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Kissing circles: A French romance
in METAPOST

Denis Roegel

Abstract

When circles meet, they kiss. If three of them kiss,
others can try to join and kiss all of them at once. In
this article, we look at this problem from the META-
POST point of view, and we try to tell circles how
to kiss, no matter their position and size. Recursive
kissing will also be attempted.

1 Introduction

Apollonius of Perga (3rd century BC) was a Greek
geometer, author of, among other things, a treatise
on conical sections. He is credited of having coined
the terms ellipse, parabola and hyberbola. His book
Tangencies, cited by Pappus, defines the tangents
problem as the problem of finding a circle tangent to
three other objects being any combination of points,
lines or circles. Apollonius showed how to solve this
problem with a compass and straightedge, and it is
now known as Apollonius’ problem. When the three
objects are circles, there are in general eight different
solutions (Gisch and Ribando, 2004).

However, when the three circles are externally
tangent to each other, these solutions reduce to only
two non-trivial ones, namely the external and inter-
nal tangent circles, known as outer and inner Soddy
circles (figure 1).

Descartes found a simple analytic solution. The
curvatures e1 = 1/r1, e2 = 1/r2, e3 = 1/r3 of three
circles kissing each other are related to the curvature
e4 of a Soddy circle through the equation
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4) = (e1 + e2 + e3 + e4)2 (1)

In this equation, e1, e2, and e3 being given,
e4 has two solutions. The positive solution corre-
sponds to the inner Soddy circle and the negative
solution to the outer Soddy circle (whose radius is
then −1/e4). The analytic solution can be used to
iterate the construction, but one has to be careful to
avoid overflows. The outer Soddy circle will always
appear at the border, hence a small curvature value,
whereas smaller and smaller circles will be packed
on the border, hence larger and larger values for the
other curvatures. The METAPOST language is not
very well suited to handling very small or very large
values, and a geometric construction with no calcu-
lations is better suited to this problem.
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Figure 1: Inner and outer Soddy circles of circles
C1, C2 and C3.

2 David Eppstein’s construction

In 2001, David Eppstein published a new construc-
tion for the inner and outer Soddy circles (Eppstein,
2001). Our purpose will not be to prove that this
construction is indeed correct, but to see how best it
can be implemented, and in particular in the most
general way.

Eppstein’s construction goes as follows. Given
three tangent circles C1, C2 and C3 (figure 2), a tri-
angle connecting their centers is drawn. From each
center, a perpendicular line is dropped to the op-
posite side of the triangle. The intersections be-
tween the perpendiculars and the triangle sides are
marked with discs having small holes. The per-
pendiculars intersect their originating circle at two
points, marked with discs and circles. Now, each
disc can be connected to the tangency point (verti-
cal cross) of the two other circles. This line meets
the first circle at another point than the one with a
disc, and we mark it with a filled square. The three
points with filled squares are the tangency points of
the inner Soddy circle.

The same procedure applied to the circle points
yields the square points which are the points of tan-
gency of the outer Soddy circle.

This construction can be used to find the circles
internally tangent to the outer Soddy circle and cir-
cles C1 and C3 for instance, and the procedure can
be used to build the Apollonian gasket (figure 3).
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Figure 2: Eppstein’s construction.
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Figure 3: An Apollonian gasket of depth 3, with
83 circles.

3 Construction problems and METAPOST

preliminaries

Finding the Soddy circles is rather straightforward,
although special cases arise already at this stage.
But the real problems are met when the construc-
tion is iterated, as the configurations of the circles
change and there are several cases. The main source
of difficulty is the duplicity of the circles. Eppstein’s
construction gives six points, but we must take great
care in grouping these six points into two sets, and
we have to find out which set corresponds to the
circle we want to draw.

We will start by building a number of robust
macros for common tasks. Some of these macros
can easily be reused in other applications.

3.1 Height of a triangle

Our first macro (figure 4) finds the height of a trian-
gle ABC starting at A. The height may not actually
intersect the opposite side of the triangle, hence it is
a good idea to use the whatever construction. Our
macro states that the intersection H is somewhere
on [B,C] and somewhere on [A,D] where D is a
point constructed using

−−→
BC. The macro doesn’t re-

turn the intersection H, but a path going beyond A
and H by at least r, which is a value provided to
the macro.

The idea is that we will use these paths to find
their intersection with the originating circles, hence
they need to be extended by at least the radius of the
circle, and actually a bit more, in order to be sure
that there is an intersection. Two paths, having an
intersection coinciding with the start of one of the
paths, may actually have no intersection for META-
POST due to rounding errors.

3.2 Circles

Circles can be obtained with the fullcircle macro,
and this macro will be used to find intersections.
However, circles are often a problem in that their
intersection with a line is usually not unique, and
if only one intersection is wanted, it is necessary
to ensure that we get the right one. Another re-
lated problem is the discontinuity within a circle.
Although not visible, a circle has a beginning and
an end for METAPOST. It is often a good idea to
avoid the discontinuity, which is a source of prob-
lems.

One convenient way of influencing the inter-
section returned by using the intersectionpoint
function with a circle is to rotate the circle around
its center (figure 5). This may seem of no use, but
actually the intersections are computed in such a
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A
B

CH

A +−−→CB rotated 90

vardef triangle_height(expr A,B,C,r)=
save H,d;
hide(
pair H,d;
H=whatever[B,C]
=whatever[A,A+((B-C) rotated 90)];

d=unitvector(H-A);
)

((A-1.1r*d)--(H+r*d)) % height
enddef;

Figure 4: Finding a triangle height.

way that the parameters of the paths are minimized.
So, if we can make sure that the circle is in a po-
sition such that the intersection with the minimal
parameter is the one we want, we will be rewarded.

We therefore define a macro for a circle of radius
r, centered at c and rotated by an angle a.

3.3 Tangencies

We define a macro for the tangency point between
two circles which are known to be tangent (figure 6).
This macro needs to take care of the case where one
circle is inside the other. This is the case when the
distance between the two centers is smaller than one
of the radii. Then, the circle with the smallest radius
lies within the other. The tangency is obtained by
extending the line connecting the circle centers. For
instance, if Ca lies inside Cb, the tangency point is

Ca + ra ×
−−−→
CaCb

‖
−−−→
CaCb‖

.

3.4 Angle between two lines

The angle between two lines is obtained using angle
and is brought within the interval [0, 180◦[ (figure 7).

3.5 Circle-line intersection

Eppstein’s construction makes it necessary to find
an intersection between a line and a circle, other
than a given point. Devising a macro for that pur-
pose which works in all cases is not trivial. One case

A

O

a

def circle(expr c,r,a)=
(fullcircle scaled 2r

rotated a shifted c)
enddef;

Figure 5: A circle rotated by a degrees. A is the
origin and end of the circle path of center O.

that has to be taken into account is the case where
the line is tangent to the circle, and possibly has no
intersection at all with the circle due to rounding
errors.

When writing such a macro (figure 8), we also
have to ensure that it will not fail when the two in-
tersections are too close. Given a point A on the
circle, and another point B, our solution is to first
compute the angle between the radius at A and the
vector

−−→
AB. If this angle is between 89 and 91 de-

grees, we assume that the line (AB) is tangent to the
circle. Even if it is not exactly tangent, the two in-
tersections will be very close and can be confounded.
In that case, we return A.

If not, we find the second intersection by com-
paring the distance to the center of the circle of two
points chosen in opposite directions from A on the
line. If B′ is such that

−−→
AB +

−−→
AB′ =

−→
0 , then the

second intersection is on [A,E], where E is the clos-
est of B and B′ from the center of the circle. We
slightly rotate the circle counterclockwise in order
to avoid A being found by the intersection. In this
way, A corresponds to a very large parameter and
will be avoided in the computation.

3.6 Circle going through three points

The final operation in Eppstein’s construction takes
three points and finds the circle going through these
points (figure 9). We first obtain the center of this
circle as the intersection of two medians. The macro
whatevermedian returns an undefined point on a
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def tangency(expr Ca,ra,Cb,rb)=
(if (arclength(Ca--Cb)<rb) % a inside b

or (arclength(Ca--Cb)<ra): % or b inside a
if ra<rb: % a inside b
Ca+ra*unitvector(Ca-Cb)

else: % b inside a
Cb+rb*unitvector(Cb-Ca)

fi
else: circle(Ca,ra,0) intersectionpoint (Ca--Cb)
fi)

enddef;

Figure 6: The three cases of tangencies. Notice that this macro will not fail if the circles have no
intersection due to rounding errors.

−→
VB

−→
VA

110◦

vardef angleof(expr Va,Vb)=
save a;
hide(
a=angle(Vb)-angle(Va);
forever:
if a>=180:a:=a-180;fi;
if a<0:a:=a+180;fi;
exitif ((a<180) and (a>=0));

endfor;
)
a % angle

enddef;

Figure 7: Angle between two lines defined
by vectors −→VA and −→VB , brought on the interval
[0, 180◦[.

line and is used in the circle_through macro. This
macro defines the center and the radius of the circle.

3.7 Existence of a segment intersection

It will be useful to have a macro telling when two
segments (and not lines) intersect, and when they
do not. An easy way to achieve this is to provide
a boolean version of the intersectionpoint macro
and have it return true instead of the intersection
and false instead of an error message, as follows:

secondarydef p intersectionpoint_b q =
begingroup save x_,y_;
(x_,y_)=p intersectiontimes q;
if x_<0:
false

else: true
fi
endgroup

enddef;

3.8 Innerness and outerness

Next, we define the following macro which will take
four circle centers. Circles B and C are tangent
externally and circle D is internally tangent to both.
A is a circle externally tangent to B and C, but
internally tangent to D. In other words, D is the
outer Soddy circle of A, B and C.
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vardef intersection_circle_line(expr c,r,A,B)=

save a,BP,I,uv;

hide(

pair BP,I,uv;

a=abs(angleof(B-A,A-c)-90);

if a<1: I=A;

else:

BP=A+(A-B);

if arclength(c--B)<arclength(c--BP):

uv=unitvector(A-B);

I=circle(c,r,angle(A-c)+1) intersectionpoint ((B-2.1r*uv)--(1.1[B,A]));

else:

uv=unitvector(A-BP);

I=circle(c,r,angle(A-c)+1) intersectionpoint ((BP-2.1r*uv)--(1.1[BP,A]));

fi;

fi;)

I % point returned

enddef;

Figure 8: Intersection between a line and a circle. The circle, its point A and B are given. We search
the other intersection I. The shortest of cB and cB ′ indicates on which side of the line (BB ′) is I, with
respect to A.

Conversely, given B, C and D, Eppstein’s con-
struction gives two circles, one of them being A. It
turns out that which points lead to which circle de-
pends on the existence of an intersection between
[Ca, Cd] and [Cb, Cc], where Ca, Cb, Cc and Cd are
the circle centers. We call the two possible circles
tangent externally to B and C, but internally to D,
inner when the aforementioned intersection exists
and outer when it doesn’t. This is consistent with
the outer Soddy circle center being such that there
is no intersection for the previous segments.

In practice, of the two circles, the inner one will
be the smaller of the two.
def is_inner(expr Ca,Cb,Cc,Cd)=
((Cb--Cc) intersectionpoint_b (Ca--Cd))

enddef;

3.9 Slope

Given a segment, the slope macro gives its slope
as an angle. This will be a convenient macro when
we need to rotate a circle in order to favor a certain
intersection.
def slope(expr p)=
angle((point 1 of p)-(point 0 of p))

enddef;

4 The main macro

The main macro takes four circle centers, as well as
four radii, and an integer for the recursion depth.
Initially, the first three circles are three tangent cir-
cles for which we find the Soddy circles. The fourth
circle will be non-meaningful and assigned a nega-
tive radius.
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def whatevermedian(expr A,B)=

whatever[.5[A,B],

.5[A,B]+(B-A) rotated 90]

enddef;

def circle_through

(expr A,B,C)(text c)(text r)=

c=whatevermedian(A,B)

=whatevermedian(B,C);

r=arclength(A--c);

draw fullcircle scaled 2r shifted c;

enddef;

Figure 9: Circle going through three points A, B
and C.

Later, when iterating the construction, there
will be two cases. In the first case the three first
circles are tangent externally, and an inner Soddy
circle is to be found. In that case, the fourth circle
is also non-meaningful.

The second case is a border case, where the first
circle is the outer Soddy circle. The second and third
circles are externally tangent, but internally tangent
to the Soddy circle. And then the fourth circle is
another circle externally tangent to the second and
third, and internally tangent to the first. This fourth
circle has already been drawn, but it is necessary to
find out which one is the other circle not yet drawn
at the border.

4.1 Computing the tangencies and triangle
heights

The tangencies and triangle heights are obtained
straightforwardly, given the previous definitions.
vardef tangent_circles

(expr Ca,Cb,Cc,Co,

ra,rb,rc,ro,n)=

save C,T,r,ht,Ihc,Ilc;

pair C[]; % centers

pair T[][]; % tangencies

numeric r[]; % radii

path ht[]; % heights

pair Ihc[][]; % intersections between

% heights and circles

pair Ilc[]; % final intersections

C1=Ca;C2=Cb;C3=Cc;

r1=ra;r2=rb;r3=rc;

T[1][2]=tangency(C1,r1,C2,r2);

T[2][3]=tangency(C2,r2,C3,r3);

T[3][1]=tangency(C3,r3,C1,r1);

ht1=triangle_height(C1,C2,C3,r1);

ht2=triangle_height(C2,C1,C3,r2);

ht3=triangle_height(C3,C1,C2,r3);

In order to simplify certain expressions, we also
define

def next(expr i)=

(if i+1<4:i+1 else: 1 fi)

enddef;

4.2 Diameters and other intersections

The intersections between the heights and the circles
are easy to obtain, but the key to success is to group
them correctly. In our case, we first group the in-
tersections which go towards the feet of the heights,
by slightly rotating the circles clockwise. This gives
the points Ihc[i][1], which are marked with small
circles.

The second group of points is the opposite one
and they are marked with small discs.

Then, the circles and discs are joined to the
opposite tangencies, yielding the squares and filled
squares.

for i:=1 upto 3:

% circle

Ihc[i][1]

=circle(C[i],r[i],slope(ht[i])-5)

intersectionpoint ht[i];

% disc

Ihc[i][2]-C[i]=C[i]-Ihc[i][1];

% square

Ilc[i]=intersection_circle_line(

C[i],r[i],

Ihc[i][1],

T[next(i)][next(next(i))]);

% filled square

Ilc[3+i]=intersection_circle_line(

C[i],r[i],

Ihc[i][2],

T[next(i)][next(next(i))]);

endfor;

4.3 The final step

In the final step (figure 10), we have to distinguish
whether this is the first time the macro is called.
When it is called for the first time (case 1), only the
outer and inner Soddy circles need to be drawn.
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if firststep: % case 1
firststep:=false;
% outer Soddy
circle_through(Ilc1,Ilc2,Ilc3)

(C4)(r4);
% inner Soddy
circle_through(Ilc4,Ilc5,Ilc6)

(C5)(r5);
% we recurse
if n>0: % border cases
tangent_circles(C4,C1,C2,C3,

r4,r1,r2,r3,n-1);
tangent_circles(C4,C2,C3,C1,

r4,r2,r3,r1,n-1);
tangent_circles(C4,C3,C1,C2,

r4,r3,r1,r2,n-1);
fi;

else:
if ro<0: % case 2
circle_through(Ilc4,Ilc5,Ilc6)

(C5)(r5)
else: % case 3
if is_inner(Co,C2,C3,C1):
circle_through(Ilc1,Ilc2,Ilc3)

(C4)(r4);
else:
circle_through(Ilc4,Ilc5,Ilc6)

(C4)(r4);
fi;

fi;
fi;

% we recurse
if n>0: % case 4
if ro>0: % case 5
tangent_circles(C1,C2,C4,C3,

r1,r2,r4,r3,n-1);
tangent_circles(C1,C3,C4,C2,

r1,r3,r4,r2,n-1);
tangent_circles(C2,C3,C4,origin,

r2,r3,r4,-1,n-1);
else: % case 6
tangent_circles(C1,C2,C5,origin,

r1,r2,r5,-1,n-1);
tangent_circles(C1,C3,C5,origin,

r1,r3,r5,-1,n-1);
tangent_circles(C2,C3,C5,origin,

r2,r3,r5,-1,n-1);
fi;

fi;

Figure 10: The high-level structure of the
recursion.

pair C[]; % centers
numeric r[];
numeric n; % depth
n=7;
C1=origin;
r1=4cm;
r2=3cm;
r3=6cm;
% we find the center C2:
C2-C1=(r1+r2,0);
% there are now two possibilities for C3,
% we keep only one
C3=circle(C1,r1+r3,0)

intersectionpoint circle(C2,r2+r3,0);
draw circle(C1,r1,0);
draw circle(C2,r2,0);
draw circle(C3,r3,0);
firststep:=true;
tangent_circles(C1,C2,C3,origin,

r1,r2,r3,-1,n);

Figure 11: The driver of the construction. Three
initial circles are defined and the general macro is
called.

Once the outer Soddy circle C4 has been ob-
tained, the macro is again called on each border. In
each case, we provide the outer Soddy circle as the
first parameter, then two of the three inner circles,
then the third inner circle. During the next call of
the macro, the “case 3” part will be in effect, and
the new circle to be squeezed between the two inner
circles and the outer Soddy circle is found out using
the innerness criterion mentioned above.

“Case 2” applies when the inner Soddy circle of
three externally tangent circles has to be found.

But no matter what, when “case 4” is reached,
we have found a circle and two new cases apply: ei-
ther we have a border case with the original outer
Soddy circle C1 (case 5), or the circle is the in-
ner Soddy circle of three externally tangent circles
(case 6). Splitting case 5 leads to two new border
cases and one inner case (the usual inner Soddy cir-
cle). Splitting case 6 leads to three new inner cases
(the usual inner Soddy circles). Note that the pa-
rameter origin is irrelevant when the radius is neg-
ative.

The macro is started as shown in figure 11.

5 Conclusion

Our little journey through kissing circles has pre-
sented every detail of the METAPOST construction.
We have followed Eppstein’s construction closely.
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Figure 12: An Apollonian gasket of depth 7,
with 6563 circles. The total number of circles is
5+3× (3n−1) where n is the depth. For n = 0, we
have five circles, which are the three base circles
and the two Soddy circles.

The resulting code is simple, but this simplicity was
not achieved right away. It is supported by the ro-
bustness of each macro which tries to be as gen-
eral as possible. The code produced is not tied to
a particular set of circle radii and should work in
all cases, provided METAPOST’s capacities are not
overflowed. We conclude with an Apollonian gasket
of depth 7, built with our code (figure 12).
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