
86 TUGboat, Volume 33 (2012), No. 1

ConTEXt: Updating the code base

Hans Hagen

1 Introduction

After much experimenting with new code in MkIV
a new stage in ConTEXt development was entered
in the last quarter of 2011. This was triggered by
several more or less independent developments. I
will discuss some of them here since they are a nice
illustration of how ConTEXt evolves.

2 Interfacing

Wolfgang Schuster, Aditya Mahajan and I were ex-
perimenting with an abstraction layer for module
writers. In fact this layer itself was a variant of some
new mechanisms used in the MkIV structure related
code. That code was among the first to be adapted
as it is accompanied by much Lua code and has been
performing rather well for some years now.

In ConTEXt most of the user interface is rather
similar and module writers are supposed to follow
the same route as the core of ConTEXt. For those
who have looked in the source the following code
might look familiar:

\unexpanded\def\mysetupcommand

{\dosingleempty\domysetupcommand}

\def\domysetupcommand[#1]%

{..........

\getparameters[\??my][#1]%

..........}

This implements the command \mysetupcommand

that is used as follows:

\mysetupcommand[color=red,style=bold,...]

The above definition uses three rather low-level
interfacing commands. The \unexpanded makes
sure that the command does not expand in unex-
pected ways in cases where expansion is less desirable.
(Aside: The ConTEXt \unexpanded prefix has a long
history and originally resulted in the indirect defini-
tion of a macro. That way the macro could be part
of testing (expanded) equivalence. When ε-TEX func-
tionality showed up we could use \protected but
we stuck to the name \unexpanded. So, currently
ConTEXt’s \unexpanded is equivalent to ε-TEX’s
\protected. Furthermore, in ConTEXt \expanded

is not the same as the ε-TEX primitive. In order to
use the primitives you need to use their \normal...
synonyms.) The \dosingleempty makes sure that
one argument gets seen by injecting a dummy when
needed. At some point the \getparameters com-
mand will store the values of keys in a namespace
that is determined by \??my. The namespace used

here is actually one of the internal namespaces which
can be deduced from the double question marks.
Module namespaces have four question marks.

There is some magic involved in storing the
values. For instance, keys are translated from the
interface language into the internal language which
happens to be English. This translation is needed
because a new command is generated:

\def\@@mycolor{red}

\def\@@mystyle{bold}

and such a command can be used internally because
in so-called unprotected mode @?! are valid in names.
The Dutch equivalent is:

\mijnsetupcommando[kleur=rood,letter=vet]

and here the kleur has to be converted into color

before the macro is constructed. Of course values
themselves can stay as they are as long as checking
them uses the internal symbolic names that have the
language specific meaning.

\c!style{color}

\k!style{kleur}

\v!bold {vet}

Internally assignments are done with the \c!

variant, translation of the key is done using the \k!

alternative and values are prefixed by \v!.
It will be clear that for the English user interface

no translation is needed and as a result that interface
is somewhat faster. There we only need

\c!style{color}

\v!bold {bold}

Users never see these prefixed versions, unless
they want to define an internationalized style, in
which case the form

\mysetupcommand[\c!style=\v!bold]

has to be used, as it will adapt itself to the user
interface. This leaves the \??my that in fact expands
to \@@my. This is the namespace prefix.

Is this the whole story? Of course it isn’t, as
in ConTEXt we often have a generic instance from
which we can clone specific alternatives; in practice,
the \@@mycolor variant is used in a few cases only.
In that case a setup command can look like:

\mysetupcommand[myinstance][style=bold]

And access to the parameters is done with:

\getvalue{\??my myinstance\c!color}

So far the description holds for MkII as well as
MkIV, but in MkIV we are moving to a variant of this.
At the cost of a bit more runtime and helper macros,
we can get cleaner low-level code. The magic word
here is commandhandler. At some point the new
MkIV code started using an extra abstraction layer,
but the code needed looked rather repetitive despite

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 87

subtle differences. Then Wolfgang suggested that we
should wrap part of that functionality in a definition
macro that could be used to define module setup and
definition code in one go, thereby providing a level
of abstraction that hides some nasty details. The
main reason why code could look cleaner is that the
experimental core code provided a nicer inheritance
model for derived instances and Wolfgang’s letter
module uses that extensively. After doing some per-
formance tests with the code we decided that indeed
such an initializer made sense. Of course, after that
we played with it, some more tricks were added, and
eventually I decided to replace the similar code in
the core as well, that is: use the installer instead of
defining helpers locally.

So, how does one install a new setup mechanism?
We stick to the core code and leave modules aside
for the moment.

\definesystemvariable{my}

\installcommandhandler \??my {whatever} \??my

After this command we have available some new
helper commands of which only a few are mentioned
here (after all, this mechanism is still somewhat
experimental):

\setupwhatever[key=value]

\setupwhatever[instance][key=value]

Now a value is fetched using a helper:

\namedwhateverparameter{instance}{key}

However, more interesting is this one:

\whateverparameter{key}

For this to work, we need to set the instance:

\def\currentwhatever{instance}

Such a current state macro already was used in
many places, so it fits into the existing code quite
well. In addition to \setupwhatever and friends,
another command becomes available:

\definewhatever[instance]

\definewhatever[instance][key=value]

Again, this is not so much a revolution as we can de-
fine such a command easily with helpers, but it pairs
nicely with the setup command. One of the goodies
is that it provides the following feature for free:

\definewhatever[instance][otherinstance]

\definewhatever[instance][otherinstance][key=val]

In some cases this creates more overhead than
needed because not all commands have instances.
On the other hand, some commands that didn’t have
instances yet, now suddenly have them. For cases
where this is not needed, we provide simple variants
of commandhandlers.

Additional commands can be hooked into a
setup or definition so that for instance the current

situation can be updated or extra commands can
be defined for this instance, such as \start... and
\stop... commands.

It should be stressed that the installer itself is
not that special in the sense that we could do without
it, but it saves some coding. More important is that
we no longer have the @@ prefixed containers but
use \whateverparameter commands instead. This
is definitely slower than the direct macro, but as we
often deal with instances, it’s not that much slower
than \getvalue and critical components are rather
well speed-optimized anyway.

There is, however, a slowdown due to the way
inheritance is implemented. That is how this started
out: using a different (but mostly compatible) inheri-
tance model. In the MkII approach (which is okay in
itself) inheritance happens by letting values point to
the parent value. In the new model we have a more
dynamic chain. It saves us macros but can expand
quite wildly depending on the depth of inheritance.
For instance, in sectioning there can easily be five or
more levels of inheritance. So, there we get slower
processing. The same is true for \framed which is a
rather critical command, but there it is nicely com-
pensated by less copying. My personal impression
is that due to the way ConTEXt is set up, the new
mechanism is actually more efficient on an average
job. Also, because many constructs also depend on
the \framed command, that one can easily be part
of the chain, which again speeds up a bit. In any
case, the new mechanisms use much less hash space.

Some mechanisms still look too complex, espe-
cially when they hook into others. Multiple inher-
itance is not trivial to deal with, not only because
the meaning of keys can clash, but also because
supporting it would demand quite complex fully ex-
pandable resolvers. So for the moment we stay away
from it. In case you wonder why we cannot delegate
more to Lua: it’s close to impossible to deal with
TEX’s grouping in efficient ways at the Lua end, and
without grouping available TEX becomes less useful.

Back to the namespace. We already had a spe-
cial one for modules but after many years of ConTEXt
development, we started to run out of two character
combinations and many of them had no relation to
what name they spaced. As the code base is being
overhauled anyway, it makes sense to also provide
a new core namespace mechanism. Again, this is
nothing revolutionary but it reads much more nicely.

\installcorenamespace {whatever}

\installcommandhandler

\??whatever {whatever} \??whatever

This time deep down no @@ is used, but rather
something more obscure. In any case, no one will use

ConTEXt: Updating the code base

88 TUGboat, Volume 33 (2012), No. 1

the meaning of the namespace variables, as all access
to parameters happens indirectly. And of course
there is no speed penalty involved; in fact, we are
more efficient. One reason is that we often used the
prefix as follows:

\setvalue{\??my:option:bla}{foo}

and now we just say:

\installcorenamespace {whateveroption}

\setvalue{\??whateveroption bla}{foo}

The commandhandler does such assignments
slightly differently as it has to prevent clashes be-
tween instances and keywords. A nice example of
such a clash is this:

\setvalue{\??whateveroption sectionnumber}{yes}

In sectioning we have instances named section, but
we also have keys named number and sectionnumber.
So, we end up with something like this:

\setvalue

{\??whateveroption section:sectionnumber}{yes}

\setvalue

{\??whateveroption section:number}{yes}

\setvalue{\??whateveroption :number}{yes}

When I decided to replace code similar to that
generated by the installer a new rewrite stage was
entered. Therefore one reason for explaining this
here is that in the process of adapting the core code
instabilities are introduced and as most users use the
beta version of MkIV, some tolerance and flexibility
is needed and it might help to know why something
suddenly fails.

In itself using the commandhandler is not that
problematic, but wherever I decide to use it, I also
clean up the related code and that is where the typos
creep in. Fortunately Wolfgang keeps an eye on the
changes so problems that users report on the mailing
lists are nailed down relatively fast. Anyway, the
rewrite itself is triggered by another event but that
one is discussed in the next section.

We don’t backport (low-level) improvements and
speedups to MkII, because for what we need TEX
for, we consider pdfTEX and X ETEX rather obsolete.
Recent tests show that at the moment of this writing
a LuaTEX MkIV run is often faster than a comparable
pdfTEX MkII run (using UTF-8 and complex font
setups). When compared to a X ETEX MkII run, a
LuaTEX MkIV run is often faster, but it’s hard to
compare, as we have advanced functionality in MkIV
that is not (or differently) available in MkII.

3 Lexing

The editor that I use, called SciTE, has recently been
extended with an extra external lexer module that
makes more advanced syntax highlighting possible,

using the Lua LPEG library. It is no secret that
the user interface of ConTEXt is also determined
by the way structure, definitions and setups can be
highlighted in an editor.1 When I changed to SciTE
I made sure that we had proper highlighting there.

At Pragma one of the leading principles has
always been: if the document source looks bad, mis-
takes are more easily made and the rendering will
also be affected. Or phrased differently: if we cannot
make the source look nice, the content is probably
not structured that well either. The same is true for
TEX source, although to a large extent there one must
deal with the specific properties of the language.

So, syntax highlighting, or more impressively:
lexing, has always been part of the development
of ConTEXt and for instance the pretty printers of
verbatim provide similar features. For a long time
we assumed line-based lexing, mostly for reasons of
speed. And surprisingly, that works out quite well
with TEX. We used a simple color scheme suitable for
everyday usage, with not too intrusive coloring. Of
course we made sure that we had runtime spell check-
ing integrated, and that the different user interfaces
were served well.

But then came the LPEG lexer. Suddenly we
could do much more advanced highlighting. Once I
started playing with it, a new color scheme was set
up and more sophisticated lexing was applied. Just
to mention a few properties:

• We distinguish between several classes of macro
names: primitives, helpers, interfacing, and user
macros.

• In addition we highlight constant values and
special registers differently.

• Conditional constructs can be recognized and
are treated as in any regular language (keep in
mind that users can define their own).

• Embedded MetaPost code is lexed independently
using a lexer that knows the language’s prim-
itives, helpers, user macros, constants and of
course specific syntax and drawing operators.
Related commands at the TEX end (for defining
and processing graphics) are also dealt with.

• Embedded Lua is lexed independently using a
lexer that not only deals with the language but
also knows a bit about how it is used in Con-
TEXt. Of course the macros that trigger Lua
code are handled.

• Metastructure and metadata related macros are
colored in a fashion similar to constants (after

1 It all started with wdt, texedit and texwork, editors and
environments written by myself in Modula2 and later in Perl
Tk, but that was in a previous century.

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 89

all, in a document one will not see any constants,
so there is no color clash).

• Some special and often invisible characters get
a special background color so that we can see
when there are for instance non-breakable spaces
sitting there.

• Real-time spell checking is part of the deal and
can optionally be turned on. There we distin-
guish between unknown words, known but po-
tentially misspelled words, and known words.

Of course we also made lexers for MetaPost,
Lua, XML, PDF and text documents so that we have
a consistent look and feel.

When writing the new lexer code, and testing
it on sources, I automatically started adapting the
source to the new lexing where possible. Actually,
as cleaning up code is somewhat boring, the new
lexer is adding some fun to it. I’m not so sure if
I would have started a similar overhaul so easily
otherwise, especially because the rewrite now also
includes speedup and cleanup. At least it helps to
recognize less desirable left-overs of MkII code.

4 Hiding

It is interesting to notice that users seldom define
commands that clash with low level commands. This
is of course a side effect of the fact that one seldom
needs to define a command, but nevertheless. Low-
level commands were protected by prefixing them
by one or more (combinations of) do, re and no’s.
This habit is a direct effect of the early days of
writing macros. For TEX it does not matter how
long a name is, as internally it becomes a pointer
anyway, but memory consumption of editors, loading
time of a format, string space and similar factors
determined the way one codes in TEX for quite a
while. Nowadays there are hardly any limits and
the stress that ConTEXt puts on the TEX engine is
even less than in MkII as we delegate many tasks
to Lua. Memory comes cheap, editors can deal with
large amount of data (keep in mind that the larger
the file gets, the more lexing power can be needed),
and screens are wide enough not to lose part of long
names in the edges.

Another development has been that in LuaTEX
we have lots of registers so that we no longer have
to share temporary variables and such. The rewrite
is a good moment to get rid of that restriction.

This all means that at some point it was decided
to start using longer command names internally and
permit _ in names. As I was never a fan of using
@ for this, underscore made sense. We have been
discussing the use of colons, which is also nice, but
has the disadvantage that colons are also used in the

source, for instance to create a sub-namespace. When
we have replaced all old namespaces, colons might
show up in command names, so another renaming
roundup can happen.

One reason for mentioning this is that users get
to see these names as part of error messages. An
example of a name is:

\page_layouts_this_or_that

The first part of the name is the category of
macros and in most cases is the same as the first
part of the filename. The second part is a namespace.
The rest of the name can differ but we’re approaching
some consistency in this.

In addition we have prefixed names, where pre-
fixes are used as consistently as possible:
t_ token register
d_ dimension register
s_ skip register
u_ muskip register
c_ counter register, constant or conditional
m_ (temporary) macro
p_ (temporary) parameter expansion (value of key)
f_ fractions

This is not that different from other prefixing
in ConTEXt apart from the fact that from now on
those variables (registers) are no longer accessible in
a regular run. We might decide on another scheme
but renaming can easily be scripted. In the process
some of the old prefixes are being removed. The
main reason for changing to this naming scheme is
that it is more convenient to grep for them.

In the process most traditional \ifs get replaced
by ‘conditionals’. The same is true for \chardefs
that store states; these become ‘constants’.

5 Status

We always try to keep the user interface constant, so
most functionality and control stays stable. However,
now that most users use MkIV, commands that no
longer make sense are removed. An interesting obser-
vation is that some users report that low-level macros
or registers are no longer accessible. Fortunately that
is no big deal as we point them to the official ways
to deal with matters. It is also a good opportunity
for users to clean up accumulated hackery.

The systematic (file by file) cleanup started in
the second half of 2011 and as of January 2012 one
third of the core (TEX) modules have to be cleaned
up and the planning is to get most of that done as
soon as possible. However, some modules will be
rewritten (or replaced) and that takes more time. In
any case we hope that rather soon most of the code
is stable enough that we can start working on new

ConTEXt: Updating the code base

90 TUGboat, Volume 33 (2012), No. 1

mechanisms and features. Before that a cleanup of
the Lua code is planned.

Although in many cases there are no fundamen-
tal changes in the user interface and functionality,
I will wrap up some issues that are currently being
dealt with. This is just a snapshot of what is happen-
ing currently and as a consequence it describes what
users can run into due to newly introduced bugs.

The core modules of ConTEXt are loosely or-
ganized in groups. Over time there has been some
reorganization and in MkIV some code has been
moved into new categories. The alphabetical order
does not reflect the loading order or dependency
tree as categories are loaded intermixed. Therefore
the order below is somewhat arbitrary and does not
express importance. Each category has multiple files.

5.1 anch: anchoring and positioning

More than a decade ago we started experimenting
with position tracking. The ability to store positional
information and use that in a second pass permits
for instance adding backgrounds. As this code inter-
acts nicely with (runtime) MetaPost it has always
been quite powerful and flexible on the one hand,
but at the same time it was demanding in terms of
runtime and resources. However, were it not for this
feature, we would probably not be using TEX at all,
as backgrounds and special relative positioning are
needed in nearly all our projects.

In MkIV this mechanism had already been ported
to a hybrid form, but recently much of the code has
been overhauled and its MkII artifacts stripped. As a
consequence the overhead in terms of memory prob-
ably has increased but the impact on runtime has
been considerably reduced. It will probably take
some time to become stable if only because the glue
to MetaPost has changed. There are some new good-
ies, like backgrounds behind parshapes, something
that probably no one uses and is always somewhat
tricky but it was not too hard to support. Also, local
background support has been improved which means
that it’s easier to get them in more column-based
layouts, several table mechanisms, floats and such.
This was always possible but is now more automatic
and hopefully more intuitive.

5.2 attr: attributes

We use attributes (properties of nodes) a lot. The
framework for this had been laid early in MkIV devel-
opment, so not much has changed here. Of course the
code gets cleaner and hopefully better as it is putting
quite a load on the processing. Each new feature
depending on attributes adds some extra overhead
even if we make sure that mechanisms only kick in

when they are used. This is due to the fact that
attributes are linked lists and although unique lists
are shared, they travel with each node. On the other
hand, the cleanup (and de-MkII-ing) of code leads
to better performance so on the average no user will
notice this.

5.3 back: backend code generation

This category wraps backend issues in an abstract
way that is similar to the special drivers in MkII.
So far we have only three backends: PDF, XML,
and XHTML. Such code is always in a state of
maintenance, if only because backends evolve.

5.4 bibl: bibliographies

For a while now, bibliographies have not been an
add-on but part of the core. There are two variants:
traditional BibTEX support derived from a module
by Taco Hoekwater but using MkIV features (the
module hooks into core code), and a variant that
delegates most work to Lua by creating an in-memory
XML tree that gets manipulated. At some point I
will extend the second variant. Going the XML route
also connects better with developments such as Jean-
Michel Hufflen’s MlBibTEX.

5.5 blob: typesetting in Lua

Currently we only ship a few helpers but eventually
this will become a framework for typesetting raw
text in Lua. This might be handy for some projects
that we have where the only input is XML, but I’m
not that sure if it will produce nice results and if the
code will look better. On the other hand, there are
some cases where in a regular TEX run some basic
typesetting in Lua might make sense. Of course I
also need an occasional pet project so this might
qualify as one.

5.6 buff: buffers and verbatim

Traditionally buffers and verbatim have always been
relatives as they share code. The code was among
the first to be adapted to LuaTEX. There is not that
much to gain in adapting it further. Maybe I will
provide more lexers for pretty-printing some day.

5.7 catc: catcodes

Catcodes are a rather TEX-specific feature and we
have organized them in catcode regimes. The most
important recent change has been that some of the
characters with a special meaning in TEX (like am-
persand, underscore, superscript, etc.) are no longer
special except in cases that matter. This somewhat
incompatible change surprisingly didn’t lead to many
problems. Some code that is specific for the MkII

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 91

XML processor has been removed as we no longer
assume it is being used in MkIV.

5.8 char: characters

This important category deals with characters and
their properties. Already from the beginning of MkIV
character properties have been (re)organized in Lua
tables and therefore much code deals with it. The
code is rather stable but occasionally the tables are
updated as they depend on developments in Uni-
code. In order to share as much data as possible
and prevent duplicates there are several inheritance
mechanisms in place but their overhead is negligible.

5.9 chem: chemistry

The external module that deals with typesetting
chemistry was transformed into a MkIV core mod-
ule some time ago. Not much has changed in this
department but some enhancements are pending.

5.10 cldf: ConTEXt Lua documents

These modules are mostly Lua code and are the
interface into ConTEXt as well as providing ways to
code complete documents in Lua. This is one of
those categories that is visited every now and then
to be adapted to improvements in other core code
or in LuaTEX. This is one of my favourite categories
as it exposes most of ConTEXt at the Lua end which
permits writing solutions in Lua while still using the
full power of ConTEXt. A dedicated manual is on its
way.

5.11 colo: colors and transparencies

This is rather old code, and apart from some cleanup
not much has been changed here. Some macros that
were seldom used have been removed. One issue that
is still pending is a better interface to MetaPost as it
has different color models and we have adapted code
at that end. This has a rather low priority because
in practice it is no real problem.

5.12 cont: runtime code

These modules contain code that is loaded at runtime,
such as filename remapping, patches, etc. It does
not make much sense to improve these.

5.13 core: all kinds of core code

Housekeeping is the main target of these modules.
There are still some typesetting-related components
here but these will move to other categories. This
code is cleaned up when there is a need for it. Think
of managing files, document project structure, mod-
ule loading, environments, multipass data, etc.

5.14 data: file and data management

This category hosts only Lua code and hasn’t been
touched for a while. Here we deal with locating files,
caching, accessing remote data, resources, environ-
ments, and the like.

5.15 enco: encodings

Because (font) encodings are gone, there is only one
file in this category and that one deals with weird
(composed or otherwise special) symbols. It also
provides a few traditional TEX macros that users
expect to be present, for instance to put accents over
characters.

5.16 file: files

There is some overlap between this category and core
modules. Loading files is always somewhat special in
TEX as there is the TEX directory structure to deal
with. Sometimes you want to use files in the so-called
tree, but other times you don’t. This category pro-
vides some management code for (selective) loading
of document files, modules and resources. Most of
the code works with accompanying Lua code and has
not been touched for years, apart from some weeding
and low-level renaming. The project structure code
has mostly been moved to Lua and this mechanism
is now more restrictive in the sense that one cannot
misuse products and components in unpredictable
ways. This change permits better automatic loading
of cross references in related documents.

5.17 font: fonts

Without proper font support a macro package is
rather useless. Of course we do support the popular
font formats but nowadays that’s mostly delegated to
Lua code. What remains at the TEX end is code that
loads and triggers a combination of fonts efficiently.
Of course in the process text and math each need to
get the proper amount of attention.

There is no longer shared code between MkII
and MkIV. Both already had rather different low-
level solutions, but recently with MkIV we went a
step further. Of course it made sense to kick out
commands that were only used for pdfTEX Type 1
and X ETEX OpenType support but more important
was the decision to change the way design sizes are
supported.

In ConTEXt we have basic font definition and
loading code and that hasn’t conceptually changed
much over the years. In addition to that we have so-
called bodyfont environments and these have been
made a bit more powerful in recent MkIV. Then
there are typefaces, which are abstract combinations
of fonts and defining them happens in typescripts.

ConTEXt: Updating the code base

92 TUGboat, Volume 33 (2012), No. 1

This layered approach is rather flexible, and was
greatly needed when we had all those font encodings
(to be used in all kinds of combinations within one
document). In MkIV, however, we already had fewer
typescripts as font encodings are gone (also for Type 1
fonts). However, there remained a rather large blob
of definition code dealing with Latin Modern; large
because it comes in design sizes.

As we always fall back on Latin Modern, and
because we don’t preload fonts, there is some over-
head involved in resolving design size related issues
and definitions. But, it happens that this is the only
font that ships with many files related to different
design sizes. In practice no user will change the
defaults. So, although the regular font mechanism
still provides flexible ways to define font file com-
binations per bodyfont size, resolving to the right
best matching size now happens automatically via
a so-called Lua font goodie file which brings down
the number of definitions considerably. The conse-
quence is that ConTEXt starts up faster, not only
in the case of Latin Modern being used, but also
when other designs are in play. The main reason
for this is that we don’t have to parse those large
typescripts anymore, as the presets were always part
of the core set of typescripts. At the same time
loading a specific predefined set has been automated
and optimized. Of course on a run of 30 seconds
this is not that noticeable, but it is on a 5 second
run or when testing something in the editor that
takes less than a second. It also makes a difference
in automated workflows; for instance at Pragma we
run unattended typesetting flows that need to run
as fast as possible. Also, in virtual machines using
network shares, the fewer files consulted the better.

Because math support was already based on
OpenType, where ConTEXt turns Type 1 fonts into
OpenType at runtime, nothing fundamental has
changed here, apart from some speedups (at the
cost of some extra memory). Where the overhead of
math font switching in MkII is definitely a factor, in
MkIV it is close to negligible, even if we mix regular,
bold, and bidirectional math, which we have done
for a while.

The low-level code has been simplified a bit
further by making a better distinction between the
larger sizes (a up to d) and smaller sizes (x and xx).
These now operate independently of each other (i.e.
one can now have a smaller relative x size of a larger
one). This goes at the cost of more resources but it
is worth the effort.

By splitting up the large basic font module into
smaller ones, I hope that it can be maintained more
easily although someone familiar with the older code

will only recognize bits and pieces. This is partly
due to the fact that font code is highly optimized.

5.18 grph: graphic (and widget) inclusion

Graphics inclusion is always work in progress as
new formats have to be dealt with or users want
additional conversions to be done. This code will be
cleaned up later this year. The plug-in mechanisms
will be extended (examples of existing plug-ins are
automatic converters and barcode generation).

5.19 hand: special font handling

As we treat protrusion and hz as features of a font,
there is not much left in this category apart from
some fine-tuning. So, not much has happened here
and eventually the left-overs in this category might
be merged with the font modules.

5.20 java: JavaScript in PDF

This code already has been cleaned up a while ago,
when moving to MkIV, but we occasionally need
to check and patch due to issues with JavaScript
engines in viewers.

5.21 lang: languages and labels

There is not much changed in this department, apart
from additional labels. The way inheritance works
in languages differs too much from other inheritance
code so we keep what we have here. Label definitions
have been moved to Lua tables from which labels at
the TEX end are defined that can then be overloaded
locally. Of course the basic interface has not changed
as this is typically code that users will use in styles.

5.22 luat: housekeeping

This is mostly Lua code needed to get the basic
components and libraries in place. While the data

category implements the connection to the outside
world, this category runs on top of that and feeds
the TEX machinery. For instance conversion of MkVI

files happens here. These files are seldom touched
but might need an update some time (read: prune
obsolete code).

5.23 lpdf: PDF backend

Here we implement all kinds of PDF backend features.
Most are abstracted via the backend interface. So, for
instance, colors are done with a high level command
that goes via the backend interface to the lpdf code.
In fact, there is more such code than in (for instance)
the MkII special drivers, but readability comes at a
price. This category is always work in progress as
insights evolve and users demand more.

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 93

5.24 lxml: XML and lpath

As this category is used by some power users we
cannot change too much here, apart from speedups
and extensions. It’s also the bit of code we use
frequently at Pragma, and as we often have to deal
with rather crappy XML I expect to move some more
helpers into the code. The latest greatest trickery
related to proper typesetting can be seen in the
documents made by Thomas Schmitz. I wonder if
I’d still have fun doing our projects if I hadn’t, in
an early stage of MkIV, written the XML parser and
expression parser used for filtering.

5.25 math: mathematics

Math deserves its own category but compared to
MkII there is much less code, thanks to Unicode.
Since we support Type 1 as virtual OpenType noth-
ing special is needed there (and eventually there will
be proper fonts anyway). When rewriting code I try
to stay away from hacks, which is sometimes possi-
ble by using Lua but it comes with a slight speed
penalty. Much of the Unicode math-related font code
is already rather old but occasionally we add new
features. For instance, because OpenType has no
italic correction we provide an alternative (mostly
automated) solution.

On the agenda is more structural math encoding
(maybe like openmath) but tagging is already part
of the code so we get a reasonable export. Not that
someone is waiting for it, but it’s there for those who
want it. Most math-related character properties are
part of the character database which gets extended
on demand. Of course we keep MathML up-to-date
because we need it in a few projects.

We’re not in a hurry here but this is something
where Aditya and I have to redo some of the code
that provides AMS-like math commands (but as we
have them configurable some work is needed to keep
compatibility). In the process it’s interesting to run
into probably never-used code, so we just remove
those artifacts.

5.26 meta: metapost interfacing

This and the next category deal with MetaPost. This
first category is quite old but already adapted to the
new situation. Sometimes we add extra functionality
but the last few years the situation has become rather
stable with the exception of backgrounds, because
these have been overhauled completely.

5.27 mlib: metapost library

Apart from some obscure macros that provide the in-
terface between front- and backend this is mostly Lua
code that controls the embedded MetaPost library.

So, here we deal with extensions (color, shading, im-
ages, text, etc.) as well as runtime management be-
cause sometimes two runs are needed to get a graphic
right. Some time ago, the MkII-like extension inter-
face was dropped in favor of one more natural to
the library and MetaPost 2. As this code is used
on a daily basis it is quite well debugged and the
performance is pretty good too.

5.28 mult: multi-lingual user interface

Even if most users use the English user interface, we
keep the other ones around as they’re part of the
trademark. Commands, keys, constants, messages
and the like are now managed with Lua tables. Also,
some of the tricky remapping code has been stripped
because the setup definitions files are dealt with.
These are XML files that describe the user interface
that get typeset and shipped with ConTEXt.

These files are being adapted. First of all the
commandhandler code is defined here. As we use
a new namespace model now, most of these name-
spaces are defined in the files where they are used.
This is possible because they are more verbose so
conflicts are less likely (also, some checking is done
to prevent reuse). Originally the namespace prefixes
were defined in this category but eventually all that
code will be gone. This is a typical example where
15-year-old constraints are no longer an issue and
better code can be used.

5.29 node: nodes

This is a somewhat strange category as all typeset
material in TEX becomes nodes so this deals with
everything. One reason for this category is that
new functionality often starts here and is sometimes
shared between several mechanisms. So, for the
moment we keep this category. Think of special
kerning, insert management, low-level referencing
(layer between user code and backend code) and all
kinds of rule and displacement features. Some of this
functionality is described in previously published
documents.

5.30 norm: normalize primitives

We used to initialize the primitives here (because
LuaTEX starts out blank). But after moving that
code this category only has one definition left and
that one will go too. In MkII these files are still used
(and actually generated by MkIV).

5.31 pack: wrapping content in packages

This is quite an important category as in ConTEXt
lots of things get packed. The best example is

ConTEXt: Updating the code base

94 TUGboat, Volume 33 (2012), No. 1

\framed and this macro has been maximally opti-
mized, which is not that trivial since much can be
configured. The code has been adapted to work well
with the new commandhandler code and in future
versions it might use the commandhandler directly.
This is however not that trivial because hooking a
setup of a command into \framed can conflict with
the two commands using keys for different matters.

Layers are also in this category and they prob-
ably will be further optimized. Reimplementing
reusable objects is on the horizon, but for that we
need a more abstract Lua interface, so that will come
first. This has a low priority because it all works well.
This category also hosts some helpers for the page
builder but the builder itself has a separate category.

5.32 page: pages and output routines

Here we have an old category: output routines (try-
ing to make a page), page building, page imposition
and shipout, single and multi column handling, very
special page construction, line numbering, and of
course setting up pages and layouts. All this code
is being redone stepwise and stripped of old hacks.
This is a cumbersome process as these are core com-
ponents where side effects are sometimes hard to
trace because mechanisms (and user demands) can
interfere. Expect some changes for the good here.

5.33 phys: physics

As we have a category for chemistry it made sense
to have one for physics and here is where the unit
module’s code ended up. So, from now on units are
integrated into the core. We took the opportunity
to rewrite most of it from scratch, providing a bit
more control.

5.34 prop: properties

The best-known property in TEX is a font and color
is a close second. Both have their own category of
files. In MkII additional properties like backend lay-
ers and special rendering of text were supported in
this category but in MkIV properties as a generic
feature are gone and replaced by more specific im-
plementations in the attr namespace. We do issue
a warning when any of the old methods are used.

5.35 regi: input encodings

We still support input encoding regimes but hardly
any TEX code is involved now. Only when users
demand more functionality does this code get ex-
tended. For instant, recently a user wanted a conver-
sion function for going from UTF-8 to an encoding
that another program wanted to see.

5.36 scrn: interactivity and widgets

All modules in this category have been overhauled.
On the one hand we lifted some constraints, for in-
stance the delayed initialization of fields no longer
makes sense as we have a more dynamic variable
resolver now (which is somewhat slower but still ac-
ceptable). On the other hand some nice but hard
to maintain features have been simplified (not that
anyone will notice as they were rather special). The
reason for this is that vaguely documented PDF fea-
tures tend to change over time which does not help
portability. Of course there have also been some
extensions, and it is actually less hassle (but still no
fun) to deal with such messy backend related code
in Lua.

5.37 scrp: script-specific tweaks

These are script-specific Lua files that help with get-
ting better results for scripts like CJK. Occasionally
I look at them but how they evolve depends on usage.
I have some very experimental files that are not in
the distribution.

5.38 sort: sorting

As sorting is delegated to Lua there is not much
TEX code here. The Lua code occasionally gets
improved if only because users have demands. For
instance, sorting Korean was an interesting exercise,
as was dealing with multiple languages in one index.
Because sorting can happen on a combination of
Unicode, case, shape, components, etc. the sorting
mechanism is one of the more complex subsystems.

5.39 spac: spacing

This important set of modules is responsible for ver-
tical spacing, strut management, justification, grid
snapping, and all else that relates to spacing and
alignments. Already in an early stage vertical spac-
ing was mostly delegated to Lua so there we’re only
talking of cleaning up now. Although . . . I’m still not
satisfied with the vertical spacing solution because
it is somewhat demanding and an awkward mix of
TEX and Lua which is mostly due to the fact that
we cannot evaluate TEX code in Lua.

Horizontal spacing can be quite demanding when
it comes down to configuration: think of a table with
1000 cells where each cell has to be set up (justifica-
tion, tolerance, spacing, protrusion, etc.). Recently a
more drastic optimization has been done which per-
mits even more options but at the same time is much
more efficient, although not in terms of memory.

Other code, for instance spread-related status in-
formation, special spacing characters, interline spac-
ing and linewise typesetting all falls into this category

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 95

and there is probably room for improvement there.
It’s good to mention that in the process of the cur-
rent cleanup hardly any Lua code gets touched, so
that’s another effort.

5.40 strc: structure

Big things happened here but mostly at the TEX
end as the support code in Lua was already in place.
In this category we collect all code that gets or can
get numbered, moves around and provides visual
structure. So, here we find itemize, descriptions,
notes, sectioning, marks, block moves, etc. This
means that the code here interacts with nearly all
other mechanisms.

Itemization now uses the new inheritance code
instead of its own specific mechanism but that is
not a fundamental change. More important is that
code has been moved around, stripped, and slightly
extended. For instance, we had introduced proper
\startitem and \stopitem commands which are
somewhat conflicting with \item where a next in-
stance ends a previous one. The code is still not nice,
partly due to the number of options. The code is a
bit more efficient now but functionally the same.

The sectioning code is under reconstruction as is
the code that builds lists. The intention is to have a
better pluggable model and so far it looks promising.
As similar models will be used elsewhere we need to
converge to an acceptable compromise. One thing is
clear: users no longer need to deal with arguments
but variables and no longer with macros but with
setups. Of course providing backward compatibility
is a bit of a pain here.

The code that deals with descriptions, enumer-
ations and notes was already done in a MkIV way,
which means that they run on top of lists as storage
and use the generic numbering mechanism. How-
ever, they had their own inheritance support code
and moving to the generic code was a good reason to
look at them again. So, now we have a new hierarchy:
constructs, descriptions, enumerations and notations
where notations are hooked into the (foot)note mech-
anisms.

These mechanisms share the rendering code but
operate independently (which was the main chal-
lenge). I did explore the possibility of combining
the code with lists as there are some similarities
but the usual rendering is too different as in the
interface (think of enumerations with optional local
titles, multiple notes that get broken over pages, etc.).
However, as they are also stored in lists, users can
treat them as such and reuse the information when
needed (which for instance is just an alternative way
to deal with end notes).

At some point math formula numbering (which
runs on top of enumerations) might get its own con-
struct base. Math will be revised when we consider
the time to be ripe for it anyway.

The reference mechanism is largely untouched as
it was already doing well, but better support has been
added for automatic cross-document referencing. For
instance it is now easier to process components that
make up a product and still get the right numbering
and cross referencing in such an instance.

Float numbering, placement and delaying can
all differ per output routine (single column, multi-
column, columnset, etc.). Some of the management
has moved to Lua but most is just a job for TEX.
The better some support mechanisms become, the
less code we need here.

Registers will get the same treatment as lists:
even more user control than is already possible. Be-
ing a simple module this is a relatively easy task,
something for a hot summer day. General numbering
is already fine as are block moves so they come last.
The XML export and PDF tagging is also controlled
from this category.

5.41 supp: support code

Support modules are similar to system ones (dis-
cussed later) but on a slightly more abstract level.
There are not that many left now so these might
as well become system modules at some time. The
most important one is the one dealing with boxes.
The biggest change there is that we use more private
registers. I’m still not sure what to do with the visual
debugger code. The math-related code might move
to the math category.

5.42 symb: symbols

The symbol mechanisms organizes special characters
in groups. With Unicode-related fonts becoming
more complete we hardly need this mechanism. How-
ever, it is still the abstraction used in converters (for
instance footnote symbols and interactive elements).
The code has been cleaned up a bit but generally
stays as is.

5.43 syst: tex system level code

Here you find all kinds of low-level helpers. Most date
from early times but have been improved stepwise.
We tend to remove obscure helpers (unless someone
complains loudly) and add new ones every now and
then. Even if we would strip down ConTEXt to a
minimum size, these modules would still be there.
Of course the bootstrap code is also in this category:
think of allocators, predefined constants and such.

ConTEXt: Updating the code base

96 TUGboat, Volume 33 (2012), No. 1

5.44 tabl: tables

The oldest table mechanism was a quite seriously
patched version of TABLE and finally the decision
has been made to strip, replace and clean up that
bit. So, we have less code, but more features, such
as colored columns and more.

The (in-stream) tabulate code is mostly un-
changed but has been optimized (again) as it is often
used. The multipass approach stayed but is some-
what more efficient now.

The natural table code was originally meant for
XML processing but is quite popular among users.
The functionality and code is frozen but benefits
from optimizations in other areas. The reason for
the freeze is that it is pretty complex multipass code
and we don’t want to break anything.

As an experiment, a variant of natural tables
was made. Natural tables have a powerful inheri-
tance model where rows and cells (first, last, . . .) can
be set up as a group but that is rather costly in terms
of runtime. The new table variant treats each col-
umn, row and cell as an instance of \framed where
cells can be grouped arbitrarily. And, because that
is somewhat extreme, these tables are called x-tables.
As much of the logic has been implemented in Lua
and as these tables use buffers (for storing the main
body) one could imagine that there is some penalty
involved in going between TEX and Lua several times,
as we have a two, three or four pass mechanism. How-
ever, this mechanism is surprisingly fast compared
to natural tables. The reason for writing it was not
only speed, but also the fact that in a project we
had tables of 50 pages with lots of spans and such
that simply didn’t fit into TEX’s memory any more,
took ages to process, and could also confuse the float
splitter.

Line tables . . . well, I will look into them when
needed. They are nice in a special way, as they
can split vertically and horizontally, but they are
seldom used. (This table mechanism was written for
a project where large quantities of statistical data
had to be presented.)

5.45 task: lua tasks

Currently this is mostly a place where we collect
all kinds of tasks that are delegated to Lua, often
hooked into callbacks. No user sees this code.

5.46 toks: token lists

This category has some helpers that are handy for
tracing or manuals but no sane user will ever use
them, I expect. However, at some point I will clean
up this old MkIV mess. This code might end up in
a module outside the core.

5.47 trac: tracing

A lot of tracing is possible in the Lua code, which
can be controlled from the TEX end using generic
enable and disable commands. At the macro level
we do have some tracing but this will be replaced
by a similar mechanism. This means that many
\tracewhatevertrue directives will go away and be
replaced. This is of course introducing some incom-
patibility but normally users don’t use this in styles.

5.48 type: typescripts

We already mentioned that typescripts relate to fonts.
Traditionally this is a layer on top of font definitions
and we keep it this way. In this category there are
also the definitions of typefaces: combinations of
fonts. As we split the larger into smaller ones, there
are many more files now. This has the added benefit
that we use less memory as typescripts are loaded
only once and stored permanently.

5.49 typo: typesetting and typography

This category is rather large in MkIV as we move
all code into here that somehow deals with special
typesetting. Here we find all kinds of interesting
new code that uses Lua solutions (slower but more
robust). Much has been discussed in articles as they
are nice examples and often these are rather stable.

The most important new kid on the block is
margin data, which has been moved into this category.
The new mechanism is somewhat more powerful but
the code is also quite complex and still experimental.
The functionality is roughly the same as in MkII
and older MkIV, but there is now more advanced
inheritance, a clear separation between placement
and rendering, slightly more robust stacking, local
anchoring (new). It was a nice challenge but took
a bit more time than other reimplementations due
to all kinds of possible interference. Also, it’s not
always easy to simulate TEX grouping in a script
language. Even if much more code is involved, it
looks like the new implementation is somewhat faster.
I expect to clean up this code a couple of times.

On the agenda is not only further cleanup of all
modules in this category, but also more advanced con-
trol over paragraph building. There is a parbuilder
written in Lua on my machine for years already which
we use for experiments and in the process a more
LuaTEX-ish (and efficient) way of dealing with pro-
trusion has been explored. But for this to become
effective, some of the LuaTEX backend code has to
be reorganized and Hartmut wants do that first. In
fact, we can then backport the new approach to the
built-in builder, which is not only faster but also
more efficient in terms of memory usage.

Hans Hagen

TUGboat, Volume 33 (2012), No. 1 97

5.50 unic: Unicode vectors and helpers

As Unicode support is now native all the MkII code
(mostly vectors and converters) is gone. Only a
few helpers remain and even these might go away.
Consider this category obsolete and replaced by the
char category.

5.51 util: utility functions

These are Lua files that are rather stable. Think
of parsers, format generation, debugging, dimension
helpers, etc. Like the data category, this one is
loaded quite early.

5.52 Other TEX files

Currently there are the above categories which can
be recognized by filename and prefix in macro names.
But there are more files involved. For instance,
user extensions can go into these categories as well
but they need names starting with something like
xxxx-imp- with xxxx being the category.

Then there are modules that can be recognized
by their prefix: m- (basic module), t- (third party
module), x- (XML-specific module), u- (user mod-
ule), p- (private module). Some modules that Wolf-
gang and Aditya are working on might end up in the
core distribution. In a similar fashion some seldom
used core code might get moved to (auto-loaded)
modules.

There are currently many modules that provide
tracing for mechanisms (like font and math) and
these need to be normalized into a consistent inter-
face. Often such modules show up when we work
on an aspect of ConTEXt or LuaTEX and at that
moment integration is not high on the agenda.

5.53 MetaPost files

A rather fundamental change in MetaPost is that it
no longer has a format (mem file). Maybe at some
point it will read .gz files, but all code is loaded at
runtime.

For this reason I decided to split the files for
MkII and MkIV as having version specific code in a
common set no longer makes much sense. This means
that already for a while we have .mpii and .mpiv

files with the latter category being more efficient
because we delegate some backend-related issues to
ConTEXt directly. I might split up the files for MkIV

a bit more so that selective loading is easier. This
gives a slight performance boost when working over
a network connection.

5.54 Lua files

There are some generic helper modules, with names
starting with l-. Then there are the mtx-* scripts
for all kinds of management tasks with the most
important one being mtx-context for managing a
TEX run.

5.55 Generic files

This leaves the bunch of generic files that provides
OpenType support to packages other than ConTEXt.
Much time went into moving ConTEXt-specific code
out of the way and providing a better abstract in-
terface. This means that new ConTEXt code (we
provide more font magic) will be less likely to in-
terfere and integration is easier. Of course there is
a penalty for ConTEXt but it is bearable. And yes,
providing generic code takes quite a lot of time so
I sometimes wonder why I did it in the first place,
but currently the maintenance burden is rather low.
Khaled Hosny is responsible for bridging this code
to LATEX.

6 What next

Here ends this summary of the current state of Con-
TEXt. I expect to spend the rest of the year on
further cleaning up. I’m close to halfway now. What
I really like is that many users upgrade as soon as
there is a new beta, and as in a rewrite typos creep
in, I therefore often get a fast response.

Of course it helps a lot that Wolfgang Schuster,
Aditya Mahajan, and Luigi Scarso know the code
so well that patches show up on the list shortly
after a problem gets reported. Also, for instance
Thomas Schmitz uses the latest betas in academic
book production, presentations, lecture notes and
more, and so provides invaluable fast feedback. And
of course Mojca Miklavec keeps all of it (and us)
in sync. Such a drastic cleanup could not be done
without their help. So let’s end this status report
with . . . a big thank you to all those (unnamed)
patient users and contributors.

� Hans Hagen
http://pragma-ade.com

ConTEXt: Updating the code base

