
212 TUGboat, Volume 35 (2014), No. 2

Can LATEX profiles be rendered adequately
with static CSS?

William F. Hammond

Abstract

MathJax demonstrates that heavy customization of
CSS with JavaScript and webfonts provides good
platform-dependent rendering. The issue with Math-
Jax is speed, not quality. There has been and contin-
ues to be intense development with CSS. One may
speculate that, as CSS continues to evolve, static CSS

may entirely suffice not only for HTML documents
with mathematics but also for the direct online ren-
dering of profiled LATEX documents when presented
using XML syntax.

My purpose is to report on some of what can
now be done, to indicate how I would like to see
things develop, and to stir interest in the LATEX
community for incorporating the ideas of CSS into
print typesetting.

1 Background

This article is an elaboration of what I said in my
talk at TUG 2014 (slides are available at http://www.
albany.edu/~hammond/presentations/tug2014) .
About half the time in the talk was devoted to show-
ing LATEX profiles styled with CSS in a web browser.
In fact, the slides themselves were such. Figure 1
is a screenshot of static CSS styling for math in a
LATEX profile. At this point satisfactory results are
being obtained with three of the major browsers
using three different wide-coverage Unicode fonts.
(Corresponding to the fonts there are three different
stylings that differ from each other, aside from font
invocations, only in handling a few things.)

For those who have less than satisfactory in-
teraction with the XML slides, there is an HTML

version provided at the previous url. Aside from
the slideshow poster, which was written directly in
HTML, the slides and all of the materials linked there-
from originated as source prepared for the LATEX
profile of the GELLMU Didactic Production Sys-
tem, http://www.albany.edu/~hammond/gellmu/,
which may be regarded as a base for spawning other
profiles and which will be used as the profile of dis-
course here.

CSS [1] stands for Cascading Style Sheets. It
is the standard design language used in presenting
HTML (Hypertext Markup Language), as well as
XML (eXtensible Markup Language) [2] applications,
in web browsers.

A LATEX profile [8] is a dialect of LATEX [4] with
a fixed command vocabulary, where all macro expan-

sions must be effective in that vocabulary, having a
well-defined XML shadow. LATEX profiles are suitable
domains for defining reliable translations to other pro-
files and, where sensible, to other markup languages.

The author recalls a conversation at a meet-
ing in 2002 on the question of whether CSS might
someday suffice for rendering segments of MathML

(Mathematical Markup Language) in web pages. The
participants agreed that it might be possible, but a
sufficiently wide deployment of sufficiently capable
CSS engines would then be the issue.

By early 2006 I had begun writing a CSS style-
sheet for the XML guise of the LATEX profile of the
GELLMU didactic production system [5, 6, 7]. Espe-
cially where mathematics is concerned, the richness
of the vocabulary of profiled LATEX compared to
the vocabulary of MathML makes it easier to think
about1 rendering math with CSS. The CSS render-
ing of profiled LATEX in 2006 was quite limited, not
remotely close in quality to the rendering of MathML

in a browser like Firefox, but still of some use.
By 2010 Davide Cervone’s MathJax, http://

www.mathjax.org, if not Cervone’s earlier project js-
math, had demonstrated that with heavy (and slow)
JavaScript-based customization for available fonts,
web browser, and computing platform, MathML

could be rendered with CSS.
During the time that MathJax was being devel-

oped George Chavchanidze of Opera Software had
been pursuing the idea of basing native browser sup-
port for MathML solely on static CSS.2 Following
that work the W3C Math Working Group in 2011 pro-
duced a W3C recommendation entitled “A MathML

for CSS Profile” [9] that suggested restricted use of
MathML by content generators interested in having
their content rendered with CSS.

In early 2014 I learned about Frédéric Wang’s
idea, following the earlier work of Chavchanidze and
quite apart from MathJax, of providing “fallback”
rendering of MathML in web browsers lacking native
support for MathML, taking advantage of relatively
new ideas in CSS, particularly CSS flexible boxes [10],
without heavy customization for particular circum-
stances.

I have spent the last few months seeing how
these new ideas in CSS could be used to improve the
static CSS presentation of GELLMU’s LATEX profile.
It is work in progress. My purpose is to report on
some of what can now be done, to indicate how I

1 (but probably not actually easier)
2 Followers of LATEX3 might think of this as an effort, unlike

that in LATEX3, to leverage the design layer without much
in the way of apparent new support from the programming
layer.

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 213

Figure 1: Static CSS styling of profiled LATEX

would like to see things develop, and to try to stir
the interest of the LATEX community in incorporating
CSS ideas into print typesetting.

2 Processing

In another talk at TUG 2014, by S. K. Venkatesan
and C. V. Rajagopal, one of the slides had this poetic
line:

TEX is poured into the XML mould, and DTD

is used as the sieve.

“DTD” refers to the document type definition. Doc-
ument type definitions are in one-to-one correspon-
dence with LATEX profiles. There are at least two
reasons for sifting:

1. To know that a correctly written processor will
reliably produce correct results.

2. To put the LATEX under a framework that facil-
itates processing by any of the many software
libraries, written in various programming lan-
guages, that operate on XML.

Those interested will be able to find more information
about this in many places including, for example,
The LATEX Web Companion [3].

For rendering a LATEX profile with CSS a small
amount of “server-side” processing (independent of
fonts, browser, and platform) may be used to dress
the regular XML guise of the LATEX so that it may be
more easily addressed with CSS. In this report the
main concern is with mathematics, but I should note
that the whole of a profiled LATEX document must be
styled with CSS for presentation in a web browser.

2.1 Source

I will illustrate briefly with a tiny example under
GELLMU’s LATEX profile. This is the source tg.glm:

\documenttype{article}

\title{test}

\begin{document}

One has

\[\Gamma(3) = 2! \]

\end{document}

2.2 Author-level XML

Under main track GELLMU processing, based only on
syntax, not vocabulary, this resolves to the following
XML instance tg.xml:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

href="gellmuart.css"?>

<!DOCTYPE article SYSTEM "axgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath>

<Gamma/>(3)<eqs/>2<exc/>

</displaymath>

</parb>

</body>

</article>

The XML tags should be self-explanatory except
for <parb>, which indicates the paragraph begun
with a blank line, the empty element <eqs/> coming
from the “=” (that makes it possible for downstream
decisions to be made on the “=”), and the <exc/>

coming from the “!”.

2.3 Elaborated XML

In main track processing under the GELLMU Di-
dactic Production System this “author-level” XML

that closely shadows the original source is processed,
preparatory to translation toward either regular LATEX
or HTML, to the following elaborated XML instance
tg.exml:

<?xml version="1.0" encoding="UTF-8">

<?xml-stylesheet type="text/css"

href="gellmuart.css"?>

<?centralStyled?>

<!DOCTYPE article SYSTEM "uxgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath>

Can LATEX profiles be rendered adequately with static CSS?

214 TUGboat, Volume 35 (2014), No. 2

<Gamma/>(3)<equals/>2<exc/>

</displaymath>

</parb>

</body>

</article>

The only change noticeable in this very simple ex-
ample is that the “=” has now become <equals/>

because it is within a mathematical container. (Other
changes that would happen with a more complicated
document would be resolution of cross-references and
assignment of section numbers.)

2.4 Dressed XML

To prepare for CSS it is necessary that every nugget
of character data inside math zones be wrapped in a
tag indicating whether the nugget is numeric, word-
like, or operator-like, so that the questions of whether
to use an upright or italic font and how to space may
be addressed.

Such “dressing for CSS” leads to tg-lm.xml:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

href="gellmualm.css"?>

<!DOCTYPE article SYSTEM "vxgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath mlvl="1"

mchld="me|bal|me|mx|me">

<me name="Gamma" mlvl="2" mchld="Gamma"

><Gamma/></me>

<bal mlvl="2" mchld="mx"

><mx type="number">3</mx></bal>

<me name="equals" mlvl="2" mchld="equals"

><equals/></me>

<mx type="number">2</mx>

<me name="exc" mlvl="2" mchld="mx"

><mx type="character">!</mx></me>

</displaymath>

</parb></body>

</article>

One will see that the mathematics has been greatly
elaborated. The elaboration creates hooks for possi-
ble use in CSS selectors. Note, in particular, the val-
ues of the attribute type on the element <mx>. The
attribute mlvl on almost every element inside a math
zone indicates how deep that element is in the math
zone (a selection issue not foreseeably addressable by
CSS). The attribute mchld on math containers lists
the names of the child elements (another selection
issue not currently addressable in CSS).

2.4.1 Balancing parentheses

Another thing to notice is that

<Gamma/>(3)

has become (with some simplification for human
clarity):

<Gamma/><bal><mx type="number">3</mx></bal>

That is, at this stage of processing the parentheses
have been replaced with the element <bal>...</bal>,
“bal” for “balanced”, which at the source level is
\bal{...}, corresponding to \left(...\right) in
regular LATEX.

2.4.2 A bit of CSS for <mx>

By way of example, relevant code from the linked CSS,
available from http://www.albany.edu/~hammond/

webstyle/gellmualm.css, includes:

mx[type="letter"] {

font-style: italic;

}

mbox mx[type="letter"] {

font-style: normal;

}

mx[type="number"] {

font-style: normal;

font-size: 0.92em;

}

[mlvl="1"]>mx[type="number"] {

font-style: normal;

font-size: 1em;

}

Many things in the style sheet are debatable, even
questionable. In particular, the font-size adjustment
for mx[type="number"] is based on a personal judge-
ment that numbers at levels greater than 1 were too
large compared to letters.

As mentioned above, the name of the dressed
XML instance is tg-lm.xml. The pre-suffix “-lm” is
a mnemonic reference to the “Latin Modern” font,
matching the “lm” in the name gellmualm.css of
the linked style sheet. Because at this time there
is a certain lack of standardization in fonts used on
the web, I am providing a different style sheet for
each font. This must mean, of course, that the style
sheet is being used to control the font, which, in turn,
means that I must be serving web fonts.

3 Fonts

For most of the history of the World Wide Web
the fonts used in web browsers have been the fonts
found on the user’s computer. Relatively recently
what are called “web fonts” have appeared and have
gained support in major web browsers. Web fonts are

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 215

fonts served through the web, usually from the site
where an HTML document is posted. The MathJax
project has made a great deal of use of web fonts.
My understanding is that web fonts may be made
from either OpenType fonts or TrueType fonts.

I know relatively little about fonts, whether in
the world of the web or in the LATEX world. A few
of the things that I have learned include:

• Unicode fonts, i.e., fonts whose glyphs are refer-
enced by the Unicode value for the correspond-
ing character, are becoming the standard both
on the web and for LATEX with the new TEX
engines (xetex and luatex).

• OpenType fonts seem to be becoming the stan-
dard.

• A free program by Jonathan Kew of Mozilla
(the originator of xetex) called sfnt2woff 3 will
convert an open type font file, say foofont.otf,
or a true type font file, say foofont.ttf, to a
web font (foofont.woff).

• A CSS @font-face directive is used to tie a web
font on your server to a font-family name, pos-
sibly also with a font-weight and font-style

specification.

4 Casting for glyphs

There comes the question in styling a LATEX profile
with CSS of what one is to do with the four “cast-
ing” commands: \mathbb, \mathcal, \mathfrak,
and \mathscr. In LATEX, as one knows, each of them
takes as argument a Latin letter and produces, re-
spectively, a double-struck, calligraphic, Fraktur, or
script version. Apart from Fraktur, it can be argued
that these are mere stylistic variations. But most
mathematicians are inclined to regard the original
Latin letter and these four casts as five semantically
distinct symbols. While in a translation to MathML,
it might be reasonable to generate appropriate Uni-
code points for the casts,4 that would be a bit out of
scale for styling the XML guise of a profiled LATEX
document with CSS where the author has used one
of these commands.

Of course, the author could just put the ap-
propriate Unicode points in the source. Aside from
that, an off-track approach is to specify a sequence of
matching old fonts such as msbm10, cmsy10, eufm10,
and rsfs10 for the four casts.

3 C source available from http://people.mozilla.org/

~jkew/woff/woff-code-latest.zip— I found it quite easy
to build with gcc.

4 This ignores that the Unicode standard seems to have
merged calligraphic and script, and the standard provides only
three incomplete “alphabets”.

If the Unicode standard were amended to fill the
gaps left in the three alphabets that correspond to
previously assigned glyphs (not characters in the ab-
stract sense), then in the “dressing process” one could
use offsets to those alphabets for bb, frak, and scr.

Finally, by way of trying to nudge the guardians
of Unicode, I would like to note that in the document
“The STIX Package” (stix.pdf) accompanying the
2014 release of the STIX fonts and found in TEX Live
2014, the table in section 3 indicates support for
a number of \mathxx commands beyond what is
provided in Unicode. The author has been shown
browser-private CSS properties that may be used to
access alternate glyphs for Unicode points in Open-
Type fonts. This gives hope that eventually there will
be better ways to use CSS to access such alternate
glyphs.

5 Fractions

Fractions may be rendered reasonably well using CSS

tables. There are, however, two important things to
note. First, each of the numerator and denomina-
tor must be the sole table-cell in a table-row. The
bar that separates numerator and denominator may
be provided as the “collapsed” border-bottom of
the numerator with the border-top of the denomina-
tor. This arrangement for the bar works with table-
rows. However, table-rows cannot contain essen-
tially arbitrary content, while table-cells can. Thus,
the dressing of the profile must re-arrange things
to be as if \frac{a}{b} had been marked up as
\frac{{a}}{{b}}. This much is a slight inconve-
nience but not a problem.

The second thing to note is a problem. There
does not seem to be any reasonable way at present
to have horizontally adjacent fraction bars align with
each other. It is not an obstruction to comprehensi-
bility, but it leaves an appearance one does not want.
It is part of a much larger concern with vertical
alignment for the math in LATEX profiles.

The author understands that vertical alignment
is a subject of continuing work within the CSS com-
munity.

6 Borders as balancers

Previously (in section 2.4.1) I mentioned \bal{...}

as the profile’s version of \left(...\right). At the
stage of dressing when all character data in math
zones is being wrapped in tags the character “(” is
replaced with <bal> and the character “)” is re-
placed with </bal>. Aside from the fact that this
is important for trapping the author error of having
unbalanced parentheses because the output will not

Can LATEX profiles be rendered adequately with static CSS?

216 TUGboat, Volume 35 (2014), No. 2

parse correctly without balance, it is important be-
cause CSS (not unlike LATEX) is largely about boxes.
Every XML element gives rise to a box. CSS proper-
ties control that box.

One might eventually hope that perfectly sized
parentheses for a given box might be provided using
CSS as a border segment object. What works now is
the following:

bal {

align-self: center;

display: inline-block;

margin-left: 0.15em;

margin-right: 0.15em;

padding: 0.2ex 0.2em 0.2ex 0.2em;

border-left: 0.2ex solid;

border-right: 0.2ex solid;

border-radius: 0.5em;

}

Here is a screenshot that illustrates this handling of
\bal{}:

Notice how each pair of parentheses, allowing for
CSS-specified padding of boxes, fits its box precisely.
There is no limit to the number of sizes. How easy it
could be for an author to omit one of the parentheses
at the end if they were all of the same size as here:

π

2

(
1 +

(
lim

n→∞

(
log(n+ 1) −

(
n∑

k=1

1

k

))))

Among my wishes for the future of CSS are new
border-decoration properties for the four sides of a
box that would enable one to have precisely fitting
parentheses, braces, and brackets. Further one might
wish eventually to be able to attach to a point on
the border of a box a small piece of drawing, similar
to a picture environment drawing in LATEX.

Thus, for example, radicals (from \sqrt[]{}),
which are presently rather fragile with the CSS styling
now available (except for the top line that presents
well when styled as the border-top of the radicand),
would be handled better using the border-top of the
radicand and a segment of the border-left of the
radicand with a radical hook drawn from the bottom
of the segment on the left. Failing that one can even
now make Orwellian “victory radicals” consisting
simply of the top and left borders of the radicand.

7 Flexible boxes

7.1 underset

The LATEX profile in use here does not, though it cer-
tainly could, provide \lim as a command. The limit
in the previous display is generated as an underset.
Explicitly, the corresponding source is:

\underset{n \rightarrow \infty}{\mbox{lim}}

In the XML everything needs a name. The first
argument of underset, the “decoration”, has the name
deco, while the second argument, the “base”, has the
name expr.5

It would be rather heavy-handed to style an
underset as a table. Instead it uses a new concept in
CSS [10]: the flexible column.6

The command underset is treated in this seg-
ment of the CSS stylesheet:

underset {

display: inline-flex;

flex-direction: column;

align-items: center;

vertical-align: text-top;

justify-content: flex-start;

}

underset > expr {

order: +1;

padding: 0;

margin-top: -0.2ex;

margin-bottom: -0.3ex;

}

underset > deco {

font-size: 0.8em;

padding: 0;

order: +2;

}

The order property for the children indicates
the order from top to bottom in which the children
should be displayed. In this case the first child is to
be displayed second and the second child first.7 The
ability to arrange the order of children is useful. (Its
usefulness is made less important, however, if the
XML is processed for “dress”.)

This segment of CSS above is not very robust.
The vertical-align specification may or may not
be what one will ultimately want. If it is used,
the idea is to align the underset box within the
parent. It is not supposed to be effective if the
parent is a flexible box (row or column), in which

5 The argument order for MathML’s corresponding munder
is reversed.

6 As an exercise, the reader might ponder why it would
not work to style a fraction as a flexible column.

7 With MathML’s munder it would be first first and second
second.

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 217

case a property called align-self with different
permitted values can be used. It’s not fully clear
which display types of the parent are appropriate
if vertical-align is to be effective. Moreover, it’s
not clear what point on a flexible column is being
aligned, say, in a parent of type inline-block. I can
report that for one browser the display changed for
underset and overset with a version upgrade during
July, 2014. The top and bottom margin settings for
expr are a font-dependent attempt to adjust for the
inadequacies of vertical-align.

7.2 sum-like operators

The sum in the previous display also involves flexible
boxes, in this case two of them, one a row and one a
column. In the LATEX profile at hand, sums, integrals,
and products are handled together for most purposes,
and I call them the “sip” (the first letters of sum,
integral, and product) elements. (There could be
more of these: unions, intersections, coproducts, . . . ,
but no others are presently in the profile.) Where in
regular LATEX the corresponding commands reference
the operator symbols, in the profile they reference
the whole structure. Nonetheless, the markup is
almost the same as with regular LATEX except that an
explicit termination of the object of the operation is
required. For the example in the display of section 6,
the markup is

\sum_{k=1}^n\frac{1}{k}\sum:

This could be marked up in a manner close to
its XML guise:

\sum{\siphead{\lower{k=1}\upper{n}}

\sipbody{\frac{1}{k}}}

The CSS scheme used is that sum is a flexible row,
while its first child siphead is a flexible column given
that its parent is a displaystyle sum. At the stage
of dressing an mx containing the summation symbol
is inserted between the upper and the lower. The
sipbody, which is the second child of the sum, con-
tains the object of the summation — in this case the
fraction 1/k. A listing of the relevant CSS code fol-
lows. Note that the property align-self should
govern vertical alignment of the sum in its parent in
the case that the sum is itself inside a flexible row,
while the property vertical-align should govern
the case that the sum is inside an inline block (which
I have taken to be the default display style for any
expression more complicated than a single symbol).

sum, int, prod {

align-self: center;

vertical-align: middle;

margin-left: 0.2em;

margin-right: 0.2em;

display: inline-flex;

flex-direction: row;

justify-content: flex-start;

align-items: center;

}

siphead {

vertical-align: middle;

align-self: center;

display: inline-flex;

flex-direction: column;

justify-content: flex-start;

align-items: center;

}

siphead > upper {

font-size: 0.6em;

order: -1;

line-height: 2.5ex;

min-height: 1.5ex;

margin-bottom: 0.15ex;

}

siphead > mx {

order: 0;

}

siphead > lower {

order: 1;

font-size: 0.6em;

line-height: 2.5ex;

min-height: 2.5ex;

margin-top: 0.15ex;

}

sipbody {

display: inline-block;

align-self: center;

padding-left: 0.05em;

}

8 Why?

It is important to explore all avenues for making
mathematical content fully available online in proper
online formats. This includes the world of small
screens as found on “smart phones” and the world
of “e-books”.

One hopes that the design concepts in CSS8

for online content eventually become adequate for
handling mathematics — they are not far from that
now — and that those concepts come to be supported
in all major web browsers.

With fully robust static CSS for LATEX profiles
the gain for the online presentation of mathematics
could be:

1. Faster browsing of math online.

8 general concepts not particularly tied to mathematics

Can LATEX profiles be rendered adequately with static CSS?

218 TUGboat, Volume 35 (2014), No. 2

2. The potential for greater control in the presen-
tation of math online.

3. Elimination of the need for special handling of
math in the online world.

If this future is realized, there are two other
things to note:

• A LATEX profile can be robustly translated (on
the server side) to HTML with MathML. In that
process the output can be “dressed” so that it
can be styled with static CSS in a way that has
an almost identical presentation in web browsers
to that of the profile itself presented with its
static CSS. There should be no need to observe
the restrictions of “MathML for CSS” [9].

• Web-served HTML with MathML will have the
advantage over web-served LATEX profiles of
having mathematical expressions that can be
“pasted” into a computer algebra system.

References

[1] Bert Bos, Tantek Çelik, Ian Hickson,
& H̊akon Wium Lie, Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1)
Specification World Wide Web Consortium
Recommendation, 7 June 2011, http:
//www.w3.org/TR/2011/REC-CSS2-20110607.

[2] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen,
Eve Maler, & François Yergeau, Extensible
Markup Language (XML) 1.0 (Fifth
Edition, World Wide Web Consortium
Recommendation, 26 November 2008, http:
//www.w3.org/TR/2008/REC-xml-20081126.

[3] Michel Goossens and Sebastian Rahtz et al.,
The LATEX Web Companion, Addison-Wesley,
1999.

[4] Leslie Lamport, LATEX: A Document
Preparation System, 2nd edition,
Addison-Wesley, 1994.

[5] William F. Hammond, The GELLMU
Manual, 2007, http://mirror.ctan.org/
support/gellmu/doc/glman.pdf, or
http://mirror.ctan.org/support/gellmu/

doc/glman.xhtml (XHTML+MathML).

[6] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat,
vol. 22 (2001), pp. 204–207; also available
online at http://www.tug.org/TUGboat/

tb22-3/tb72hammond.pdf.

[7] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat, vol. 28 (2007), pp. 306–311;
also available online at http://www.tug.

org/TUGboat/tb28-3/tb90hammond.pdf.
A video recording of the presentation at
TUG 2007, July 2007, in San Diego is
available at http://river-valley.zeeba.

tv/conferences/tug-2007/.

[8] William F. Hammond, “LATEX profiles as
objects in the category of markup languages”,
TUGboat, vol. 31 (2010), pp. 240–247;
also available online at http://www.tug.

org/tugboat/tb31-2/tb98hammond.pdf.
A video recording of the presentation at
TUG 2010, June 2010, in San Francisco is
available at http://river-valley.zeeba.

tv/conferences/tug-2010/.

[9] Bert Bos, David Carlisle, George
Chavchanidze, Patrick D. F. Ion,
& Bruce Miller, “A MathML for CSS
Profile”, World Wide Web Consortium
Recommendation, 7 June 2011, http:
//www.w3.org/TR/mathml-for-css/.

[10] T. Atkins, fantasai, & Rossen Atanassov,
ed., “CSS Flexible Box Layout Module
Level 1”, World Wide Web Consortium,
last call working draft (work in progress),
March 25, 2014, http://www.w3.org/TR/
2014/WD-css-flexbox-1-20140325/, (latest:
http://www.w3.org/TR/css-flexbox-1/).

� William F. Hammond
University at Albany, Albany,
New York
and San Diego, California
hammond (at) albany dot edu

http://www.albany.edu/~hammond/

William F. Hammond

