribu-
tion to italic, which Docbook In ConTEXt’s default set-
ting does.

The fourth command switches the Table of Con-
tents off. The Lists of Figures and Tables are switched

394 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

off by default.
The fifth command switches the background of pro-

gram listings off.
The sixth command redefines the layout of the ar-

ticle title. More precisely it redefines the title in the
articleinfo element, which is where the title usually
lives. There is no setup command for redefining titles. A
definition is required of a command that takes one argu-
ment, the text of the title.

The seventh command causes the first paragraph of
each section to be printed in bold. The command defines
an action when the role attribute of the para element
has the value first. The action is \bf. The stylesheet
takes care to put this action in a group. This action works
because this XML document marks each first paragraph
with the value first for the role attribute (see fig. 1).

Other tools for the same task

Docbook In ConTEXt is not the only tool for typesetting
a Docbook document.

The Docbook XSLT stylesheets for printing The canonical
tool for typesetting any XML file is XSLT+FO. An XSLT
stylesheet is used to define the desired output in terms
of Formatting Objects (FO). The FO description can be
thought of as a formatter independent layout description.
Then an FO processor is used to produce actual printed
output, on paper or as an electronic document.

XSLT stylesheets for Docbook, written by Norman
Walsh, have been available for several years. They im-
plement a large part of the Docbook elements— imple-
menting all elements seems almost impossible. And they
are extensively parametrized, so that users can customize
many aspects without modifying the XSLT code.

The objective of XSLT+FO is: one stylesheet, many
processors. Several FO processors are available, among
which are two free tools: FOP and TEX. FOP is a ded-
icated FO processor that produces output in PDF and a
range of other formats. It is available from the Apache
web site.3

TEX can be used as an FO processor using David
Carlisle’s XML parser xmltex and Sebastian Rahtz’s
passivetex package. xmltex works in much the same
way as ConTEXt’s XML processor. It allows one to reg-
ister commands for an element, which will be applied
when that element is started or ended. It does not de-
pend on LATEX or ConTEXt.

passivetex does the same as Docbook In Con-
TEXt. It is a collection of commands to be called by
xmltex. But it does not register commands for the ele-
ments of a specific DTD. Its commands apply to Format-
ting Objects. This is possible because Formatting Ob-

3. http://xml.apache.org/fop

jects are written as elements in an XML file. In that way
passivetex turns TEX into an FO processor.

Unfortunately, neither FOP nor passivetex do
a good job with the Docbook XSLT stylesheets. The
stylesheets make use of features which are not imple-
mented in these FO processors.

The db2context project InMarch 2003 the first release
of the db2context4 project was announced. It is a sis-
ter project to the dblatex project, and shares some code
with it.

The db2context project uses XSLT stylesheets not
to produce FO, nor HTML, but to produce a ConTEXt
file. This may at first seem an odd application of XSLT,
and it certainly is not as intended. But it is used quite
often by LATEX and ConTEXt users, with success. XSLT
has good logic to deal with the problems of transforming
an XML file. Writing a good transformation in XSLT is
certainly easier than writing one in TEX macros.

Another advantage of this approach is that it allows
one to customize the resulting ConTEXt file. In that way,
what one cannot get out of the db2context style sheets,
one can achieve by editing the ConTEXt file. This pro-
cedure is a major sin against XSLT orthodoxy, because
all formatting should, and can, be specified in the XSLT
stylesheet. But it is a great advantage for those who know
how to achieve their desired style in ConTEXt and do not
know much XSLT. In such a situation, who is stopped by
orthodoxy?

I do not know the current state of the db2context
stylesheets.

Future plans

Currently, Docbook In ConTEXt is not completely in-
tegrated with the ConTEXt distribution. I have strictly
used the ConTEXt API wherever I could, and avoided
developing my own variants. But I have preferred to de-
velop this module in separation from the development of
ConTEXt itself. The time has now come to work on a
better integration. I hope this can be achieved over the
next year.

If good, customizable XSL stylesheets for Docbook
exist, and if ConTEXt could be an FO processor for
the resulting output, then why would it be a good idea
to spend so much effort on writing a special Docbook
stylesheet for ConTEXt?

In the ConTEXt community the idea of a spe-
cial Docbook stylesheet for ConTEXt has been greeted
with enthusiasm. Apparently, here the theory of one
stylesheet for many processors succumbs to the practice
that users prefer to work with their tools of choice. For a
popular set of tools like Docbook and ConTEXt users af-
ford the effort of another style sheet. Such a style sheet

4. http://sourceforge.net/projects/dblatex

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 395

Simon Pepping

is more manageable for them and running the required
tools is easier.

On the other hand, until now, I have spent most of
the required effort. And my answer tends to be: Maybe
it is not the best way to support Docbook and XML in
ConTEXt. Maybe it would be more useful to work on
FO mappings in ConTEXt.

Over the past year I have set up this stylesheet.
I have investigated the main structure of Docbook and
come up with a way to map that to a ConTEXt document.
I have implemented a framework for the mapping. I have
enjoyed doing all that, and my insight and skills in TEX
macro programming have increased immensely. But the
time has come that others take this over, add mappings
for more elements, add customizations, add new ideas.
I plan to move forward to more generic work to support
formatting of XML documents using TEX as the typeset-
ting tool.

Availability

Currently, Docbook In ConTEXt is available separately
from the ConTEXt distribution, from my web site.5

Michael Wiedmann’s web page6 with Docbook tools has
a link to the Docbook In ConTEXt files.

Programming Docbook In ConTEXt

ConTEXt and XML ConTEXt can take XML documents
as input. For that purpose it contains a non-validating
XML parser, which recognizes XML tags as markup in-
structions. And it has an API (Application Programmer’s
Interface) which allows one to define actions for those
tags. This is called mapping XML tags to ConTEXt. A
typical mapping instruction is

\defineXMLenvironment[element]

{start action}

{stop action}.

During the start and stop actions one has access to
the attribute values of the element. For example, this is
how one reads the align attribute of an entry element
(in a table) and issues the corresponding setup command
for ConTEXt’s TABLE environment:

\doifXMLvar{entry}{align}%

{\expanded{\setupTABLE[align=

\XMLvar{entry}{align}{}]}}

ConTEXt’s programming interface for XML map-
ping is robust. Rarely if ever does one get tangled in ex-
pansion problems. But, as is seen in the above example,
timing the expansion remains an issue: The command to
retrieve the attribute value,
\XMLvar{entry}{align}{}

5. http://www.leverkruid.nl/context
6. http://www.miwie.org/db-context/index.html

must be expanded before the setup command can be read
by TEX. That is what \expanded does.

It is easy, is it not? In principle, writing a mapping for an
XML document in ConTEXt is simple. You state which
ConTEXt commands you want to use for the start and
stop of each element, and ConTEXt takes care of the rest.
Practice is more complicated, certainly if you want to
write a useful, extensible and customizable mapping for
a complicated DTD. In the following sections I discuss a
number of noteworthy features of the Docbook In Con-
TEXt mapping.

Encoding and language

An XML document declares its encoding in the xml dec-
laration at the start of the document. ConTEXt supports
several encodings, among them the XML default encod-
ing utf-8. Correctly reading an encoding is one thing.
Making all characters available that can be addressed by
an encoding is quite another thing. Unicode and its utf-
8 encoding have brought all characters in the Unicode
range, currently more than 50,000, into scope within
a single document. At the moment many of these are
mapped to ‘unknown character’. Work is ongoing to bring
more characters within reach of ConTEXt in a single doc-
ument.

A Docbook document may declare its language in
the xml:lang attribute of the document element. The
Docbook in ConTEXt module contains at the moment
translated strings for four languages: English, German,
Dutch and Italian. These are used for automatically gen-
erated strings, such as the titles of the table of contents,
the abstract, and the index.

Features for each element

Context stack Because an XML document has a tree
structure, each element in the document has a list of
ancestors. I call that the context, or the context stack,
which contains the ancestors from the document root to
the current element.

An element may push itself onto the context stack
when it starts, and pop itself when it finishes. In prin-
ciple all elements should do so. In practice a number of
elements omit this because they or their children do not
use the context stack in their formatting.

During formatting, the context stack can be in-
spected with the following commands:

• \XMLDBcurrentelement: The current element’s
name.

• \XMLancestor#1: The name of the ancestor at
level #1. The current element is at level 0.

• \XMLparent: The name of the current element’s
parent.

396 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

• \the\XMLdepth: The depth of the context stack.

• \doifXMLdepth#1: Execute the following instruc-
tion if the context stack has a certain depth.

• \XMLDBprintcontext: Print the context stack in
the log file (mainly for debugging purposes).

ConTEXt also defines the context stack. I have rede-
fined it because ConTEXt’s implementation did not sat-
isfy my plans. Later I simplified my usage of the context
stack. ConTEXt’s implementation may now be perfectly
satisfactory, but I have not checked this.

ConTEXt itself defines \currentXMLelement to
hold the name of the current element. But it is only guar-
anteed to be valid while ConTEXt reads the XML tag. In-
deed, the mapping of some start tags in Docbook in Con-
TEXt emit an \egroup command, which invalidates the
value of \currentXMLelement.

Ignorable white space XML has the interesting feature of
ignorable white space. It can be used to give the raw
XML document a nice formatting and make it fairly read-
able. (It did not exist in SGML. As a consequence, SGML

documents may be practically unreadable in an ASCII ed-
itor.) For applications that read the DTD, this feature
is rather clear: white space in elements whose content
may only consist of elements, is ignorable. For example,
when the content model of a section only contains para-
graphs, all white space that surrounds the paragraphs is
ignorable. Applications like ConTEXt that do not read
the DTD must resort to other means to find out whether
white space is ignorable or not.

I have introduced a feature that is similar to the
mechanism used in XSLT. One can declare that an el-
ement preserves white space with the command

\defineXMLDBpreservespace#1

and that it ignores white space with the command

\defineXMLDBstripspace#1

For these declarations to work, the elements should be on
the context stack, and they and their children should use
the command \XMLDBdospaces as the last command in
their start and end tags. \XMLDBdospaces has the effect
of ignoring spaces following the XML tag if the current
element has been declared to ignore spaces.

In practice this is only used by elements that would
suffer if white space is not ignored. Note that TEX itself
already ignores a lot of white space, viz. all white space
that it reads in vertical mode. In the example of white
space surrounding paragraphs in a section, TEX would do
the right thing by itself.

The correct functioning of \XMLDBdospaces is
rather subtle. The following is a generic element map-
ping:

\defineXMLenvironment[xxx]

{\XMLDBpushelement{\currentXMLelement}

\XMLDBdospaces}

{\XMLDBpopelement \XMLDBdospaces}

The command \XMLDBdospaces in the start tag is
executed while xxx is the current element. So it ignores
white space if xxx has been declared to contain ignor-
able white space. But the same command in the end tag
is executed after xxx has popped itself from the context
stack. So its parent is the current element, and the com-
mand ignores white space if that parent has been declared
to ignore white space. That is indeed exactly what we
want, because the spaces following the end tag </xxx>
are in the parent’s content.

There is a class of ignorable white space that TEX
refuses to ignore: blank lines are converted to \par com-
mands by TEX’s input scanner, before we can tell TEX
whether white space is ignorable or not. Even this does
not always matter to TEX, because TEX discards empty
paragraphs or paragraphs that consist of white space only.
In the above example we could insert blank lines between
the paragraphs without ill effect. But a blank line be-
tween the start tag of a footnote and its first paragraph
has a notably bad effect: it introduces a \par command
between the footnote number and the start of the text,
so that the footnote number is in a paragraph by itself.

Such harmful blank lines can only be removed by
preprocessing of the XML document. I wrote a tool to
do that. It is a SAX document handler written in Java,
which removes all ignorable white space. I call it ‘Nor-
malizer’, and it is available on my web site.7

The output of this tool is not only good for the Con-
TEXt mapping. Looking over it is informative for authors
of XML documents. Every amount of white space that is
left by the tool, is regarded as meaningful white space by
XML parsers. Is that really what the author wants?

Every element In principle every element should contain
the following commands:

\defineXMLenvironment[xxx]

{\XMLDBpushelement\currentXMLelement

\XMLDBseparator \XMLDBdospaces}

{\XMLDBpopelement \XMLDBdospaces}

That is, it pushes itself onto the context stack. It
checks whether it should typeset a separator. And it
checks whether it should ignore following white space.
In its end tag, it pops itself from the context stack, and it
checks whether its parent should ignore following white
space.

The separator is used by such elements as author,
which may generate a comma or the word ‘and’ between
consecutive elements. By default it is set to \relax. A
parent element should give it a suitable definition to be

7. http://www.leverkruid.nl/context

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 397

Simon Pepping

used by its children, and reset it to the default when it
finishes.

Which element is next?

ConTEXt’s XML parsing is event based. This means that
the parser generates events, such as the start or stop
of an element, and calls the associated actions. During
the actions one only sees the current event. One can-
not look back at past events, except for the data that
one saved. One can certainly not look forward to check
which elements follow. In contrast, XSLT is tree based.
That means that one can scan all elements, preceding and
following, in the formatting commands of an element.
Event-based parsing may present serious problems to the
programmer.

Is there a title? An abstract may but need not have a ti-
tle. When there is no title, I want to print the default
title ‘Abstract’. Because of the event-based nature of the
parse, one cannot at the start of the abstract look forward
to see if a title will follow. One can only try to find a fu-
ture event at which one may safely conclude that there is
no title if one has not yet seen a title.

In an abstract the optional title may be followed by
three element types: para, simpara and formalpara.
When any of these elements is started, one may safely
conclude that either the title has been seen or there is
no title.

One solution is to save the title, and to redefine the
mappings of each of these three elements, such that they
output the title or the default title if there was no title.
And then restore their default definitions for the follow-
ing elements.

Another way to tackle this problem is to save the
whole abstract and process it twice. In the first pass we
check whether there is a title. During this pass, all output
should be suppressed. In the second pass we first output
the title or the default title if no title was found in the
first pass, and then we output the content. Again this re-
quires a redefinition of the three possible elements that
may follow the title, so that they suppress their output at
the first pass.

The third option is provided by TEX itself, not by
the XML mapping. We redirect the typesetting of the
abstract into a vbox. At the same time we save the ti-
tle in the variable \XMLDBtitletext, which removes it
from the typeset content in the vbox. Then we output
the saved title or the default title if there is no saved ti-
tle, and next we output the vbox. This is the best option,
and I use it.

When I applied this method to other elements with
the same problem, e.g. note, I noted that the vbox dis-
turbs the line spacing. This lessened my satisfaction with
this solution.

Just before I finished this article, I realized that the
above solutions correspond to XML thinking, in terms
of nodes that have or have not yet been seen. A TEX
programmer, however, has another option. We can save
the content of the abstract, and then check whether the
markup string for the title, viz. <title, appears in it. I
have now implemented this solution. ConTEXt has good
string comparison macros. Nevertheless I have written
my own solution, because I wanted to be absolutely sure
that there is no expansion of the abstract text. I have had
my share of expansion problems with accented and other
non-ASCII characters.

In a section this solution would be a bit more prob-
lematic: we run the risk of saving a large chunk of text.
Working with options one or two would not be fun,
because there are more elements to be redefined. I
think the only viable alternative would be to work with
\everypar, because \everypar is TEX’s low-level sig-
nal that there is new text. Fortunately, in a section a title
is required, so I did not (yet) have to work out this prob-
lem.

This is an example of the problems that arise be-
cause in an event-based parse it is hard to determine if
an optional element is not present. The following section
presents an example of the problems that arise because in
an event-based parse it is equally hard to determine when
a certain group of elements is finished.

Sectioning Like many systems, ConTEXt partitions its
document in frontmatter, bodymatter, appendices and
backmatter (called section blocks). The section block
governs such properties as the numbering of the chapters
and sections. I use the end of the frontmatter to print the
table of contents.

Docbook does not have the equivalent of section
blocks. There is no single element that contains the
frontmatter, the bodymatter or the backmatter. There-
fore I analysed the top-level structure of a Docbook doc-
ument, and divided the elements that may occur as top-
level elements into frontmatter elements, bodymatter el-
ements and backmatter elements. When the first top-
level bodymatter element is seen, the frontmatter is com-
plete and the bodymatter starts. Similarly for the back-
matter.

For a book in Docbook the situation is rather clear:
The bodymatter starts with the first part, chapter,
article or reference. For an article the situation is
much fuzzier. While I counted only 6 top-level front-
matter elements, I identified 56 top-level bodymatter el-
ements.

The transitions between the other section blocks are
fortunately more clearly marked. The complete analysis
is contained in the documentation for the module itself.

The situation is programmed using the commands

398 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

\XMLDBmayensurebodymatter

and

\XMLDBmayensurebackmatter

All top-level bodymatter and backmatter elements exe-
cute the appropriate command. These commands check
if the element is a direct child of the document ele-
ment, i.e. if the depth of the context stack equals 2,
and if the corresponding section block has not yet been
started. The current section block is kept in the variable
\XMLDBsectionblock.

Note that this means that TEX grouping runs across
the XML tree structure. The start of a node may close a
section block, i.e., it closes a TEX group.

Specific elements

Tables Docbook uses the CALS table model. The Con-
TEXt format uses two different table models. One is
the tabulate environment, which is based upon TEX’s
\halign. It is quite sensitive to expansion timing er-
rors. The other is the TABLE environment, also called
natural tables. It is a very powerful and flexible en-
vironment, with many customization possibilities using
\setupTABLE commands. A special feature of this table
model is that rows, columns and cells can be configured
both before and after their content has been given, at any
time before the end-of-table (\eTABLE) command.

Because ConTEXt’s natural tables havemany similar-
ities to CALS tables, the mapping is in principle very easy:
a row corresponds to TR, an entry to TD, colspec el-
ements can be mapped to \setupTABLE commands.

There are three main complications.

• The top, bottom, left and right frames of a CALS
table are determined by the frame attribute of the
table; the rowsep and colsep attributes of the cor-
responding rows and cells should be ignored.

• CALS tables can have multiple tgroup elements,
each with their own number of columns, and their
own alignment and frame settings (colspec ele-
ments).

• Each tgroup may have its own thead and tfoot

elements, which may contain their own colspec

elements.

These requirements have resulted in the following
model: The table element generates a ConTEXt table,
i.e. the table float, using the \placetable command.
Each tgroup element generates its own TABLE environ-
ment, i.e. the actual table.

The table is not opened by the start tag of the
table, because at that moment the title is not yet known.
Instead, it is opened by the start tag of the first tgroup
(command \XMLDBopentable, which contains the Con-
TEXt command \placetable). The start tag of each

following tgroup typesets the previous tgroup (com-
mand \XMLDBendTABLE). Before typesetting, the left
and right frames are set up. The start tag of the second
tgroup also sets up the top frame. The end tag of the
table does the same as the start tag of the next tgroup
would do. In addition it sets up the bottom frame of
the table, and closes the vbox of the \placetable com-
mand.

The rest is careful attribute processing, and issuing
the required \setupTABLE commands at the right time.
Attribute processing generates a lot of overhead, because
both the attribute names and their possible values have to
be translated from CALS to \setupTABLE. That makes
the code somewhat less readable, but the logic is quite
straightforward.

Issuing the required \setupTABLE commands is a
precise work.

• The start tag of the first tgroup applies the frame,
colsep and rowsep attributes of the Docbook ta-
ble (\XMLDBopentable), so that they apply to all
TABLEs in this CALS table. The start tag of each
tgroup applies its own align, colsep and rowsep
attributes, within its own TABLE environment.

• colspec elements of a tgroup apply their at-
tributes to the whole column of this TABLE. The
colspec elements in the thead and tfoot ele-
ments, on the other hand, must save their attributes
(\XMLDBsavecolspec); they will be applied per
entry in the thead and tfoot.

• row elements apply their attributes immediately to
the whole row.

• entry elements first check whether they are in
a thead or tfoot; if so, they apply the saved
colspec attributes. Then they apply their own at-
tributes. This order is important. ConTEXt gives
precedence to properties set up per cell over prop-
erties set up for the whole table or per row or col-
umn. But in this case we apply what was originally
a column specification per cell, so we must take care
of the precedence ourselves.

Revision history The revision history contains a number
of revisions. Each revision specifies one or more fields out
of five possible fields. I wanted to represent this in a ta-
ble which should only contain those columns for which at
least one revision specifies data. Programming this was
my first challenge in this project.

Hans Hagen suggested the solution. The revision
history is saved, and then processed twice.

For the first pass of the saved revision history, we
define the revision fields such that they register them-
selves when they occur, but suppress all output. We
also count the number of revisions, so that we will know
which row must contain the bottom rule of the table.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 399

Simon Pepping

Now we know which fields occur and we can set up the
table and output its header row.

For the second pass we define the revision element
such that it outputs the row with the fields. So that the
fields are output in the same order as in the header row,
regardless of their order in the XML document, we first
save the fields in a revision, and at the end tag of the re-
vision we output the whole row in the desired order.

I worked this out both in ConTEXt’s tabulate envi-
ronment and with its natural tables. I decided to keep
the solution with the natural tables, because natural ta-
bles are more flexible and less prone to expansion errors.

This procedure demonstrates a powerful feature of
ConTEXt’s XML processing: It is possible to save a node
of the XML document with its subtree; in other words,
the content of an element, complete with embedded el-
ements, is saved in a variable without parsing. Later one
can process the saved subtree as often as one likes. In be-
tween one is free to redefine the behaviour of the em-
bedded elements. In TEX’s macro language this is quite
normal behaviour:

\def\savevar#1{\def\var{#1}}

... % redefine \processvar

\processvar{\var}

... % redefine \processvar

\processvar{\var}

In other programming languages it is not nearly as
easy. Saving a node with its subtree in a SAX content han-
dler so that it can be processed later is not a trivial task.

It is a disadvantage of the above procedure that the
code is not easily read, certainly not if one is not used
to the procedure. Recently, I have discussed an alter-
native procedure using Giuseppe Bilotta’s xdesc mod-
ule. It would achieve the same result but make the pro-
gramming more transparent. Another advantage would
be that it is more easily customizable by the user.

Program listing and CDATA I have spent an enormous
amount of time on program listings. At first it seemed
easy: ConTEXt has a verbatim environment which suits
our purpose.

Then it was pointed out to me that some program
listings contain CDATA sections, which were not treated
well by my solution. I realized that a program listing is
not really a verbatim environment because it does not dis-
able XML tags. I dived deep into ConTEXt’s verbatim
environment and came up with a variant that supported
two types of verbatim: one real verbatim for CDATA sec-
tions and one that did only line oriented layout for pro-
gram listings. Moreover, it was nestable, so that it could
deal with CDATA sections within program listings.

But it remained problematic to get it quite right.
When the end of the CDATA section or of the program
listing element was followed by text on the same line, this

text was lost. And my white space tool did exactly that:
put the following text right behind the end of the pro-
gram listing element.

When I revisited the problem a few months later
it dawned on me that the whole verbatim approach was
wrong. Neither CDATA sections nor program listing envi-
ronments have anything to do with TEX’s notion of ver-
batim. CDATA sections just disable XML markup. They
may occur anywhere in an XML document, and have no
semantic meaning. Indeed, an XML parser does not even
report whether CDATA sections are used in an XML doc-
ument; it simply resolves them.

For the program listing I found a simple solution. It
avoids scanning a whole line at a time, therefore it avoids
scanning the text following the end of the program listing
with the wrong catcodes in place. It uses \obeylines
and \obeyspaces and it places struts at the start of a line
to prevent the leading spaces to be discarded by TEX’s
paragraph mechanism. That is all, and it does the job
well.

Hyperlinks,URLs and external documents Docbook docu-
ments mark hyperlinks with the ulink element; the url is
contained in its url attribute. If we were writingHTML

documents it would be easy:

<ulink url="URL">text</ulink>

would be translated to:

text</href>

and the browser would do the rest.
But this does not suffice for PDF documents. Links

to PDF documents should be treated differently from
links to other documents, and relative links to non-PDF
documents are not allowed. Therefore, we have to anal-
yse the URL and complete it if necessary.

In ConTEXt strings can be split into parts with com-
mands like

\beforesplitstring

string\at substring\to\var

which splits string at substring and stores the first
part in \var. I use this and similar commands to check
whether the URL has an “authority” (this is the term
used by RFC2396, which specifies URIs; usually it is
called the protocol, e.g. http) and whether it is an abso-
lute or a relative URL. If a local file is specified, we also
check whether it has the extension pdf. Links to local
PDF documents are created using the ConTEXt command
\useexternaldocument, links to other documents use
the ConTEXt command \useURL.

URLs like slashdot.org pose a special problem.
Is it a web server, or a file in the current directory? Cf.
the URL myfile.html, which has exactly the same pat-
tern. After the terminology of RFC2396 I call these
abbreviated URLs. By default they are not recognized.

400 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Docbook In ConTEXt, a ConTEXt XML Mapping for DocBook Documents

Thus myfile.html is correctly linked to as a local doc-
ument, while slashdot.org is incorrectly linked sim-
ilarly. The user can switch recognition of abbreviated
URLs on by setting \XMLDBcheckabbrURItrue, and can
switch if off again with \XMLDBcheckabbrURIfalse.

Unfortunately, I do not know how to get the work-
ing directory in a ConTEXt run, so relativeURLs are cur-
rently not properly completed.

Customization

For a long time I did not pay much attention to cus-
tomization. Recently, I received requests to make a
mapping for the blockquote and epigraph elements.
Together with that request a discussion arose on the
ConTEXt mailing list about customization. As a con-
sequence, these two elements and their child element
attribution have proper setup options, namely, the
commands \setupblockquote, \setupepigraph and
\setupattribution (discussed on page 393). Since
then several customization options have been added and
surely more will follow.

The same discussion on the ConTEXt mailing list
touched upon attributes whose range of values is not con-
strained. An example is the role attribute of any el-
ement. It is not possible to define actions for such at-
tributes in the stylesheet, because the possible values are
not known. The idea arose to put a hook in the stylesheet
for the user’s own formatting command, called attribute
action. The user can define such an action as follows:

\defineXMLattributeaction

[para][role][first]{\bf}

The stylesheet invokes the attribute action within a
group in order to limit the user’s actions, such as chang-
ing the font, to this element. Therefore ConTEXt cannot
invoke the attribute action automatically; it cannot know
where it should do so. For example, some mappings for
the opening tag invoke \egroup; if the attribute action
had been invoked automatically, its scope would be ended
immediately.

The author of a Docbook document may provide
a value for the role attribute for every element. But
I am wary of enabling an attribute action for every el-
ement. It would put every element in a group, and I
am not sure about the effects. For now attribute ac-
tion has experimentally been implemented for para and
programlisting.

I am not sure how far customization can go. En-
abling extreme customizability would come down to
defining a new language for describing the formatting of
a Docbook document. This would go too far. On the
other hand, customizability is a strong feature of Con-
TEXt. It is not difficult to add customizability options

to the stylesheet; ConTEXt has some good commands for
that.

Docbook in xmltex

Would it have been possible to write these stylesheets for
Docbook based on xmltex? Of course.

Since xmltex is independent of LATEX or ConTEXt,
it would in principle even be possible to write Docbook in
ConTEXt in xmltex, that is, to use xmltex as the parser
and base the commands on ConTEXt. But, as expected,
there are conflicts when xmltex and ConTEXt are used
together.

xmltex and LATEX would have been a good basis for
a Docbook stylesheet. The approach would in principle
be the same as that used in the current project. Like the
ConTEXt XML parser, xmltex allows one to register ac-
tions for each element. The syntax regarding attribute
specifications is a little different. Both allow one to spec-
ify an action for the start and one for the end of an ele-
ment.

The major difference would be that between LATEX
and ConTEXt, which is quite large. Three significant dif-
ferences may be mentioned.

• XML support in ConTEXt is actively maintained and
evolving. xmltex is not.

• Unicode and utf-8 support in LATEX is extensive,
due to components of the passivetex package. In
ConTEXt many Unicode symbols are yet undefined
at the time of this writing. It would be an advantage
if passivetex’s Unicode support would be ported
to ConTEXt.

• ConTEXt has a strong integration of MetaPost and
PDF. I have not made much use of this feature.
For an example of what is possible, see the admo-
nition symbols in Docbook In ConTEXt produced
with MetaPost.

Acknowledgements

Michael Wiedmann contributed the earliest mappings
for several elements, a.o. mediaobject, table, and
ulink. He also contributed the implementation of string
literal files, and the string literals for English and Ger-
man. Giuseppe Bilotta contributed the string literals file
for Italian, and Pablo Rodriguez contributed the same
for Spanish. Richard Rascher-Friesenhausen made sev-
eral contributions, a.o. the MetaPost admonition icons.

And of course, nothing of this would have been pos-
sible without Hans Hagen’s ConTEXt. ConTEXt is the
framework in which Docbook In ConTEXt runs and a
rich source of examples of excellent TEXmacro program-
ming.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 401

