26

The unknown picture environment

Claudio Beccari

Abstract

The old picture environment, introduced by Leslie
Lamport into the IXTEX kernel almost 20 years ago,
appears to be neglected in favor of more modern and
powerful IXTEX packages that eliminate all drawbacks
of the original environment. Nevertheless it is still
being used behind the scenes by a number of other
packages. Lamport announced an extension in 1994
that should have removed all the limitations of the
original environment; in 2003 the first version of this
extension appeared; in 2004 the first stable version
was released; in 2009 it was actually expanded with
new functionality. Nowadays the picture environment
can perform like most simple drawing programs, but
it has special features that make it invaluable.

1 Introduction

Plain TEX, as described in The TgXbook [5], con-
tained a simple way to draw simple graphics with
tex. When IMTEX was first published in 1984, it
contained an environment suitable for relatively com-
plex graphics; Lamport’s handbook [6] described its
workings and commands. But all this seems to have
fallen into complete oblivion.

Many users of IXTEX related forums keep ask-
ing questions such as “How can I produce such and
such a symbol”; I keep answering “Use the picture
environment”. Apparently nobody follows my sug-
gestions, which of course they are free to avoid; but
they would save time if they spent no more than
15 minutes in reading the environment description
in Lamport’s handbook [6]. The second edition of
this handbook announces the extensions and dis-
cusses the eliminated drawbacks; these extensions
were eventually realized only in 2003 by Géafilein and
Niepraschk [4]. In 2004 the same authors released
a stable version. In 2009, with the contribution of
the third author Tkadlec, they released an enhanced
version that added quite a few new commands that
substantially extend the picture environment func-
tionality. But, except for those very latest additions
in 2009, everything else was already documented by
Lamport in his second edition.

Not longer than a few days ago a forum partici-
pant asked how he could draw a square wave and a
saw tooth wave of suitable size for setting them in
line with his text: JL and J_.

Editor’s note: First published in ArsTEXnica #11, April
2011. Reprinted with permission, in slightly different form.

Claudio Beccari

TUGDboat, Volume 33 (2012), No. 1

Here is the whole thing required to produce
the two simple commands, using the recent pict2e
extension package’s new commands:

\newcommand*\sqwave [1] [0.125ex]{{/

\unitlength=#1\relax

\picture(20,10)

\polyline(0,0) (6.5,0) (6.5,15) (13,15)%
(13,0)(19.5,0)

\endpicture}}

\newcommand*\sawtooth[1] [0.125ex]{{%

\unitlength=#1\relax

\picture(20,10)

\polyline(0,0)(6.5,0)(6.5,15) (13,0)%
(19.5,0)

\endpicture}}

Most of the time suggestions are given by and
to the forum participants to use external drawing
programs, or to use the sophisticated PSTricks [12] or
TikZ [11] packages. The former solution is generally
to be avoided, because if some lettering is needed, it
requires extra work to use the same fonts as those
used in the document. The latter two packages are
certainly capable of doing marvelous and complicated
drawings, but require considerable time with the
documentation and a steep learning curve.

Also, the picture environment has a unique fea-
ture: it can produce drawings of zero width and/or
height. This special feature makes them valuable for
packages such as eso-pic [9], crop [3], layout [§],
layouts [15], and others. These packages draw
things on the page that do not require any external
package, and therefore don’t have any dependency.
These drawings occupy no space, although they have
a specific position on the page; their contents reach
whatever point on the page, as background images
or marks that do not interfere with the positioning
of other page elements.

In particular eso-pic (and similar packages for
setting watermarks) and crop exploit this function-
ality specifically for setting a background picture
or the crop marks in the correct positions without
interfering with the other elements of the page.

At the same time within the picture environ-
ment it is possible to use cubic Bézier curves and
to draw polygons, arches and sectors, oval frames
whose corner curvature can be freely specified, white
or filled circles of any dimension. The \polyline
macro used in the above example makes it very easy
to draw polylines with any number of corners and
any segment slope, to the point that if the nodes
are sufficiently close, it is possible to draw “smooth”
curves whose points may be calculated with any
number-crunching personal or mainframe computer.

TUGboat, Volume 33 (2012), No. 1

2 In detail

Everybody can agree that the original picture en-
vironment, created by Lamport with the very first
version of WTEX, was pretty rudimentary, but there
was practically nothing else to use in its place. The
straight lines could have slopes that were ratios of
relatively prime integer numbers not exceeding 6 in
absolute value. For vectors the limitation was even
stricter; the slopes could not be specified with integer
numbers larger than 4 in absolute value. Why were
there such strange limitations? Because straight lines
were made up through the juxtaposition of small seg-
ments 10 pt (= 3mm) long taken from a special font;
this same special font contained also the vector arrow
tips that occupied a large part of the available posi-
tions; and, remember, at that time the typesetting
engine could deal only with 128-glyph fonts, so that
the available short segments and arrow tips, plus
a selection of closed and filled circles and/or quar-
ter circles placed strict limitations on the drawing
performance.

Patient programmers created extension pack-
ages such as curves [7], that could overcome such
limitations by drawing lines of any slope and cir-
cles of any diameter by juxtaposing an “infinity” of
small dots. For plain TEX there existed another
package, PICTEX [14], that with a suitable interface
could work also with IXTEX. It performed well on
large mainframes with large memory capabilities,
but worked very poorly on the desktops of that age,
the eighties, when a 20 MiB hard disk was a luxury
and 640 KiB RAM was almost the maximum avail-
able. These packages mostly saturated the RAM
and drawing was virtually impossible on personal
computers.

Some progress was made when the PostScript
format became available; some drawing packages
(again curves) exploited TEX’s \special to write
raw PostScript drawing commands in the output, so
that the actual action of drawing was demanded of
the screen or printer driver. Nevertheless powerful
extensions in this directions, such as PSTricks, ap-
peared much later. Drawing with external programs
and importing the resulting artwork was therefore a
necessity, but not an easy task.

Things evolved in the right direction when per-
sonal computers, having become the universal com-
plement of any person needing to write anything,
started having a more user friendly interface, more
RAM, larger hard disks, and better programs, the
TEX system included. The nineties, besides the
important passage from TEX 2.x to TEX 3.0, gave
us KTEX 2¢, PostScript fonts, and the drawing in-

27

strument METAPOST. This program used more or
less the same philosophy that led Knuth to develop
METAFONT, in order to draw the TEX system de-
fault fonts; METAPOST produced a simplified output
PostScript code that was understood also by the new-
born typesetting program pdftex. METAPQST was,
and still is, fully compatible with the rest of the
TEX system typesetting engines, so that all the TEX
and IXTEX features could be used for putting any
lettering on the METAPOST output files.

Meanwhile INTEX went on with its small drawing
environment, without exploiting the new possibilities
with the PostScript format and the PDF portable doc-
ument format, until Gafllein and Niepraschk wrote
the picture extension announced by Lamport some
ten years before.

2.1 2009 extensions to picture

Let us now discuss the enhancements introduced by
the extension realized by Géfllein and Niepraschk.
Since these changes are so recent, some commands
are not described in [6].

1. First of all, the enhancements rely on the drivers
that are being used to display or to print the
document. More precisely, when the latex pro-
gram is used, the \special commands to the
driver contain only PostScript language com-
mands; this implies a transformation of the re-
sulting DVT file into a PostScript one by means
of dvips, and possibly a second transformation
to the PDF format by means of (for example)
ps2pdf. On the other hand, if the document
is processed with pdflatex, then the \special
commands contain only the PDF language com-
mands. Therefore the extension is fully compat-
ible with the typical output formats provided
by the most popular typesetting engines, and
this is fully automatic so users need not bother
about the details.

2. The output file size very often is smaller since
the actual drawing computations are performed
by the suitable drivers.

3. One of the limitations of the original environ-
ment was the slope of lines and vectors. In
the first implementation of the extension the
slope coeflicients had to be integers not higher
than 1000 in absolute value, thus implement-
ing Lamport’s description of 1994. The 2009
enhancements, however, remove even this lim-
itation, and the slope coefficients can be any
fractional decimal number (well, yes, not too
large, not higher than 16 383.999 98 which cor-
responds to the the largest dimension in points
that any TEX system typesetting engine can

The unknown picture environment

28

handle). Now line and vector slopes should not
have any detectable limitation.

The above is valid also for vectors; even better,
now it’s possible to pass an option to the pack-
age so that it can draw the arrow tips in “ITEX
style” or in “PostScript style”. In KTEX style
the joining sides to the arrow tip are slightly
concave, and the arrow shaft is straight; in Post-
Script style they form a polygon that resembles
a stealth aircraft.

Circles and quarter circles were available in a
limited set; now they can be drawn in any size,
both filled and unfilled.

Line thicknesses could previously be specified
only as \thinlines (default) and \thicklines
(twice as thick as \thinlines), and only verti-
cal and horizontal lines used the thickness spec-
ified with \linethickness (dimension). Now
\linethickness can modify the thickness of all
sorts of lines, Bézier splines included.

“Ovals”, frames with rounded corners, could
have the corner quarter circle with an automatic
setting of its radius, in any case not larger than
about 15pt (about 5mm), and they could not
use a radius dimension specified by the docu-
ment. Of course this radius should not exceed
the half length of the shorter frame sides (that
is, half of the distance of the longer straight
lines that form the longer sides of the frame)
but the radius can now be specified as an op-
tional argument to the \oval command so that
the created frame can have a very different look
when a smaller radius is chosen compared to the
same-sized frame with a larger corner radius.

Quadratic and cubic Bézier splines are now gen-
erated with the driver commands and they result
in smooth curves, not lines with a rough con-
tour due to the juxtaposition of many small
dots. The possibility of specifying the number
of dots is available even now, but it is mostly
for backwards compatibility —although, even
now, dotted splines might be used for special
purposes. In any case they do not suffer any
magnification when seen on the screen; they are
scalable vector strokes. The previous command
\bezier is maintained with its compulsory spec-
ification of the number of points to use, but
two new commands, with an optional specifi-
cation of the number of points, are introduced,
\gbezier for tracing quadratic Bézier splines,
and \cbezier for tracing cubic Bézier splines;
this last command was not described in [6], and
is a completely new command to the package.

Claudio Beccari

9.

10.

11.

12.

TUGDboat, Volume 33 (2012), No. 1

Up to this point the traditional commands have
been discussed and the differences with the orig-
inal environment described. The last extension
of pict2e, published in the second half of 2009,
adds some other commands that draw other lines
but in general don’t require the use of \put to
place these lines in a special position. Of course
they may be shifted with \put, which might
come in handy when fine-tuning the picture,
but the \put is not necessary.

A first exception to the above statement is
the new macro \arc that is a generalization of
\circle (both starred and non-starred forms;
in both cases the starred form produces a filled
contour) which requires putting the arc center
in a specific position, so that the whole com-
mand must be set as an argument to \put. The
\circle command is used like this:

\put ({(z), (y)) {\circle(*){({diameter)}}

and similarly with the \arc command:

\put ({(z), (y)) {\arc(*) [{angl), (ang2)]{(radius)}}
The arc has its center at point ({z),(y)), and
it will go from the angle (ang!) to the angle
(ang2); angles are in sexagesimal degrees and
are positive in the anticlockwise direction; if the
optional angles are not specified, the full circle is
drawn. The arc is drawn from the smaller angle
to the larger one, so that the order in which
(ang1) and (ang2) is not important.

The following commands do not require \put:
\Line ({x1),(y1)) ({z2),(y2))

\polyline ({z1),(y1)) ((z2),(y2))... ((zN),{yN))
\polygon({z1),{yl)) ((z2),(y2))... (zN),(yN))
\polygon* ((z1),(y1)) ((#2),(y2)). .. ((aN),(yN))
The first command is simply the segment that
joins the two points identified by the two pairs of
coordinates. The second command is a sequence
of segments that join with one another in the
order of the N specified pairs of coordinates;
we have seen it at work in the example shown
in the introduction. The third command is a
closed polygon whose vertices are sequentially
shown by the N pairs of coordinates. The fourth
command is similar but draws a filled polygon.
In order to draw the various lines and curves,
the internal commands make use of the “turtle
graphics” commands used within both the Post-
Script and PDF languages. These elementary
commands are available to the user also through
package pict2e; they are:

\moveto ({z), (y))

\lineto({z),(y))

\curveto((z2), (42)) (23), (y3)) ((a4) , (y4))

TUGboat, Volume 33 (2012), No. 1

\squarecap
\roundcap

\buttcap

Figure 1: Ending styles for line segments (of equal
width)

\beveljoin

»

\roundjoin

\miterjoin

Figure 2: Join styles for line segments

and a few more that the reader may find in the
documentation [4]. These commands may be
used in any order, except \moveto that must fix
the first position of the drawing pen. In order to
finish the path it is optional to use \closepath
in order to draw a line from the last point to the
initial one, but then it is necessary to use either
\strokepath to draw the path or \fillpath in
order to fill the path with the default color.

13. The initial and final points of an open path
may be controlled with the commands \buttcap
(cut the path at the end points), or \roundcap
(adjust the end points with a filled semicircle),
or \squarecap (adjust the end points with a
filled half square); in general with line art the
\roundcap should be preferable, but sometimes
it’s better to use one of the other two kinds of
end point finishing. See figure 1.

14. Similarly the joins between adjacent segments
of a polyline or a polygon may be adjusted with
the three commands \miterjoin,’ \roundjoin,
and \beveljoin, as shown in figure 2.

3 Examples

There are dozens of examples in the GJIT documen-
tation [2], where every line art picture has a small
legend containing the author name and the program
used for producing it. This book is a collective effort
of the Italian TEX users group, and is downloadable
from the GJT site http://www.guitex.org/home/
images/doc/guidaguit.pdf. There, the interested
reader can find plenty of ideas and useful “tricks”.

! In the documentation, [4], this command is erroneously
spelled \mitterjoin.

29

AV

Figure 3: A heptagon with seven vertices and
inscribed star

Here we present a few examples, sometimes with
their source code, in order to see the modern picture
environment at work.

A heptagon We compute the vertices of a hep-
tagon inscribed into a circle with a diameter of 6 cm
by means of a pocket calculator:

vy = (1.3017, —2.7029)
v = (2.9248, —0.6676)
vy = (2.3455,1.8705)
Uy = (Oa 3)

vs = (—2.3455, 1.8705)
v = (—2.9248, —0.6676)
v7 = (—1.3017, —2.7029)

Then we set up the picture environment (within
a figure environment, so we don’t need to do anything
to limit the scope of the \unitlength assignment)
with the following code:

\unitlength=5mm

\begin{picture}(6,6) (-3,-3)

\polygon(1.3017,-2.7029) (2.9248,-0.6676)%
(2.3455,1.8705) (0,3) (-2.3455,1.8705) %
(-2.9248,-0.6676) (-1.3017,-2.7029)

\polyline(1.3017,-2.7029) (0,3)%
(-1.3017,-2.7029) (2.3455,1.8705)%
(-2.9248,-0.6676) (2.9248,-0.6676) %
(-2.3455,1.8705) (1.3017,-2.7029)

\end{picture}

Figure 3 contains also the seven pointed star in-
scribed in the heptagon.

Splines We draw some splines inside a square with
sides 6 cm long; a quadratic spline has its two nodes
at the square base vertices, and the control node at
the center of the upper side. A cubic spline uses the
four square vertices as end and control nodes:

\unitlength=6.5mm
\begin{picture}(6,6) (-3,-3)

\put (-3,-3) {\framebox (6,6) {}}
\polyline(-3,-3)(0,3)(3,-3)
\polyline(-3,3)(3,3) (-3,-3) (3,-3)
\linethickness{1.5pt}
\gbezier(-3,-3)(0,3) (3,-3)
\cbezier(-3,3)(3,3) (-3,-3)(3,-3)
\end{picture}

The unknown picture environment

http://www.guitex.org/home/images/doc/guidaguit.pdf
http://www.guitex.org/home/images/doc/guidaguit.pdf

30

Figure 4: Quadratic and cubic splines

Figure 4 displays the result; observe the effect of the
\linethickness assignment on the splines them-
selves. If you can read this document on the screen,
you can magnify the picture and check the vector
nature of the splines. Figure 4 contains also the
polylines that join the nodes and control points, so
that it’s easier to see the effect of these “control
segments”.

An electric circuit Many years ago, at the end of
the 1980s, when I had available only the picture envi-
ronment, I needed to draw circuit diagrams. In fact,
I had so many circuit diagrams to insert in my book
that I needed to create suitable macros for drawing
the circuit components and their connections to the
various circuit nodes; of course every component had
to be identified with a symbol and optionally should
be assigned a value with the proper units.

Nowadays there are modular packages that work
with TikZ (circuitikz [10]) and PSTricks (pst-circ
[13]), but at that time there was nothing, or at least
nothing I was aware of.

In my department there was a very good expert
of technical drawing, and for my previous books I
had asked him to draw my circuits; these drawings
had to be glued to the camera ready copy, because at
that time it was very difficult to insert graphical files
into a document; not impossible, but difficult. The
publisher, in any case, did not want any kind of file;
he wanted only the camera ready copy. This proce-
dure was pretty lengthy: draw my circuits by hand,
pass them to the technician with suitable descrip-
tions about dimensions, lettering, line thicknesses,
and the like; after the drawings were done, careful
checking of the correctness, the proper position of
the labels and indices, and any possible typos; start
again with the second draft, and so on.

Therefore I decided to write a personal package
containing all the circuit macros, to work as an inter-
face between the user and the picture environment
with its internal macros. It took about two weeks;
afterwards, I had an almost complete circuit-drawing

Claudio Beccari

TUGDboat, Volume 33 (2012), No. 1

TEX program. At that time, of course, arbitrary
sloped lines were done by juxtaposing a multitude
of little dots, as well as quarter, half and full circles
of any diameter. Single-port components were auto-
matically drawn as vertical or horizontal elements;
connections automatically made the necessary bends
in order to reach the destination nodes; two-port and
four-pole devices were set in the proper orientation
in order to avoid crossing their connections; oper-
ational amplifiers, nullators, norators and nullors
were correctly designed; block diagrams with their
signal flows, their branching nodes, their summing
points, and so on, were at hand. The unit length
was parametrized to the current font ‘ex’ unit, so
that the circuit diagram would scale together with
the size of the surrounding text font.

I saved much time using my macros and the
technical expert eventually congratulated me, admit-
ting that my drawings were more consistent than his
own.

When the important pict2e package became
available in 2003, I started to eliminate all references
to the old tiny-point-overlay technique, and promptly
switched to the new technology.

I eventually added logical components as well, so
that this private package is almost complete. What
is provided by circuitikz is much more complete,
and this is the main reason why my package remains
private. I keep using it for no other reason than
compatibility with the past book files I wrote long
ago, from which I often pick up some parts in order
to assemble short tutorials for students who ask me
for explanations.

The package is too large to publish here; there-
fore, I will not show how the user commands are
realized with the internal modern picture environ-
ment ones. Ishow just the user-level code for drawing
the circuit diagram of a band elimination filter:

\begin{circuito}(75,35)

\hconnect (0,0) (19,0) \HPolo(20,0) (65,0)
\polo(20,25) [30,25]\polo(65,25) [75,25]
\hconnect (66,0) (75,0)

\R(75,0) (75,25) {R\ped{L}}

\E(0,0) (0,25){E}

\R(0,25) (19,25) {R\ped{G}}
\seriex*(30,0) (21,25)C{C_1}-L{L_1}
\parallelo(30,25) (55,25)L{L_2}-C{C_2}
\serie(55,0) (64,25)C{C_3}-L{L_3}

\nodi (55,0) (55,25) (30,25) (30,0)
\end{circuito}

and you can see the result in figure 5. As you can see
the component and connection macros are very user
friendly and the total amount of code for drawing

TUGboat, Volume 33 (2012), No. 1

Ly

Figure 5: A band elimination filter

a complicated circuit diagram? is very limited. If

you are reading this file on screen you can magnify
the image of figure 5 and again verify that the whole
drawing is made of scalable vectors. You can also
recognise that the resistors are drawn by means of
the \polyline command with the \miterjoin spec-
ification for the connection of the various segments.

A Cartesian diagram While teaching the syn-
thesis of electrical circuits I often needed Cartesian
diagrams of their performance; in figure 6 the squared
magnitude of a fifth order elliptical filter characteris-
tic function is plotted. The name “elliptical” derives
from the use of elliptical integrals and functions of
the first and second kinds. The diagram is only qual-
itative; although it would not have been a problem
to compute the actual points by means of a suit-
able program, for a qualitative diagram the extreme
points and the peaks and zeros should be sufficient.
The whole diagram had to be also shown as a slide,
therefore a beamer presentation was made containing
the same code:

\unitlength=0.9mm
\begin{picture}(80,60) (-40,-5)
\VECTOR (-40,0) (40,0)
\Zbox (40,-2) [tr]{\omega}
\VECTOR(0,-1) (0,55)
\Zbox(-1,55) [tr]{|F|~2}
\multiput(-35,5) (4,0){18}%
{\line(1,0){2}}
\Zbox (2,7) [b11{1}
\multiput (-35,45) (4,0) {18}
{\line(1,0){2}}
\Zbox (1,46) [b11{H 2}
\multiput(-2,15) (4,0){4}%
{\1line(1,0){2}}
\Zbox (1,16) [b1]{H}
\LINE(-10,0) (-10,-1)\Zbox (0,-2) [t1{0}
\Zbox (-10,-2) [t]{-1}
\LINE(10,0) (10,-1)\Zbox(10,-2) [t1{1}

2 Actually the circuit diagram is not complicated at all;
the complication is hidden behind the user macros, especially
those for inductors, where the various Bézier cubic splines are
properly described and connected to one another.

31

SN YN

Figure 6: The squared magnitude of the
characteristic function of an elliptical filter

{\linethickness{1.5pt}%
\cbezier(-12.5,55) (-12,40) (-12,40)%
(-10,5)
\cbezier(-10,5) (-10.1,0) (-9.75,0)%
(-9.5,0)
\cbezier(-9.5,0) (-9,0) (-9,5) (-8.5,5)
\cbezier(-8.5,5) (-7.75,5) (-7.75,0)%
(-7,0)
\cbezier(-7,0)(-5.5,0) (-5.5,5) (-4,5)
\cbezier(-4,5) (-2,5) (-2,0) (0,0)
\cbezier(-13,55) (-13.75,45) (-13.75,45)%
(-14.5,45)
\cbezier(-14.5,45) (-15.75,45)Y
(-15.75,45) (-17,55)
\cbezier (-21,55) (-26,45) (-28,45)%
(-35,45)
yA
\cbezier(12.5,55) (12,40) (12,40) (10,5)
\cbezier(10,5) (10.1,0)(9.75,0)(9.5,0)
\cbezier(9.5,0)(9,0)(9,5) (8.5,5)
\cbezier(8.5,5)(7.75,5)(7.75,0) (7,0)
\cbezier(7,0)(5.5,0)(5.5,5) (4,5)
\cbezier(4,5) (2,5)(2,0)(0,0)
\cbezier(13,55) (13.75,45) (13.75,45)%
(14.5,45)
\cbezier(14.5,45) (15.75,45) (15.75,45)%
(17,55)
\cbezier(21,55) (26,45) (28,45) (35,45)
%
\put (10.6,15) {\circle*{1.5}}
\put (12.2,45){\circle*{1.5}}
\put (10,5) {\circlex{1.5}}
\multiput(12.2,0) (0,4){11}%
{\1ine(0,1){2}}
\multiput(10.7,0) (0,4){4}%
{\1line(0,1){2}}
\VECTOR(25,20) (10.7,0)
\VECTOR(30,10) (12.2,0)
\Zbox(25,21) [bl%

The unknown picture environment

32

{\sqrt{\omega\ped{s}}=\omega\ped{c}}
\Zbox (31,10) [1c]{\omega\ped{s}}
\end{picture}

Two custom commands, \Zbox and \VECTOR,
were defined in order to speed up data input. The
former is short for inserting a zero dimension box
at the proper coordinate, and the latter is similar
to the standard \Line command but applied to vec-
tors. The other unusual macro \LINE is completely
equivalent to \Line; I had merely defined it before
the 2009 enhancement of the pict2e package.

Figure 6 displays the whole diagram as scalable
vector graphics, and as you can see the important
messages about the filter characteristic function prop-
erties are fully and clearly expressed. This is just one
example among the many such diagrams I used in
my books and presentations. It was well worth the
little time spent in defining the service macros. Of
course I could have used the plothandlers module
of the TikZ library, or the tikz-3dplot TikZ exten-
sion package, not to mention the modules associated
with PSTricks. However, I saved myself the study
of the 700-plus pages of TikZ documentation or a
similar amount for PSTricks. The fonts in figure 6
are just the ones I designed myself for presentations;
they were fully described in [1], and are available on
any complete recent distribution of the TEX system.

4 Conclusion

As mentioned in the introduction, the picture en-
vironment is a very simple one, with but few and
specific drawing commands; the documentation is so
simple that less than 10 pages are sufficient. At the
same time these simple commands may be used to
create more complex macros and eventually result
in professional drawings. Certainly this environment
cannot compete with more elaborate ones, such as
those provided by the packages TikZ and PSTricks;
but the latter require a steep learning curve, while the
former can be mastered in a few minutes. Very often
the results obtained with the picture environment,
completed by the recent enhancements provided by
the pict2e package, are fully acceptable: it’s possi-
ble to create complicated diagrams as well as simple
symbols; it’s possible to use this environment to
place background or foreground images or symbols
“wherever” on the page, even outside the margins;
in [2] it is shown also how to make strange and un-
usual tables, Cartesian diagrams, and any sort of mix
between line art and included pictures. In any case,
if any lettering is placed in the drawing, it surely
uses the same fonts as those used for the text, thus
eliminating the usual risk that occurs when using
external drawing software.

Claudio Beccari

TUGDboat, Volume 33 (2012), No. 1

I believe that beginners would find this enhanced
environment the right first step for programmed
drawings; with minimum effort they can reach very
good results.

References

[1] Claudio Beccari. Ixfonts: KTEX slide fonts
revived. TUGboat, 29(2), 2008. Reprinted
from ArsTEXnica #4, 2007.

[2] Claudio Beccari, editor. Introduzione all’arte
della composizione tipografica con BETpX. GJT,
2011.

[3] Melchior Franz. The crop package, 2003.
http://mirror.ctan.org/macros/latex/
contrib/crop.

[4] H. GéBlein, R. Niepraschk, and J. Tkadlec.
The pict2e package, 2011. http://mirror.
ctan.org/macros/latex/contrib/pict2e.

[5] Donald E. Knuth. The TgXbook. Addison-
Wesley, Reading, Massachusetts, 1990.

[6] Leslie Lamport. ETEX: A Document
Preparation System. Addison-Wesley, Reading,
Massachusetts, 2°¢ edition, 1994.

[7] Tan Maclaine-cross. The curves package, 2009.
http://mirror.ctan.org/macros/latex/
contrib/curves.

[8] Kent McPherson. The layout package (part
of the tools bundle), 2000. http://mirror.
ctan.org/macros/latex/required/tools.

[9] R. Niepraschk. The eso-pic package, 2010.
http://mirror.ctan.org/macros/latex/
contrib/eso-pic.

[10] M. A. Redaelli. CircuiTikZ, 2011. http:
//mirror.ctan.org/graphics/pgf/contrib/
circuitikz.

[11] Till Tantau. The TikZ and PGF packages,
2010. http://mirror.ctan.org/graphics/
pgf/base/doc.

[12] Timothy van Zandt. PSTricks: PostScript
macros for generic TEX, 2011. http://mirror.
ctan.org/graphics/pstricks/base/doc.

[13] Herbert Vof. The pst-circ PSTricks package,
2011. http://mirror.ctan.org/graphics/
pstricks/contrib/pst-circ.

[14] Michael Wichura. PiCTgX. Department of
Statistics, University of Chicago, 1987.

[15] Peter Wilson and Will Robertson. The
layouts package, 2009. http://mirror.ctan.
org/macros/latex/contrib/layouts.

¢ Claudio Beccari
Villarbasse (TO), Italy
claudio dot beccari (at) gmail
dot com

http://mirror.ctan.org/macros/latex/contrib/crop
http://mirror.ctan.org/macros/latex/contrib/crop
http://mirror.ctan.org/macros/latex/contrib/pict2e
http://mirror.ctan.org/macros/latex/contrib/pict2e
http://mirror.ctan.org/macros/latex/contrib/curves
http://mirror.ctan.org/macros/latex/contrib/curves
http://mirror.ctan.org/macros/latex/required/tools
http://mirror.ctan.org/macros/latex/required/tools
http://mirror.ctan.org/macros/latex/contrib/eso-pic
http://mirror.ctan.org/macros/latex/contrib/eso-pic
http://mirror.ctan.org/graphics/pgf/contrib/circuitikz
http://mirror.ctan.org/graphics/pgf/contrib/circuitikz
http://mirror.ctan.org/graphics/pgf/contrib/circuitikz
http://mirror.ctan.org/graphics/pgf/base/doc
http://mirror.ctan.org/graphics/pgf/base/doc
http://mirror.ctan.org/graphics/pstricks/base/doc
http://mirror.ctan.org/graphics/pstricks/base/doc
http://mirror.ctan.org/graphics/pstricks/contrib/pst-circ
http://mirror.ctan.org/graphics/pstricks/contrib/pst-circ
http://mirror.ctan.org/macros/latex/contrib/layouts
http://mirror.ctan.org/macros/latex/contrib/layouts

	Introduction
	In detail
	2009 extensions to picture

	Examples
	Conclusion

